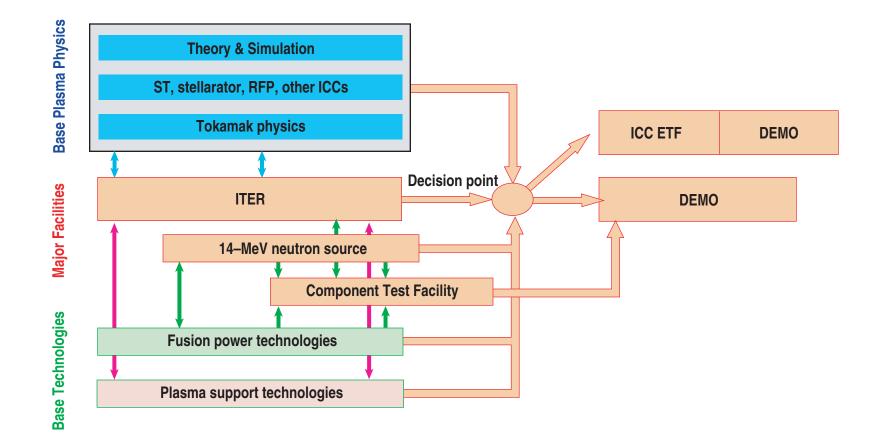
MFE DEVELOPMENT PLAN-TOKAMAKS

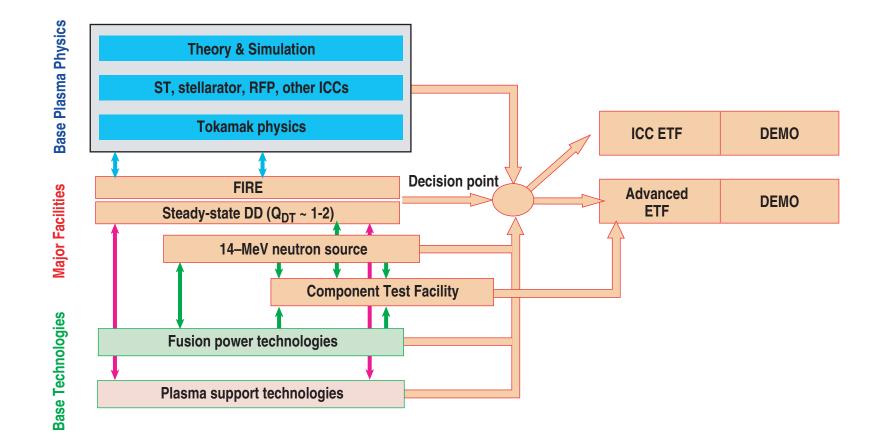
R.D. Stambaugh Presented at General Atomics to FESAC Development Path Panel

January 13 2003



MFE DEVELOPMENT PLAN ELEMENTS-TOKAMAK

- Concept improvement
 - Advanced Tokamak physics, US machines DIII–D, Alcator C–MOD, NSTX
- Burning plasma
 - ITER, FIRE, IGNITOR
- Steady-state (Long pulse research)
 - ITER, JT-60SC, KSTAR, LHD, HT-7U, SST, TORE-SUPRA, W7-X
- Materials and fusion energy technology development
 - IFMIF, Component Test Facility (CTF)



DEVELOPMENT PATH WITH ITER (FESAC)

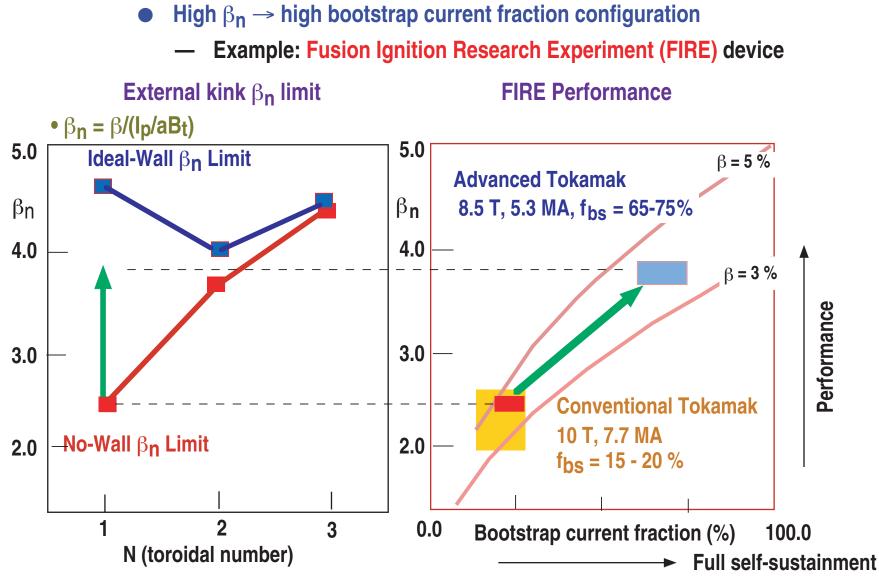
DEVELOPMENT PATH WITH FIRE (FESAC)

U.S. BASE PROGRAM NEEDS INCREASED SUPPORT IN PARALLEL WITH ITER

- Current Tokamaks should run until ITER runs
- We must continue to learn and develop the scientific basis for fusion energy
- The advanced operating modes which are being developed will be the starting point for research in ITER
- The research and operating staff for ITER will be trained on current devices

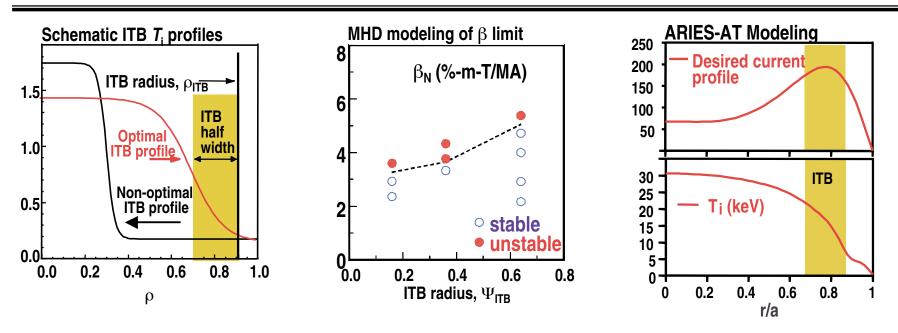
IMPORTANT SCIENTIFIC CHALLENGES FOR NEXT DECADE

- Integration of AT building blocks into scenarios on which to base future machines
- Full exploration and exploitation of the Tokamak's AT potential
- Understanding the basic physics mechanisms of transport from turbulence
- Understanding the H–mode pedestal structure
- Understanding and controlling mass transport in the plasma boundary
- Developing radiative divertors compatible with steady-state AT operation

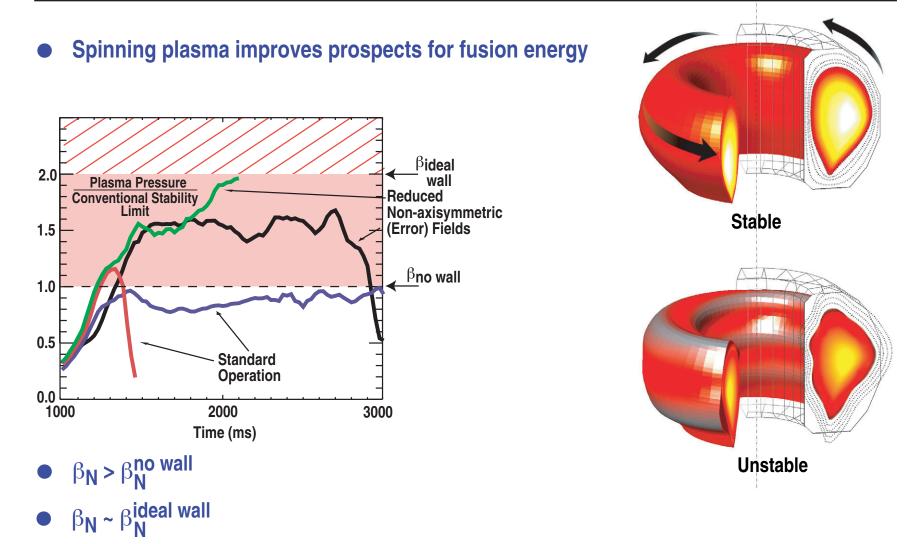


ADVANCED TOKAMAK PHYSICS IS CLOSE AT HAND

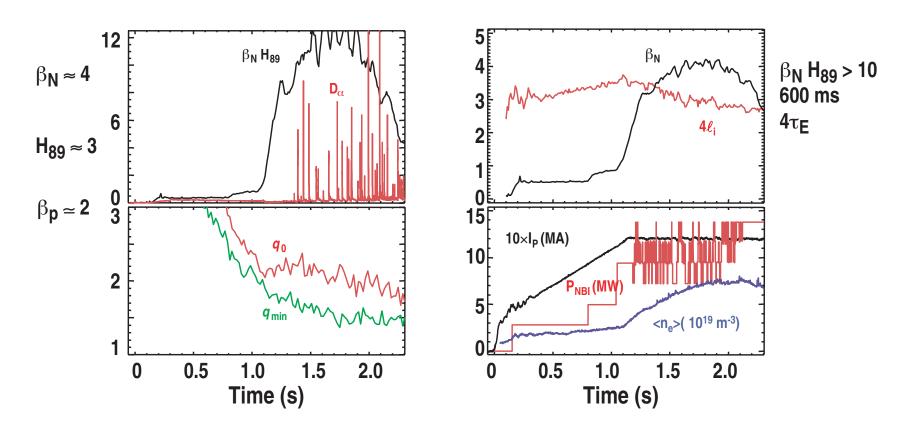
- Building blocks nearly in place
 - Wall stabilization looks like it will work
 - Neoclassical tearing mode stabilization with ECCD works
 - Current profile control demonstrations have started
 - Enhanced confinement states abound
 - ELM free regimes found (EDA in Alcator C–MOD, QH in DIII–D)
 - New era of plasma control starting
 - Disruption mitigation technique available
- Basis for steady-state operation of ITER, CTF and DEMO at β_N = 4, H₈₉ ~2.5-3.0 achievable in 4-6 years
 - if major facilities are adequately support (+25% budget increase)
 - ★ more run time
 - ★ more plasma control tools
 - ★ adequate theory and computational support



SUCCESSFUL EXTERNAL KINK MODE SUPPRESSION: A PREREQUISITE FOR SELF-SUSTAINING FUSION PLASMA


INTERNAL TRANSPORT BARRIER CONTROL IS ESSENTIAL

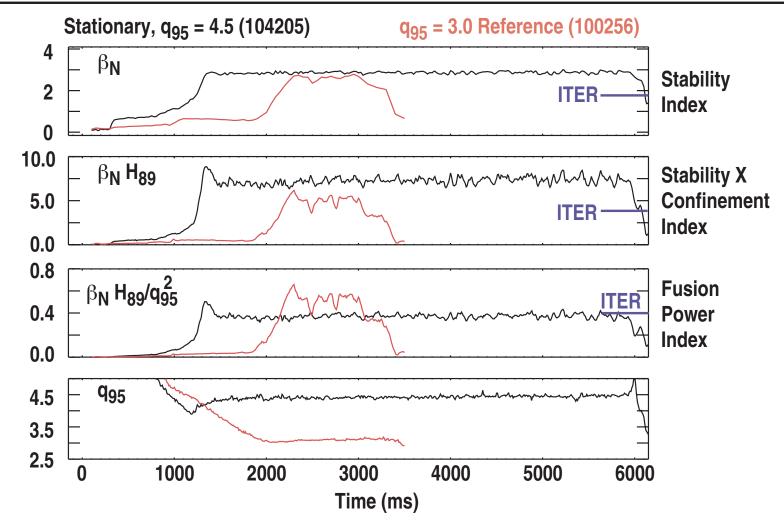
- Fusion performance: Need to maximize volume inside barrier.
- MHD stability: Beta limit maximized with barrier location and width.
- Bootstrap current: Better aligned with larger barrier position.
- Large barrier radius and large barrier width both highly desirable.



WALL STABILIZATION LOOKS LIKE IT WILL WORK MAJOR BREAKTHROUGH IN 2001

RESISTIVE WALL MODE MITIGATION ALREADY ALLOWS OPERATION ABOVE NO-WALL LIMIT AT HIGH β_{N}

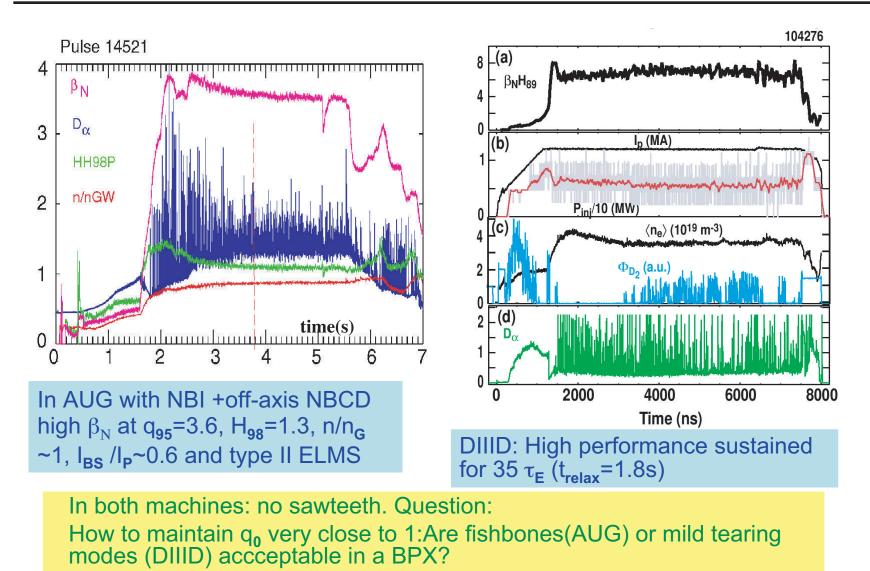
- Achieved through rotational stabilization of resistive wall mode
- Technique now in routine use during high beta AT experiments
- Duration and β limited by tearing mode as *q* profile evolves


184-02/CMG/cmg 11 004-03/RDS/JY

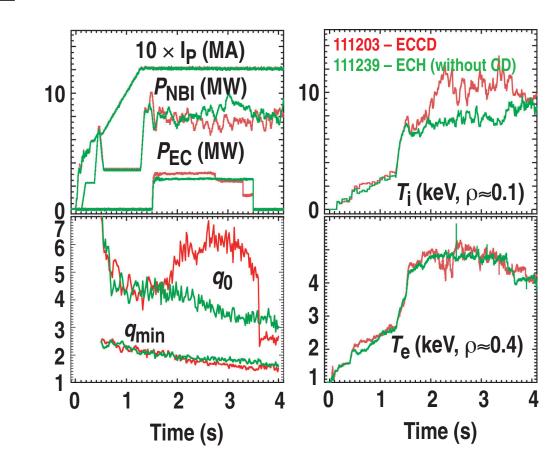
COLLABORATION WITHIN IEA LARGE TOKAMAK FRAMEWORK (1)

- Two promising advanced scenarios have been identified for further investigation
 - one compatible with hybrid operation (long inductive pulse at high fusion yield)
 - and one compatible with steady state (fully non-inductive) operation
- Hybrid scenario is defined by a flat q profile with q_{min} >~1. The four largest divertor machines (JT-60U, JET, AUG, DIII–D) have operated at high normalized β(>2.5) under these conditions for long pulses (>20 τ_E)
 - The high priority is to map the existence domain for this scenario for each machine and identify across the domain the mechanism by which the current is prevented from peaking (fishbones, tearing mode, etc.). Variations of performance (e.g., $\beta \tau_{th}$) with q₉₅ and density at fixed field and shape are of high interest. Variations with shape (performance and ELM behavior) and T_e/T_i are also of interest

C Gormezano ITPA Topical Group on Steady State and Energetic Particles Coordinating Committee Garching 24-25 October 2002

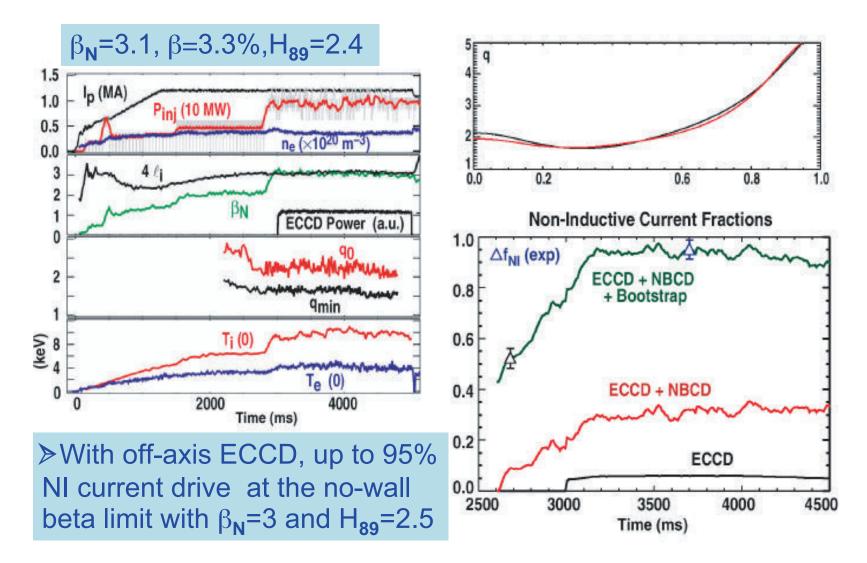

STATIONARY PLASMAS THAT WOULD ENABLE ITER TO RUN 4000 SECONDS AT 500 MW FUSION POWER HAVE BEEN DEMONSTRATED ON DIII-D

SHALLOW SHEAR REVERSAL AT q₀ AROUND 1: HIGH FUSION YIELD HYBRID ITER SCENARIOS

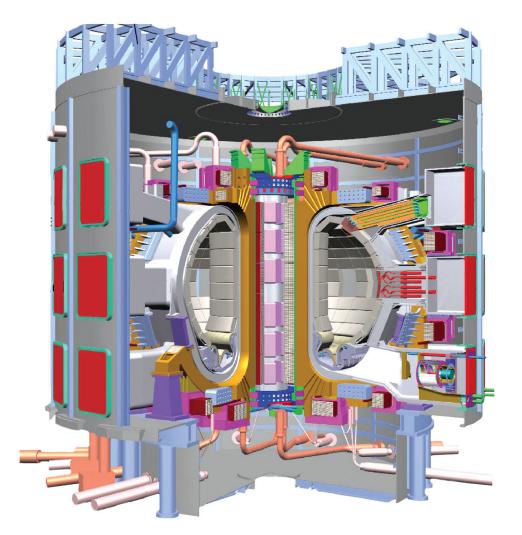


C Gormezano ITPA Topical Group on Steady State and Energetic Particles Coordinating Committee Garching 24-25 October 2002

RECENT DIII-D EXPERIMENTS HAVE DEMONTRATED THE ABILITY TO CONTROL THE CURRENT PROFILE IN HIGH PERFORMANCE DISCHARGES USING OFF-AXIS ECCD


High Bootstrap Fraction AT

1.2 MA lp ECCD 0.13 MA 10% **NBCD** 30% **Bootstrap** 53% OHMIC 7% **Non-Inductive** 93% 1.85 T Вт EC 2.5 MW NB **8 MW** 3.1% Вт 2.8 βN Н 2.5 β_NH 7


RECENT RESULTS FROM DIII-D: HIGH BOOTSTRAP AT qmin ~1.5

C Gormezano ITPA Topical Group on Steady State and Energetic Particles Coordinating Committee Garching 24-25 October 2002

ITER MOVING FORWARD

- Four site proposals
- U.S. community recommends rejoining negotiations
- Others (China) seeking to join as full partners

ITER

Q= 10 reference scenario(s): milestone

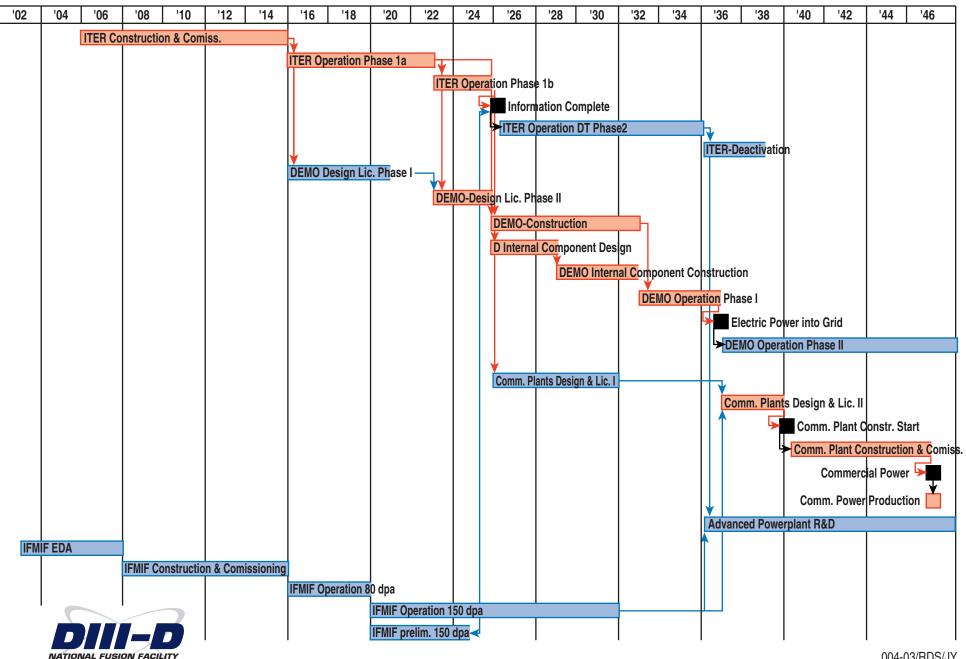
Parameter	400 MW	560 MW	260 MW
R/a (m/m)	6.2/2.0	\leftarrow	\leftarrow
κ ₉₅ /δ ₉₅	1.7/0.33	\leftarrow	\leftarrow
B _T (T)	5.3	\leftarrow	\leftarrow
I _P (MA)	15.0	\leftarrow	←
q ₉₅	3	\leftarrow	\leftarrow
$< n_e > (10^{20} \text{m}^{-3})$	1.01	1.18	0.83
<ne>/nG</ne>	0.85	1.0	0.7
$< T_e > (keV)$	8.8	9.0	8.7
$\langle T_i \rangle$ (keV)	8.0	8.2	7.9
P _{FUS} (MW)	400	560	260
$P_{NB} + P_{RF} (MW)$	33 + 7	33 + 23	17 + 9
Q	10	\leftarrow	\leftarrow
P _{RAD} (MW)	47	71	30
PLOSS/PL-H	1.8 (87/48)	2.4 (124/53)	1.3 (55/42)
β _N	1.8	2.1	1.4
β _P	0.65	0.77	0.52
li (3)	0.84	0.84	0.85
τ_E (s)	3.7	3.1	4.7
H _{H98(v,2)}	1.0	\leftarrow	\leftarrow
$\tau_{\rm Hc}^*/\tau_{\rm E}$	5.0	\leftarrow	\leftarrow
file anistana (%)	4.3/3.2	4.1/3.1	4.1/3.1
$\frac{f_{\text{Be, axis}}}{f_{\text{Be, axis}}} \begin{pmatrix} \% \\ \% \end{pmatrix}$	2.0	\leftarrow	\leftarrow
$f_{Ar, axis}$ ^{*1} (%)	0.12	0.16	0.10
Zeff, ave	1.66	1.77	1.60
V _{loop} (mV)	75	75	82

conservative requirements

ITER

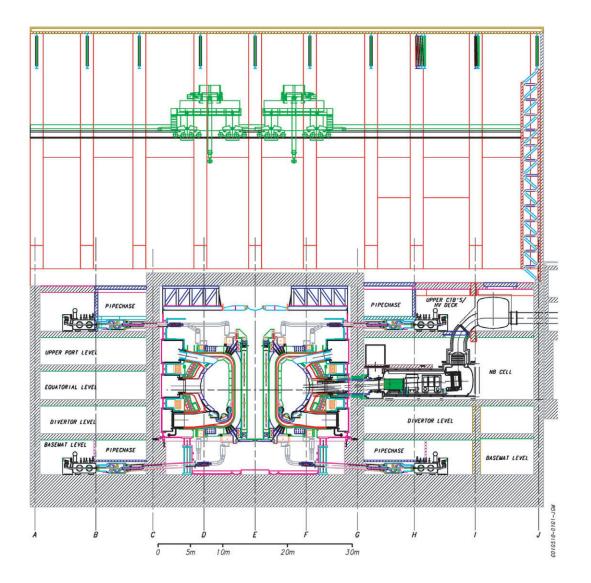
steady state
(,,advanced")
scenarios:

- development needed
- spectrum of scenarios
- scenarios illustrative


		Scenario 4	29 	Scenario 6	Scenario 7	6
		WNS	WNS	SNS	WPS	Low-Q
R/a	(m)	6.35/1.85	6.35/1.85	6.35/1.85	6.35/1.85	6.35/1.85
BT	(T)	5.18	5.18	5.18	5.18	5.18
Ip	(MA)	9.0	9.5	9.0	9.0	11.0
K95/895	98 CC 9	1.85/0.40	1.87/0.44	1.86/0.41	1.86/0.41	1.84/0.43
<ne> (</ne>	10^{19}m^{-3})	6.7	7.1	6.5	6.7	5.7
n/n _G		0.82	0.81	0.78	0.82	0.57
<ti></ti>	(keV)	12.5	11.6	12.1	12.5	9.3
<t<sub>c></t<sub>	(keV)	12.3	12.6	13.3	12.1	12.1
βт	(%)	2.77	2.67	2.76	2.75	2.2
β _N		2.95	2.69	2.93	2.92	1.9
β _p		1.49	1.25	1.48	1.47	0.77
Pfus	(MW)	356	338	340	352	174
$P_{RF} + P_{I}$	NB (MW)	$29 + 30^{*1}$	35 + 28 *1	$40 + 20^{*2}$	29 + 28 *3	36 + 50
$Q = P_{fus}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.0	5.36	5.7	6.2	2.0
W _{th}	(MJ)	287	292	287	284	212
Ploss/PL-	Н	2.59	2.74	2.63	2.6	3.0
τ _E	(s)	3.1	2.92	3.13	3.07	2.15
f _{He}	(%)	4.1	4.0	4.0	4.0	3.0
f _{Be}	(%)	2	2.0	2	2	2
f _{Ar}	(%)	0.26	0.16	0.2	0.23	0.19
Zeff	- 20 - 20 - 20 	2.07	1.87	1.89	1.99	1.86
P rad	(MW)	37.6	30.6	36.2	34.6	22
P loss	(MW)	92.5	100.0	91.6	92.7	99
$l_{i}(3)$		0.72	0.43	0.6	0.69	0.58
I _{CD} /I _p	(%)	51.9	49.7	53.7	50.2	73.6
Ibs/Ip	(%)	48.1	50.3	46.3	49.8	26.4
I _{OH} /I _p	(%)	0	0	0	0	0
q95/q0/q	nin	5.3/3.5/2.2	5.0/3.8/2.7	5.4/5.9/2.3	5.3/ 2.7/2.1	4.1/1.5/1.3
H _{H98(y,2)}		1.57	1.46	1.61	1.56	1.0
τ_{He}^*/τ_E		5.0	5.0	5.0	5.0	5.0

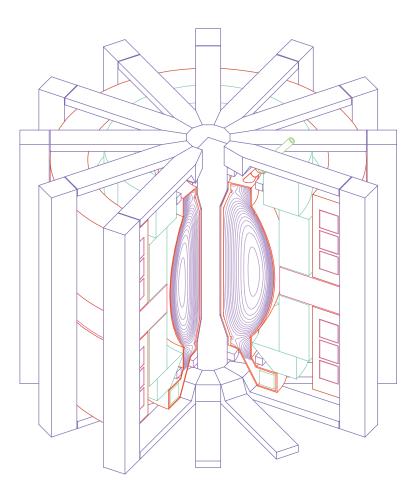
WITH ADEQUATE RESOURCES, FUSION PROGRESS CAN EVOLVE RAPIDLY

- 1. Advanced Tokamak, steady-state basis will be available before ITER operates
- 2. First phase of ITER will focus on advanced, long pulse modes, not the conventional OH driven operation
- 3. Work in ITER and parallel actual long pulse work in other superconducting machines will establish steady-state operation by the end of ITER phase 1a
- 4. The plasma physics will be in hand for a steady-state, high performance demo and for possible use of ITER as a CTF

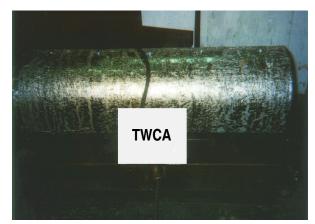


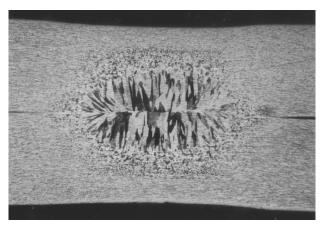
ROADMAP TO FUSION POWER: POSSIBILITIES FOR ACCELERATION (K. LACKNER)

SAN DIEGO

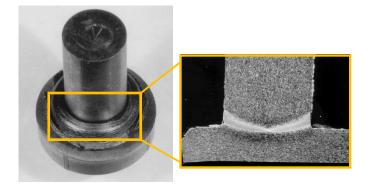

ITER RADIAL ACCESS-SECTOR MAINTENANCE SCHEME

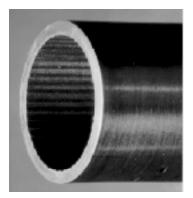
MISSIONS AND DESIRES OF A COMPONENT TEST FACILITY

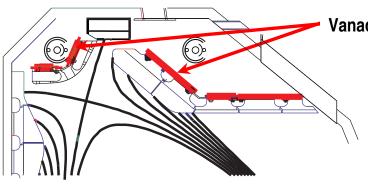

- Small, low cost
- Neutron wall loading 2 MW/m²
- Steady-state/high duty factor (80%)
- Fusion energy technology development
- Tritium breeding development
- Maintainable
- Flexible to blanket changeouts



VANADIUM ALLOY MANUFACTURING TECHNOLOGY DEVELOPMENT


• Collaboration with GA, ANL, ORNL, PNL


800 kg Ingot of Vanadium for Radiative Divertor


Resistance Weld Joining .150" Thick Vanadium Alloy Sheets

Inertial Weld of Vanadium Alloy Stud to Vanadium Alloy Plate

Section of High Heat Flux Module Made from Vanadium Alloy Tubing Developed by GA

Radiative Divertor for DIII–D

Vanadium Support Structure

 Manufacturing technologies to be utilized in the DIII–D Radiative Divertor . . . future vacuum vessels

THERE ARE MANY BLANKET CONCEPTS TO TEST AND DEVELOP

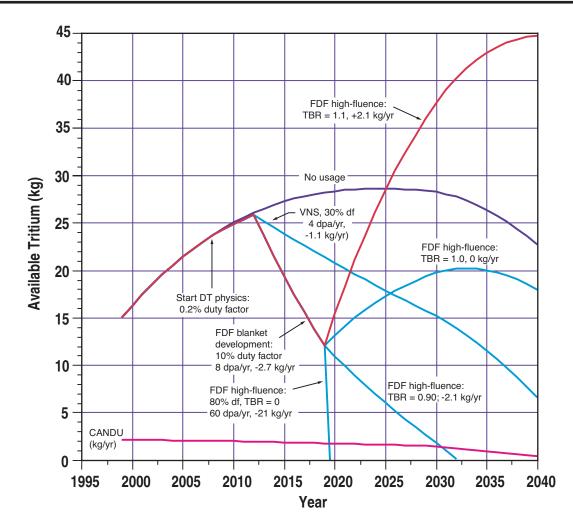
Worldwide Blanket Options for DEMO*

Breeder	Coolant	Structural Material
Solid breeders Li ₂ O, Li ₄ SiO ₄ , Li ₂ ZrO ₃ , Li ₂ TiO ₃	Helium or H ₂ O	Ferritic steel, vanadium alloy, SiC composites
Self-cooled liquid-metal breeders Lithium, LiPb	Lithium, LiPb	Ferritic steel, vanadium alloy with electric insulator, SiC composites with LiPb only
Separately cooled liquid-metal breeders Lithium LiPb	Helium Helium or H ₂ O	Ferritic steel, vanadium alloy Ferritic steel, vanadium alloy, SiC composites

*Almost all concepts use beryllium as the neutron multiplier

Need a CTF that can accomodate breakdowns in test blanket modules-accomodate three (?) iterations per blanket type

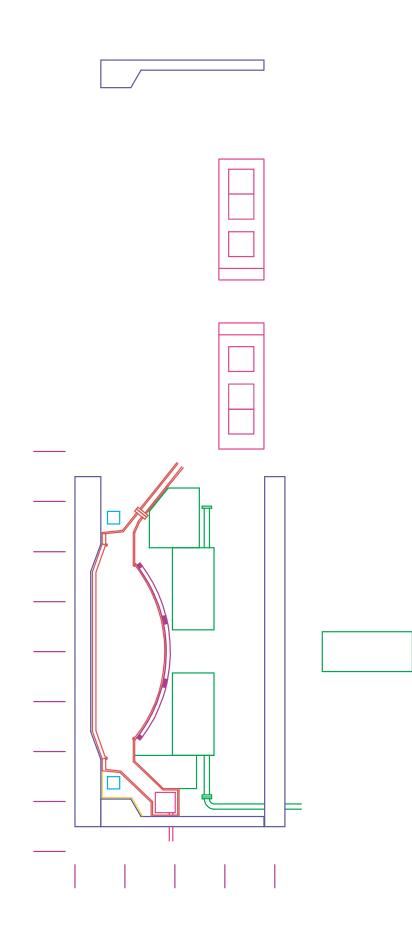
Results of an international study on a high volume plasma based neutron source for fusion blanket development, M. Abdou et. al., Fusion Technology 29 (Jan. 1996) 1.

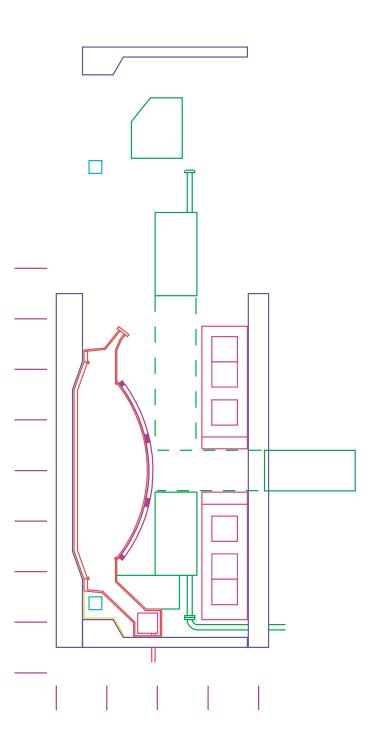

COMPONENT TEST FACILITY

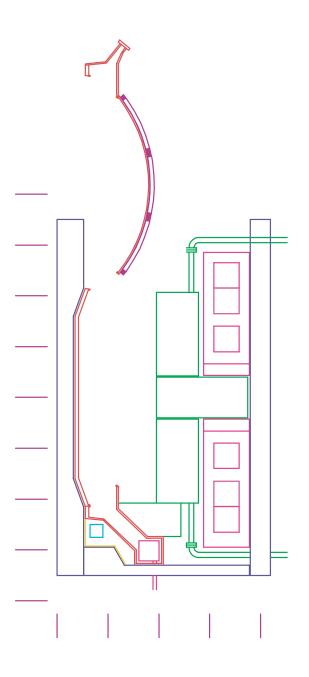
• Steady progress through sequenced objectives

	1 2 3 4 5	6 7 8 9	10 11 12 13 1 	4 15 16 17	18 19 20 /
PHASES	D-D PHYSICS	DT PHYSICS	BLANKET DEVELOPMENT		TRITIUM SELF SUFFICIENCY
FUSION POWER (MW	/) ~0	10	0	400	500
ELECTRIC POWER (N	/IW) –200) –400	-4	00	-400
DUTY CYCLE	0.4%	6 0.4%	0.4% ———	→ 10%	100%
6	50 SECOND PULSE	S 60 SEC — 5	MIN. ~ WEEK LO	ONG RUNS	STEADY-STATE
NEUTRON WALL LOA	AD (MW/m ²)	2		3	3-4
TRITIUM PER YEAR					
BURNED (kg)	~0	0.	1	2.7	27
PRODUCED [N	IET] (kg) 0	0		3.1 [0.4]	31 [4]

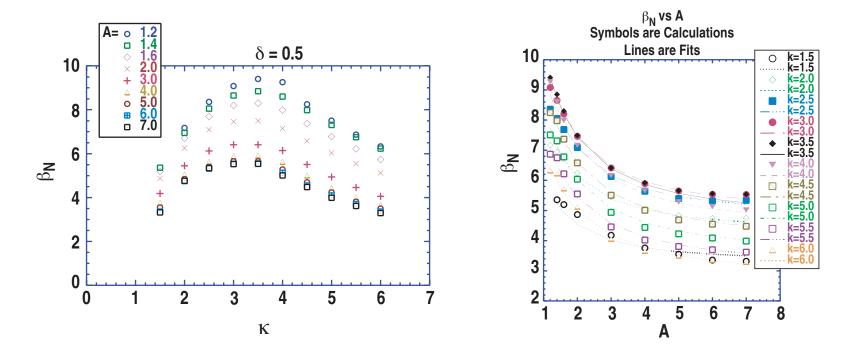
CTF WILL NEED TO BE AT LEAST TRITIUM SELF-SUFFICIENT AT HIGH DUTY FACTOR





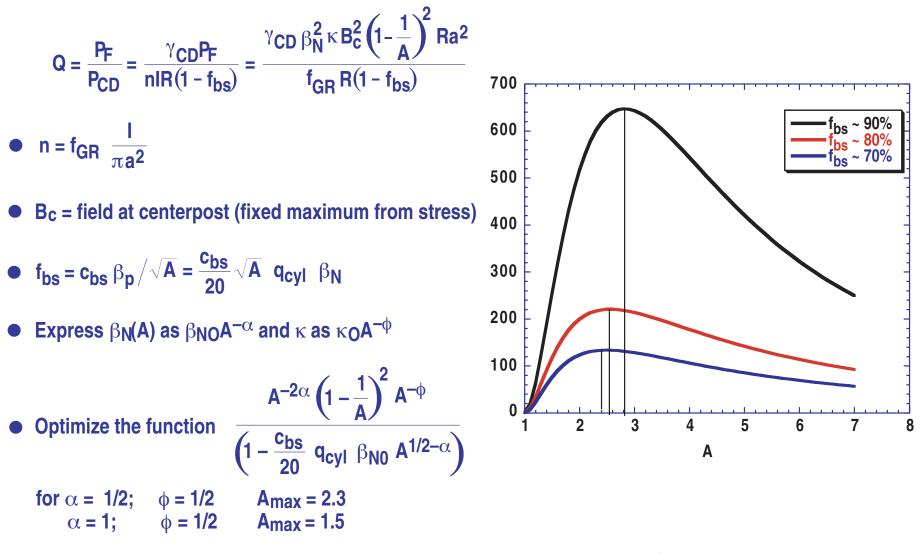

SOME MAJOR DESIGN CONSIDERATIONS

- Maintainability and flexibility
 - Sector versus vertical maintenance
- Two consistent packages
 - Shielded (0.5 m) multi-turn insulated TF coil and OH coil
 - ★ Longer component life
 - ★ Better impedance match of TF coil to power supply (0.5 MA, ~300V)
 - Minimally shield single turn TF with no OH
 - ★ Requires unusual 20-60 MA, 10V power supply
- Aspect ratio choice
 - ★ Appears a relatively unconstrained choice from physics



SYSTEMATIC STUDY OF $\beta_{\mbox{N}}\mbox{-LIMIT}$ VS A AND κ FOR $\mbox{f}_{\mbox{bs}}$ = 0.99

 $\beta_N vs K$


 $\beta_N vs A$

 Optimum plasma states for next step tokamaks, Y.R. Lin-Liu and R.D. Stambaugh, GA-A23980 (6/02) submitted to Nuclear Fusion

USING LIN-LIU'S β -LIMIT DATA, ONE Q INDEX OPTIMIZES FOR A = 2.4-2.8

004-02/RDS/JY

CONFINEMENT QUALITY IS A CHALLENGE TO FIND A SMALL MACHINE

• Scalings

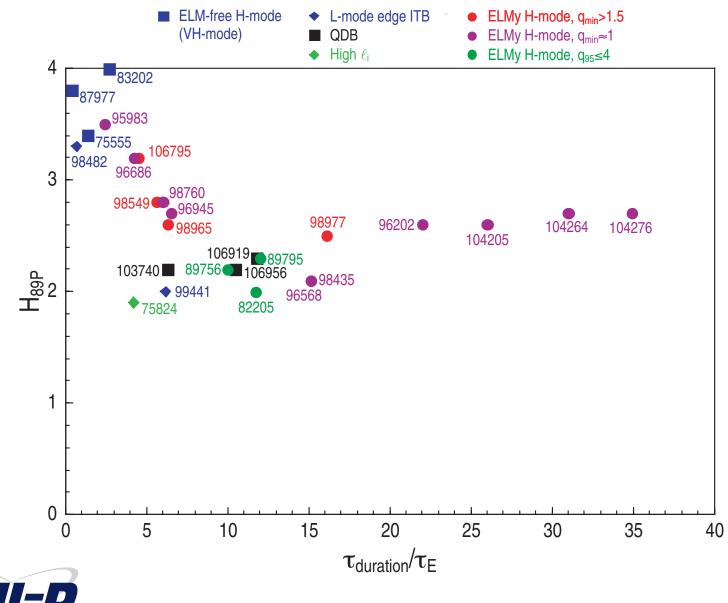
- ITER_{89P}, $\tau_{89p} = 0.048 \ I_p^{0.85} \ R_0^{1.2} \ a^{0.3} \ n^{0.1} \ B_0^{0.2} \ (m_{D-T} \ \kappa/P_{HEAT})^{0.5}$
- ITER_{98(y,2)}, $\tau_{98} = 0.0562 \ I_p^{0.93} \ R_0^{1.97} \ A^{-0.58} \ \kappa^{0.78} \ B_o^{0.15} \ n_{19}^{0.41} \ m_{DT}^{0.19} \ P_L^{-0.69}$

-
$$\tau_{GB}$$
 (Petty) = 0.028 I_p^{0.83} B_T^{0.07} n₁₉^{0.49} R₀^{2.11} A^{-0.3} κ^{0.75} m^{0.14} P_L^{-0.55}

★
$$\tau_E \propto B_T^{-1} \rho_*^{-3} \beta^0 v_*^{-0.15} q^{-1.7}$$

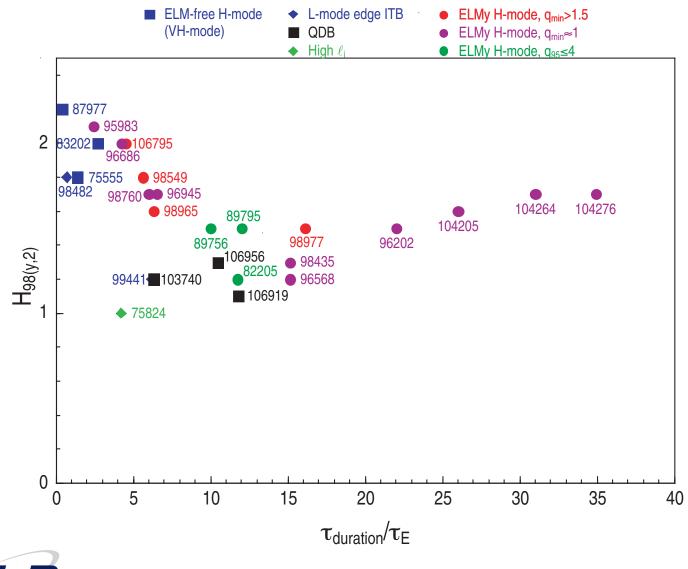
Scalings Reward CTF Wants Large Size **Small Size High Current Lowish Current** Low q Medium q Low Bootstrap Fraction **High Bootstrap Fraction High Plasma Density** Low Plasma Density **Steady-State Inductive Operation** Low Power Density **High Power Density**

C. Petty, et. al., "Feasibility study of a compact ignition Tokamak based upon gyrobohm scaling physics" GA-A23590, Fusion Technology (2001)

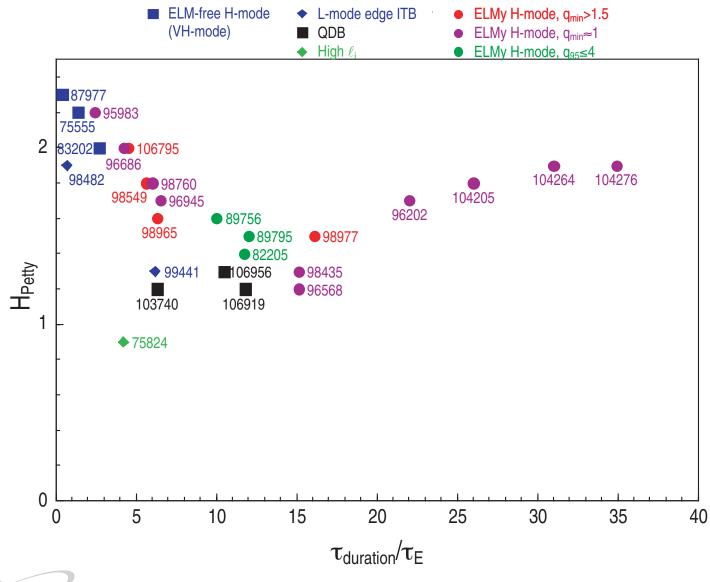

A SMALL CTF MACHINE–OPERATING MODES

A = 2.5, 65% OF $\beta\text{-LIMIT},$ WALL LOAD 2 MW/m²

			Standard Physics	Bootstrap 0.5	Bootstrap 0.7	Bootstrap 0.9
Α	aspect ratio		2.50	2.50	2.50	2.50
k	plasma elongation		2.51	2.51	2.51	2.51
Ro	plasma major radius	m	2.17	2.17	2.17	2.17
а	plasma minor radius	m	0.87	0.87	0.87	0.87
Rsol	solenoid radius	m	0.40	0.40	0.40	0.40
Rtf	toroidal coil radius	m	0.80	0.80	0.80	0.80
Tshield	Thickness of blanket/shield	m	0.50	0.50	0.50	0.50
Jc	centerpost current density	MA/m2	30.10	28.50	34.00	38.10
Во	field on axis	Т	4.19	3.97	4.73	5.30
Bc	field at conductor	Т	11.35	10.74	12.82	14.36
Pf	fusion power	MW	312.96	320.58	331.30	316.02
Pn/Awall	Neutron Power at Blanket	MW/m2	1.96	2.01	2.08	1.98
Pinternal	power to run plant	MW	537.69	399.34	471.82	550.36
Qplasma	Pfusion/Paux		3.02	5.49	6.63	6.32
BetaN	normalized beta	mT/MA	3.00	4.12	4.12	4.12
fbs	bootstrap fraction		0.30	0.50	0.70	0.90
BetaT	toroidal beta		0.13	0.14	0.10	0.08
lp	plasma current	MA	15.13	11.79	10.05	8.76
framp	induct ramp frac		0.08	0.1	0.12	0.14
Pcd	current drive power	MW	103.58	58.35	30.33	8.61
Paux	total auxiliary power	MW	103.58	58.35	50.00	50.00
Pheat	Total Heating Power	MW	166.17	122.47	116.26	113.2
Ti(0)	Ion Temperature	keV	20.00	20.00	20.00	20.00
Te(0)	Electron Temperature	keV	20.00	20.00	20.00	20.00
n(0)	Electron Density	E20/m3	2.26	2.28	2.32	2.27
nbar/nGR	Ratio to Greenwald Limit		0.28	0.37	0.44	0.49
Zeff			2.40	2.40	2.40	2.40
W	Stored Energy in Plasma	MJ	101.96	103.19	104.90	102.45
TauE	TauE	sec	0.61	0.84	0.90	0.91
Н	H factor over 89P L-mode		1.99	2.99	3.46	3.77
HITER98Y2	H factor over ELMY H		1.21	1.77	2.08	2.30
Hpetty	GyroBohm, No Beta dep		0.99	1.43	1.68	1.86


Aspect Ratio 2.5, 65% of the Beta Limit, Neutron Wall Loading 2 MW/m2

DIII-D CONFINEMENT RESULTS AGAINST ITER89P L-MODE SCALING



DIII-D CONFINEMENT RESULTS AGAINST ITER ELMy H-MODE SCALING

DIII-D CONFINEMENT RESULTS AGAINST PETTY'S GYROBOHM SCALING

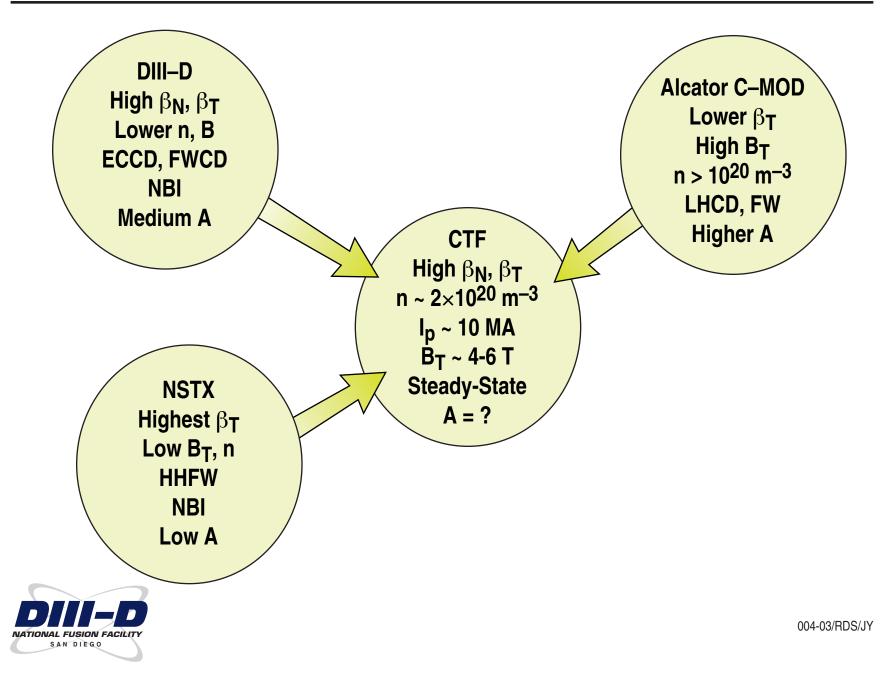
COST ESTIMATES FOR CTF

• Construction

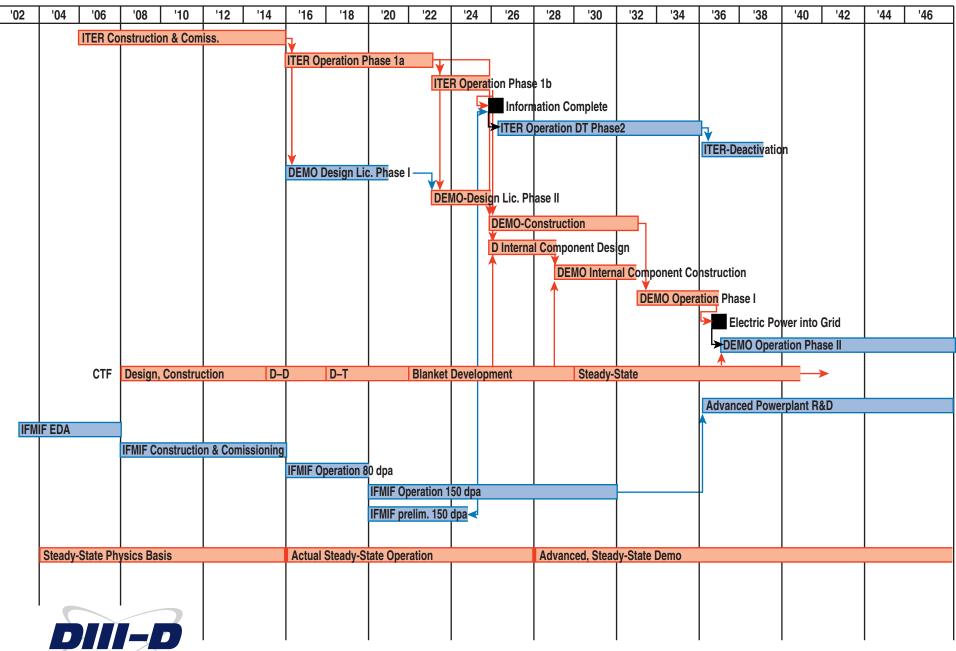
- DIII-D ($(0.6B) \times (2.17/1.67)^2 = (1.0B)$
- TPX (~0.75B in 1995) × (1.04)⁷ = 1.0B
- Spreadsheet with ITER component costs = \$1.2B
- Blanket development program
 - \$25-\$50M per year
- Operating costs
 - \$100M/year for staff, non-electricity costs
 - Electricity costs a key concern (\$44M/100MW @ 5¢/KWH)
 - ★ 400MW @ 10% duty factor \Rightarrow \$18M/year
 - **★** 400MW @ 100% duty factor \Rightarrow \$176M/year

		D–D	D–T	Blanket Dev S	steady-State
	1 2	3 4 5 6	7 8 9 10 11 1	2 13 14 15 16 17	18 19 20 ->
Construction	\$1.X B				
Blankets		0	Shielding	\$25-50M/yr	\$25-50M/yr
Operation (50M	W base load)	\$123M/yr	\$123M/yr	\$140M/yr	\$276M/yr
Total	(\$1-2B)	\$123M/yr	\$130M/yr	\$165-190M/yr	\$301-326M/yr

Key issue is electric cost


- Mission do we need 100% duty factor or will 10% do ? – (Abdou's "Fusion Break-in" stage)
- Lower neutron flux requirement 1 MW/m²

- Power exhaust (P/R ~60, twice ITER)


- Use more advanced physics ($\beta_N > 4$)
- Get rid of OH solenoid and minimize shielding of the single turn centerpost
- Make it large enough to make its own electricity in the steady-state phase

THE U.S. HAS A GOOD SET OF MACHINES TO TRIANGULATE ON A CTF

ROADMAP TO FUSION POWER: POSSIBILITIES FOR ACCELERATION (R.S.)

WITH ADEQUATE RESOURCES, FUSION PROGRESS CAN EVOLVE RAPIDLY

- 1. Advanced Tokamak, steady-state basis will be available before ITER operates
- 2. First phase of ITER will focus on advanced, long pulse modes, not the conventional OH driven operation
- 3. Work in ITER and parallel actual long pulse work in other superconducting machines will establish steady-state operation by the end of ITER phase 1a
- 4. The plasma physics will be in hand for a steady-state, high performance demo and for possible use of ITER as a CTF
- 5. A CTF design study is needed

