MICROSEISMS IN GEOTHERMAL EXPLORATION: STUDIES IN GRASS VALLEY, NEVADA

A1fred Liang-Chi Liaw
(Ph. D. thesis)

November 1977

Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

This dissertation is dedicated to my wife Julie Yu-Chu for her patient encouragement and understanding.

ROTICS
PGRTYONS OF THTS PROORT ARE ILIEGIBLE. It hes loon reprodaced trom the best avallablo copy to permit the broadest possible availability.

都

\square正

$$
\ldots
$$

CHAPTER 1 INTRODUCTION 1
CHAPTER 2 EARTH NOISE 4
2.1 Introduction 4
2.2 Short-period seismic noise ($\mathrm{T}<0.8 \mathrm{sec}$) 5
2.3 Long-period seismic noise ($2 \mathrm{sec}<\mathrm{T}<20 \mathrm{sec}$) 7
2.4 Very long period seismic noise ($\mathrm{T}>30 \mathrm{sec}$) 9
2.5 Geothermal ground noise 10
2.6 Local geological structure effects 13
CHAPTER 3 FIELD PROGRAMS 19
3.1 Introduction 19
3.2 Area of study 19
3.3 Other geophysical data in this area 20
3.4 Seismic data acquisition system 21
CHAPTER 4 AMPLITUDE VARIATIONS OF GROUND NOISE 37
4.1 Introduction 37
4.2 Field procedures 37
4.3 Data processing techniques: frequency spectrum estimation 38
4.3.1 Autocorrelation method 38
4.3.2 Method of modified periodogram 39
4.3.3 Grass Valley data processing method 42
4.4 Temporal variation of ground noise 42
4.5 Spatial variation of ground noise 44
4.6 Site-response characteristics 47
CHAPTER 5 PROPAGATION CHARACTERISTICS OF GROUND NOISE 71
5.1 Introduction 71
5.2 Coherence of ground noise 72
5.3 Roving array experiment 74
5.4 Frequency-wavenumber power spectral density estimation 75
5.4.1 Definition 75
5.4.2 Conventional method (BFM) 76
5.4.3 Maximum-likelihood method (MLM) 80
5.4.4 Comparing the FKPSD estimation techniques 85
5.4.5 Grass Valley data processing method 91
5.5 Grass Valley data interpretation 93
5.6 Dispersion characteristics and shallow structure 94
This report was prepared as an account of work sponsored by the United States Government. Neither the
United States nor the United States Department of United States nor the United States Department of
Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes
CHAPTER 6 SUMMARY AND RECOMMENDATIONS 114
6.1 Summary 114
6.2 Reconmendations 115
REFERENCES 119
APPENDIX A NOTATION 123
APPENDIX B DATA PROCESSING NOTES 126

MICROSEISMS IN GEOTHERMAL EXPLORATION:
 STUDIES IN GRASS VALLEY, NEVADA
 Alfred Liang-Chi Liaw
 Lawrence Berkeley Laboratory University of California, Berkeley

Abstract

Frequency-wavenumber ($f-k$) spectra of seismic noise in the bands $1 \leqslant f \leqslant 10 \mathrm{~Hz}$ in frequency and $|\underline{\mathrm{k}}| \leqslant 35.7$ cycles $/ \mathrm{km}$ in wavenumber, measured at several places in Grass Valley, Nevada, exhibit numerous features which can be correlated with variations in surface geology and sources associated with hot spring activity. Exploration techniques for geothermal reservoirs, based upon the spatial distribution of the amplitude and frequency characteristics of short-period seismic noise, are applied and evaluated in a field program at a potential geothermal area in Grass Valley, Nevada. A detailed investigation of the spatial and temporal characteristics of the noise field was made to guide subsequent data acquisition and processing. Contour maps of normalized noise-level derived from carefully sampled data are dominated by the hot spring noise source and the generally high noise levels outlining the regions of thick alluvium. Major faults are evident when they produce a shallow lateral contrast in rock properties. Conventional seismic noise mapping techniques cannot differentiate noise anomalies due to buried seismic sources from those due to shallow geological effects. The noise radiating from a deep reservoir ought to be evident as body waves of high phase velocity with time-invariant source azimuth. A small two-dimensional array was placed at 16 locations in the region

$$
-v i-
$$

to map propagation parameters. The f-k spectra reveal local shallow sources, but no evidence for a significant body wave component in the noise field was found. With proper data sampling, array processing provides a powerful method for mapping the horizontal component of the vector phase velocity of the noise field. This information, as well as the accurate velocity structure, will enable us to carry out seismic ray tracing and eventually to locate the source region of radiating microseisms. In Grass Valley, and probably in most areas, the $2-10 \mathrm{~Hz}$ microseismic field is predominantly fundamental mode Rayleigh waves controlled by the very shallow structure.

ACKNOWLEDGMENTS

This work was supported by the U.S. Energy Research and Development Administration through the University of California, Lawrence Berkeley Laboratory.

I wish to express my deep gratitude to all those who have helped in this work. I am very grateful to the members of my thesis committee, especially the Chairman, Professor T. V. McEvilly, for his advice, stimulating discussions, and encouragement at all stages of the work; to Professor H. F. Morrison and Professor W. E. Farrell for their many constructive criticisms and the arrangement of financial aids during this period of study.

I am grateful to Steven Palmer, Jack Yatou, Glen Melosh, Ernie Majer, and the technical personnel of Lawrence Berkeley Laboratory for their helpful field assistance in various stages of the field experiment.

A final note of thanks goes to my parents for their love and encouragement.

I. INTRODUCTION

Two methods have been proposed for attempting to utilize microseisms for delineating geothermal reservoirs. The first is based on the speculation that hydrothermal processes deep in the reservoir radiate seismic wave energy in the frequency band 1 to 100 Hz . If this phenomenon exists, the exploration method becomes a relatively straightforward "listening" survey, using stations on a 0.5 to 2 km grid. Contours of noise power on the surface should delineate noise sources. This is the "standard" noise survey used widely in geothermal exploration. A second approach interprets the noise field as propagating elastic waves of appropriate type, e.g., fundamental mode Ray1eigh waves, and inverts their propagation characteristics to obtain the distribution of medium properties, i.e. velocity and attenuation, both laterally and vertically. The propagation parameters of ambient microseisms so measured will also locate distinctive radiation sources. With sufficient knowledge of the wave nature of the microseisms and a reasonably accurate velocity-depth mode1, a fixed, non-aliased array can be used in a beam-steering mode to define the source region of radiating noise. Both approaches, as used in typical surveys, suffer greatly when data are contaminated by non-seismic noise, by interfering seismic wave trains, or by improper temporal and spatial data sampling. These pervasive problems have combined to render noise analysis at best a qualitative geophysical method and have substantially limited the acceptance of the seismic noise survey as an integral element in geothermal exploration.

This study attempts to avoid such problems by sophisticated analysis of microseismic data in an evaluation of the feasibility of ground noise
studies in geothermal site delineation. We report a series of investigations undertaken near Leach Hot Springs in Grass Valley, within the region of generally high heat flow in northern Nevada. We first quantify the spatial and temporal variations of ground noise in the region and find that the seismic noise spectrum is strongly affected by the near-surface geology at the recording site. In fact, with broadband seismic sensors in a mapping technique using amplitudes and frequencies, one can outline lateral variations in alluvial thickness. This 'standard" mapping technique cannot differentiate noise enhancement due to shallow structure from noise enhancement due to buried seismic source. On the other hand, we find that the mapping of wave propagation parameters provides additional information about the noise field. However, the successful application of this technique requires some understanding of the wave nature of microseisms. We used multiple-sensor arrays to study the seismic coherency as a function of frequency and spatial separation. Based on this information, we designed an array to collect propagating microseismic data. The array data were processed by both the frequency domain beam-forming method (BFM) and the maximum-likelihood method (MLM). From the dispersion curves obtained in our array study, we verify that the seismic noise consists primarily of fundamental mode Rayleigh waves.

In Chapter 2, I consider the geothermal ground noise within the content of wide-band microseisms and discuss the origin of seismic noise in three different period ranges. In Chapter 3, I describe the area of field study and the systems used for field data acquisition. The conventional seismic noise power contour technique is evaluated
in Chapter 4. Finding weakness in the conventional mapping method, I present a sophisticated array mapping technique in Chapter 5, along with field procedures, data processing schemes, and the results of the Grass Valley study. In the concluding chapter, I summarize the results of the study and present recommendations for extensions of the work.

II. EARTH NOISE

2.1 Introduction

The study of microseisms, or earth noise, involves interplay of meteorology, oceanography and seismology. The investigation of microseisms has attracted seismologists since the beginning of this century. A bibliography covering work up to 1955 (Gutenberg and Andrews, 1956) lists over 600 articles on the subject. In a recent review, Båth (1974) provided an additional 69 articles related to spectral studies of microseisms.

A typical seismic noise spectrum recorded at a quiet site (Figure 2.1) shows:

1) The amplitude increases with period for periods longer than 30 sec . Over this band seismic noise is due to atmospheric loading (Savino, et al., 1972).
2) Two distinctive maxima appear around $6-8 \mathrm{sec}$ and $14-20 \mathrm{sec}$. These are related to ocean waves.
3) Low amplitude short-period noise ($\mathrm{T}<0.8 \mathrm{sec}$) associated with human activity and local natural disturbances, including weather.

A distinct worldwide minimum in seismic noise occurs around 30 to 40 sec , separating the very long-period microseisms of atmospheric origin from those long-period waves due to ocean swell. (Savino, et al., 1972; Whorf, 1972). Another prominent minimum around 0.8 sec separates short-period local noise from long-period ocean swell (Figures 2.1 and 2.2).

The noise spectrum, $S(f)$ can be expressed as

$$
\begin{equation*}
S(f)=I(f) E(f) G(f) \tag{2.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
I(f)= & \text { the source spectrum, } \\
E(f)= & \text { the transfer function of entire path, excluding near } \\
& \text { surface effects at the sensor, and } \\
G(f)= & \text { the transfer function of the shallow section at the } \\
& \text { recording site. }
\end{aligned}
$$

The noise spectrum reflects the nature of the source spectrum, and the acoustic properties of the medium both along the path and beneath the recording site. At a quiet bedrock location, away from strong local surface or subsurface sources, the noise spectrum generally exhibits a frequency dependence of f^{-1} to f^{-3}, with local reversals at the peaks (Figures 2.1 and 2.2). In Figure 2.1 the power spectral density obtained by Fix (1972) corresponds to the minimum value recorded at a quiet site (Brune and Oliver, 1959) and to the typical background noise spectrum in 10 to 100 sec range at Albuquerque (Peterson et al., 1976). The results of Peterson et al. (1976) were recorded by the broad-band borehole seismometers of the Seismic Research Observatories.

In this chapter, I discuss the sources of seismic noise, emphasizing those observations of particular relevance for geothermal ground noise. In the last section, I discuss the effect of local geology on seismic noise.

2.2 Short-period seismic noise ($\mathrm{T}<0.8 \mathrm{sec}$)

Microseisms in the period range 0.8 sec to $0.01 \mathrm{sec}(1.25 \mathrm{~Hz}$ to 100 Hz) are generated by human activity such as traffic or machinery (usually called "cultural" noise), by natural surface disturbances due
to wind, or by subsurface activity such as microearthquakes or geothermal processes. Over this frequency range the seismic energy attenuates rapidly with increasing distance from the source. As indicated by Douze (1967), short-period surface seismic noise consists mostly of fundamental mode Rayleigh waves. He also found that at depths of 2 to 3 km beneath the earth's surface, where the fundamental Rayleigh mode has decreased to negligible amplitude, the remainder of the noise consists of random body waves.

Cultural noise. Noise sources related to human activity are responsible for diurnal variations of background noise level as seen in the Waiotapu region of New Zealand (Whiteford, 1970), and at East Mesa, California (Iyer, 1974), both geothermal regions. At East Mesa the freeway, with frequent truck traffic, produces wide-band (up to 10 Hz) noise as well as large amplitude variations which can be detected at distances up to 8 km . Measurements near roads in the Waiotapu region show that traffic can produce ground motion up to $700 \times 10^{-9} \mathrm{~m} / \mathrm{sec}$ about 13 dB above a quiet site, in $0.5-100 \mathrm{~Hz}$, at a distance of 0.5 km (Whiteford, 1970).

Rivers, cana1s, and waterfalls. Iyer and Hitchcock (1976) reported that the river flowing in Long Valley, California, generates noise at frequencies above 6 Hz and that the noise is attenuated by 12 dB 1 km from the river. In East Mesa, irrigation canals seem to be continuous wide-band sources of noise attenuating rapidly with distance, reaching a fairly steady level beyond 3 km . At the power drops (small waterfalls) along the canals, however, a distinctive noise component is generated in a narrow frequency band around 2.5 Hz (Iyer, 1974). Iyer and Hitchcock
(1974) found that in Yellowstone National Park the waterfalls generate a narrow band seismic noise at 2 Hz which is clearly different in appearance from the noise generated by the hydrothermal process. Wind. Although both Whiteford (1970) and Iyer (1974) reported poor correlation between the amplitude of short-period seismic noise with wind speed, Frantti (1963) reported that high wind influenced shortperiod noise. His results are presented in Figure 2.3 for three components of motion. The wind effect influences a broad frequency range, particularly on the horizontal component oriented parallel to the wind direction. Peterson et al. (1976) have shown that the effect of wind-generated noise decreases as the depth of sensor location increases.

Geysers, hot springs, and fumaroles. Reports relating short-period microseisms to geothermal processes are numerous. We will discuss this topic in more detail in Section 2.5.

2.3 Long-period seismic noise ($2 \mathrm{sec}<T<20 \mathrm{sec}$)

Early studies of microseisms concentrated on the observation and the origin of $6-8 \mathrm{sec}$ microseisms which have been reported as a world-wide phenomenon. The amplitude of microseisms varies from site to site and it varies temporally at a given site. The term 'microseismic storm" is used to refer to the occasional periods of unusually large amplitude microseismic activity. Since the dominant microseism period at $6-8 \mathrm{sec}$ corresponds to half the period of a pronounced peak in the ocean wave spectrum, and since large amplitude microseisms are always observed near the coast, these microseisms are inferred to be of
oceanic origin. Longuet-Higgins (1950) has shown theoretically that the $6-8 \mathrm{sec}$ microseisms are generated by the standing wave phenomenon in ocean wave motion. The standing waves are caused by the interference of groups of waves of the same wavelength, but not necessarily of equal amplitude, travelling in opposite directions. The mean pressure on the bottom beneath a train of standing waves is not constant, as in a progressive wave, but fluctuates with an amplitude independent of the depth and proportional to the square of the wave height. The oscillation of standing waves produces the type of energy required for the generation of ground movement. This type of energy is unattenuated by water depth, and in phase at all points of the bottom, suitable for producing coherent seismic waves. Further, the frequency of this pressure variation is twice the fundamental frequency of the waves. The favorable environments in which the standing wave motion may be strong are:

1) the wake of a moving storm,
2) the center of a storm, and
3) reflection from a coast.

The generation of $6-8 \mathrm{sec}$ microseisms by ocean storms has been reported (Iyer, 1958; Toksöz and Lacoss, 1968; Haubrich and McCamy, 1969; and Vinnik, 1971), suggesting the first or second possible source of generation. Other observations related to ocean waves near the coastline indicate the third possible source (Haubrich et al., 1963).

The double-peaked spectral feature characterized by two distinctive maxima at $6-8 \mathrm{sec}$ and $14-20 \mathrm{sec}$ respectively has attracted attention since the development of high gain long period seismographs. Microseisms with the same dominant period as ocean surface waves are referred to
as primary frequency microseisms (PF), as distinct from double frequency microseisms (DF) or secondary microseisms, which have half this period. The microseisms of the double frequency contain more energy than those of the primary frequency. The primary and secondary microseisms are generated from the same meteorological disturbances at the east and west coasts of the United States (Oliver and Page, 1963; Haubrich et al., 1963). The primary microseisms are probably generated as a result of the incidence of gravity waves in water upon a coastline; this is in general agreement with the classical "surf" theory. The generative strip is presumably confined to shallow water, 100 miles up or down the coast (Haubrich et al., 1963). The secondary microseisms are apparently due to standing water wave oscillation, in agreement with Longuet-Higgins' theory, in shallow and/or deep water.

2.4 Very long period seismic noise ($\mathrm{T}>30 \mathrm{sec}$)

The power spectral density of very long period seismic noise in 30 to 130 sec range rises smoothly with period, as shown in Figure 2.1 for the vertical component. Haubrich and Mackenzie (1965) and Capon (1969) have observed that noise in this period range consists of nonpropagating energy, as indicated by low coherency between two seismometers separated a few km, plus some fundamental Rayleigh mode energy. The non-propagating seismic noise is apparently generated by atmospheric pressure variations. Sorrells et al. (1971) have noted that during windy intervals there is strong correlation between local atmospheric pressure changes and the noise recorded by a vertical seismograph located on the surface. In contrast, over the same range of periods,
there is no correlation between seismic noise recorded in a mine at a depth of 183 m and local atmospheric pressure changes, except during the passage of acoustic gravity waves. The model for generating earth noise in this period range is related to atmospheric pressure disturbances that are relatively coherent over a fraction of a wavelength and propagate with jet stream velocities ($30-100 \mathrm{~m} / \mathrm{sec}$) which are much slower than seismic waves (Savino, et al., 1972). An idealization of this model corresponds to a static, atmospheric pressure loading consisting of random pressure disturbances acting over equal areas on the earth surface. This idealized model explains the level and shape of the spectrum of very long-period earth noise and the attenuation of microseismic ground motion with depth.

2.5 Geothermal ground noise

New Zealand. Clacy (1968) first suggested that seismic noise increased near geothermal reservoirs. His first results northeast of Lake Taupo, New Zealand, were based on contours of total noise amplitude in the frequency band 1 to 20 Hz . In subsequent surveys at Wairakei, Waiotapu, and Broadlands geothermal areas, he found that the local noise amplitude anomalies were characterized by a dominant frequency of 2 Hz , whereas, away from the area of the anomaly, frequencies higher than 3 Hz predominated. On the other hand, Whiteford (1970) found in repeat surveys of the same areas that neither the shape of the frequency spectrum nor its dominant frequency conformed to any regional pattern. Whiteford measured the absolute ground motion in the Waiotapu geothermal area and found that, within a distance of 1 to 2 km of the high heat
flow area, the average minimm ground particle velocity was greater than $150 \times 10^{-9} \mathrm{~m} / \mathrm{sec}$, while further away, the amplitude of the ground movement decreased by a factor of about 3 and, in addition, exhibited pronounced diurnal variations.

Imperial Valley, California. In the United States, a similar survey was first carried out southeast of the Salton Sea by Goforth et a1. (1972) who suggested an empirical relationship for geothermal reservoirs between high temperature gradient and high seismic noise level. Their results showed a significant increase in the noise power in the frequency band of 1 to 3 Hz at sites above the reservoir. They estimated the power spectrum at each site with ten 200 -second data segments taken over eight hours of night-time recording. The contour map of the total power in the frequency band of 1 to 3 Hz was similar to the temperature gradient contour map. Douze and Sorrells (1972) conducted a similar survey over the nearby East Mesa area, where they found that the total seismic power in the 3 to 5 Hz band exhibited spatial variations similar, in general, to the gravity and heat flow fields. East Mesa was later surveyed by Iyer (1974), with significantly different results. Iyer measured seismic noise by averaging 20 of the lowest values of the RMS amplitude in several narrow frequency bands, using data blocks of 81.92 sec selected from four hours of digital data. He did not find an anomaly in seismic noise associated with geothermal activity but only the noise from canals and freeway traffic.

Yellowstone National Park. The seismic pulsation associated with several geysers in Yellowstone National Park is believed to be indicative of
the heating of water in the underground reservoir and the eruption triggered by the superheated system. Nicholls and Rinehart (1967) have studied the seismic signature of several geysers in the park and inferred that their predominant pulse frequencies are quite similar, in the range of $20-60 \mathrm{~Hz}$, presumably due to steam action. The very low frequency seismic pulses recorded at Old Faithful, Castle, Bead, Plume and Jewel geysers are believed to be associated with some type of water movement. The maximum amplitude of seismic pulses recorded in the park is $5.08 \times 10^{-5} \mathrm{~m} / \mathrm{sec}$. At 01d Faithful Geyser the maximum amplitude is $2.54 \times 10^{-5} \mathrm{~m} / \mathrm{sec}$ at $30-50 \mathrm{~Hz}$.

Iyer and Hitchcock (1974) have also found good correlation between geothermal activity and high seismic noise levels in 1 to 26 Hz in the park. The ground noise level in non-geothermal areas of the park is approximately 13 to $15 \times 10^{-9} \mathrm{~m} / \mathrm{sec}$ at 1 to 26 Hz . In the Lower and Upper Geyser Basins where there are numerous geysers and hot springs, the average noise level is in general higher than $50 \times 10^{-9} \mathrm{~m} / \mathrm{sec}$, and reaches a value of $672 \times 10^{-9} \mathrm{~m} / \mathrm{sec}$ near the Old Faithful Geyser. In the Norris Basin, another highly active geyser basin in the park, the noise level varies from 50 to $500 \times 10^{-9} \mathrm{~m} / \mathrm{sec}$. Part of the observed noise in the Lower, Upper, and Norris Geyser Basins is no doubt generated by the hydrothermal activity at the surface. The measurements near 01d Faithful indicate that high-frequency noise, in the 8 to 16 Hz band, is generated during the geyser eruption; the noise level of lower frequencies is not affected by the eruption cycles. Noise levels around Mammoth Hot Springs are two to five times higher than in the surrounding area. There is no geyser or fumarole
here, and the geothermal water is relatively cooler than at Norris and the other geyser basins. Hence, it is very unlikely that the seismic noise observed here is generated near the surface. The noise anomaly observed in the area between Lower Falls and Mud Volcano could be caused by ground amplification effects in the soft sedimentary deposits. Other Areas. Correlations have also been reported between geothermal activity and high seismic ground noise in the Vulcano Islands, Italy (Luongo and Rapolla, 1973), the Coso geothermal area, China Lake, California (Combs and Rotstein, 1975), and Long Valley, California (Iyer and Hitchcock, 1976). High frequency noise, $f>8 \mathrm{~Hz}$, in the vicinity of geysers, fumaroles, and hot springs is associated with hydrothermal activity near the surface and during the geyser eruption. Low frequency noise, $£<8 \mathrm{~Hz}$, is not affected by geyser eruption cycles and is probably generated at depth. Other than those active sources the noise power anomaly may also result from lateral variation in nearsurface velocity, particularly where low velocity alluvium is involved.

2.6 Local geological structure effects

It has been noted that the seismic waves observed from earthquakes and explosions are strongly affected by the near-surface geology at the recording site. The amplitude of seismic waves is generally smaller at a bedrock site than at an alluvium site. Low-velocity surface materials tend to amplify incident body waves. (Borcherdt, 1970; Murphy et al., 1972) and surface waves (Lysmer and Drake, 1972) in selective frequency bands. The amplification effects of body waves result from resonance phenomena caused by large reflection coefficients
related to velocity and thickness of the overburden. In the case of the surface waves, the shallow structure can provide a waveguide at particular frequencies corresponding to the maxima and minima in the group velocity dispersion curve. Similar effects have been reported for seismic noise, where amplitude and dominant frequency are characterized by the geology of the recording site (Kanai and Tanaka, 1961; Borcherdt, 1970; Iyer and Hitchcock, 1976). In general, the seismic noise at a quiet bedrock site exhibits a smooth spectrum and small amplitude, whereas on a surface of deep weathering or thick sedimentary overburden, the noise spectrum shows a large peak in a particular frequency band.

For a normally incident-plane SH wave at the lower boundary of an elastic layer over an elastic half-space, the theoretical resonance frequencies are

$$
f=\frac{(2 n-1) \beta}{4 h} \quad \text { for } n=1,2,3, \ldots N \text {, }
$$

where $\beta=$ shear-wave velocity of the layer and
$h=$ thickness of the layer.
This relation also holds for the case of P-wave, using the compressional wave velocity. Consequently, the spectrum of recorded motion will show distinctive peaks at the resonance frequencies. In practice, however, complex geological structure will complicate the nature of the spectrum (Kanại and Tanaka, 1961; Kanai, et al., 1966).

FIGURE CAPTIONS

Figure 2.1 Power spectral density of the vertical component earth noise recorded at the Queen Creek Seismological station, Arizona (after Fix, 1972). This spectrum is typical of a quiet site. The distinctive humps at 8 and 15 sec arise from ocean sources.

Figure 2.2 Power spectral density of the vertical component short-period earth noise recorded at the surface and at a depth of 5486 m in Grapevine, Texas (after Douze, 1967). Note the attenuation with depth.

Figure 2.3 Earth noise spectra showing the effect of high wind ($>20 \mathrm{mph}$) and low wind ($<5 \mathrm{mph}$) in three components of short-period particle motion at Rural Valley, Pennsylvania (after Frantti, 1963).

XBL 779-2461
Figure 2.1

XBL 779-2462
Figure 2.2

XBL 779-2460
Figure 2.3

III. FIELD PROGRAMS

3.1 Introduction

In this chapter I discuss the data collection phase of the seismic ground noise study. The location, geological setting and tectonic history of the potential geothermal resource region are presented. Data acquisition is discussed in the concluding sections.

3.2 Area of Study

Leach Hot Springs, in Grass Valley, Nevada, is located 30 km south of Winnemucca (Figure 3.1). Grass Valley is a typical valley of the Basin and Range province with normal faulting, major earthquakes, and hot springs occurring along the valley margins. The valley is bounded by the Sonoma and Tobin Ranges to the east, and the basalt-capped East Range to the west. The valley narrows south of the hot springs as it approaches the Goldbanks Hills (Figure 3.2). These ranges are composed of Paleozoic sedimentary rocks, or Triassic siliceous clastic and carbonate rocks. Some granitic intrusions, probably of Triassic age, are found in the Goldbanks Hills; elsewhere the granites are probably of Cretaceous age. The valley is filled with Quaternary alluvial sediments. There are sparse occurrences of Tertiary rhyolite and basalt, and in the vicintiy of Leach Hot Springs there are Quaternary sinter deposits. The distribution of major lithologic units in the region is illustrated on the geologic map (Figure 3.3).

As is characteristic of hot spring systems found in northern Nevada, Leach Hot Springs is located on a fault, strongly expressed by a 10 to 15 m high scarp trending NE. Normal faulting since mid-Tertiary
has offset rock units vertically several tens to several hundreds of meters. As shown on the fault and lineament map (Figure 3.2), the present day hot springs occur at the intersection of a major NE-trending fault and the more conmon NNW-SSE trending lineament on the eastern side of the valley.

Leach Hot Springs is within the high heat flow area of northern Nevada indicated in Figure 3.1. This high heat flow area is often called the "Battle Mountain high" (Sass et al., 1971) and exhibits heat flow values in the range of 1.5 to $3.5 \mathrm{HFU}\left(1 \mathrm{HFU}=10 \mathrm{cal} / \mathrm{m}^{2} \mathrm{sec}\right.$). The diffuse region of elevated heat flow over the Basin and Range province is generally thought to be an expression of high temperature in the lower crust and upper mantle, and it seems reasonable to interpret the localized Battle Mountain high as an effect of fairly recent intrusion of magma into the earth's crust. Quaternary volcanism within the province supports this hypothesis.

3.3 Other geophysical data in this area

Geophysical data were obtained primarily along 17 survey lines (Figure 3.4), although not all methods were employed on every line. Line E is typical. Bouguer gravity anomaly, P-wave delay data, and seismic reflection data, presented in Figure 3.5 for line E, indicate that the greatest thickness of sediments and major faulting occur near the eastern valley margin. The major lithologic units from the seismic reflection section are Quaternary alluvium ($1.8 \mathrm{~km} / \mathrm{sec}$), Tertiary sedimentary and volcanic rocks ($2.9 \mathrm{~km} / \mathrm{sec}$), Paleozoic rocks ($4.0 \mathrm{~km} / \mathrm{sec}$), and deep basement $(5.0 \mathrm{~km} / \mathrm{sec})$, respectively. The basement surface
rises gently to the west, but is apparently up-faulted at the eastern boundary faults as indicated by the Bouguer gravity map (Figure 3.6).

The low apparent resistivity zone beneath E2W-E4W (Beyer, et al., 1976), found in the dipole-dipole resistivity survey, has been identified with Tertiary sediments. Since the heat flow value in this zone is not high by Battle Mountain standards (2.24 HFU), the accumulation of conductive sediments, such as ancient playa deposits in the deepest portion of the valley, is probably responsible for the resistivity anomaly.

The only portion of the Grass Valley area that is seismically active is in Panther Canyon and in the valley inmediately west of it. This seismic zone is one of complicated faulting and frequent microearthquakes. The area is dominated by a strong NE trending gravity feature which offsets topography and the Bouguer gravity anomaly (Figure 3.6). There is a strong electrical conductivity high and a high heat flow of 4.9 HFU . More details of the geophysical data obtained in the Grass Valley area are given by Beyer, et al., (1976).

3.4 Seismic data acquisition system

A portable seismic network, with up to 12 stations linked by radio telemetry to a recording system mounted in a small two-wheeled trailer, was designed for simplicity, flexibility and ease of installation. It proved possible for two men to deploy the sensors and check out the telemetry in about one day. Ease of network enplacement made it possible to modify the array as data were collected and to design field experiments with multiple objectives.

A 4.5 Hz vertical-component geophone, a high-gain amplifier ($60-120 \mathrm{~dB}$), a voltage controlled oscillator, and a radio transmitter constitute the station site equipment. The block diagram of one typical station is shown in Figure 3.7. A 0.1 watt transmitter gives a range of about 20 km for average topography. In applications using all 12 geophones spaced over a small aperture array (50 m), the radio links were eliminated and signals were transmitted by wire to the recording trailer. In the trailer are housed the radio receivers, FM discriminators, a 14 -channel slow-speed FM tape recorder (0.12 ips, $0-40 \mathrm{~Hz}, 8$ days; or $0.24 \mathrm{ips}, 0-80 \mathrm{~Hz}, 4$ days), the timing system, and batteries. A slow-speed smoked-paper recorder was used as a monitor. Figure 3.8 gives the details of the central recording system housed in the trailer. The system has about 40 dB dynamic range (peak-to-peak measurement), limited primarily by the tape recorder.

Data are played back at the Seismographic Station on the Berkeley campus and selectively digitized at a rate of 40 samples per second. The transfer function (ground particle velocity to volts from playback discriminator) of the recording and playback system before digitization is expressed as the product over the transfer function of all system elements

$$
\begin{equation*}
H(f)=H_{g}(f) \cdot\left|H_{A} \cdot H_{R C}(f) \cdot \frac{4}{V C O F S} \cdot H_{p}(f)\right| \text { volts } / m / \mathrm{sec} . \tag{3.1}
\end{equation*}
$$

The phase term of $H_{g}(f)$ is different in some channels. Other terms are recording/playback/digitization systems which are the same for all channels, so no phase term is involved.

$$
\begin{equation*}
H_{g}(f)=G \cdot \frac{R_{D}}{R_{S}+R_{D}} \cdot \frac{f^{2}}{\left[\left(f_{S}^{2}-f^{2}\right)^{2}+\left(2 \zeta f_{S} f\right)^{2}\right]^{1 / 2}} \exp \left[j\left(\theta-\frac{\pi}{2}\right)\right] \tag{3.2}
\end{equation*}
$$

where $G=$ generator constant of geophone $=77 \mathrm{volt} / \mathrm{m} / \mathrm{sec}$ for the GEOSPACE GSC-8D and HS-1 geophones,
$\mathrm{R}_{\mathrm{D}}=$ damping resistance in ohms, typically 2000 to 3000 ohms, $R_{S}=$ coil resistance of geophone $=3400$ ohms or 1310 ohms, $f_{S}=$ natural frequency of geophone, nominally 4.5 Hz , $\zeta=$ damping factor, $\theta=\tan ^{-1} \frac{2 \zeta \mathrm{ff}_{S}}{\mathrm{f}^{2}-\mathrm{f}_{\mathrm{S}}^{2}}$.

The exponential term in Equation (3.2) is the phase difference introduced by the geophone. In the small-aperture array data acquisition mode, we have used geophones of two different damping factors, i.e. $\zeta=0.3$ and $\zeta=0.6$. The phase correction is, therefore, necessary to correct those data used for $f-k$ analysis. The geophone phase is the only phase correction term required in the data processing, since we have used matched phase responses to every other system element. We define the positive phase term $\exp [j \theta(f)]$ to be phase delay for $\theta>0$. The characteristics of geophones used in this study are listed in Table 1.

The modulus of transfer functions of the two-pole RC low-pass filter and the high-pass filter in the SPRENGNETHER AS-110 amplifier with mid-band gain, H_{A}, is

$$
\begin{equation*}
\left|H_{A} \cdot H_{R C}(f)\right|=\left|H_{A}\right| \cdot \frac{1}{1+\left(\frac{f}{f_{H}}\right)^{2}} \cdot \frac{1}{1+\frac{f}{\left(\frac{L}{f}\right)^{2}}} \tag{3.4}
\end{equation*}
$$

where f_{H} and f_{L} are cut-off frequencies of the filters. 'VCOFS' in Equation (3.1) represents the maximum voltage of the amplified signal set to correspond to $\pm 250 \mathrm{~Hz}$ of full-scale FM modulation about the

TABLE 1
Damping Characteristics of Geophones

Geophone identification	Damping resistance $\mathrm{R}_{\mathrm{D}}(\mathrm{k} \Omega)$	Coil resistance $\mathrm{R}_{\mathrm{S}}(\mathrm{k} \Omega)$	Damping factor
3	3.3	1.31	
4	1.5	1.31	0.6
5	3.0	1.31	0.6
6	3.0	1.31	0.6
7	4.3	1.31	0.6
9	5.0	1.31	0.6
11	2.0	1.31	0.6
12	3.0	1.31	0.6
13	3.5	1.31	0.6
14	3.0	1.31	0.6
16	3.0	1.31	0.6
17	3.5	1.31	0.6
18	3.0	3.31	0.6
B1	infinite	3.4	0.6
B2	infinite	3.4	0.3
B3	infinite	3.4	0.3
B4	infinite	3.4	0.3
B5	infinite	3.4	0.3
BY1	infinite	3.4	0.3
infinite		0.3	

VCO (voltage controlled oscillator) frequency. The tapes playback discriminators contain 4-pole Butterworth filters with

$$
\begin{equation*}
\left|H_{p}(f)\right|=\frac{1}{\left[1+\left(\frac{f}{f_{p}}\right)^{8}\right]^{1 / 2}} \tag{3.5}
\end{equation*}
$$

where f_{p} is the tape recorder bandwidth (e.g., 40 or 80 Hz , depending on the tape recorder used). Since full-scale voltage from the tape playback discriminator is $\pm 4 \mathrm{~V}$, and the digitizer full-scale is ± 2048 counts, the transfer function to the digitized signal is

$$
\begin{equation*}
H_{D}(f)=H(f) \cdot \frac{2048}{4} \because\left|H_{B W}(f)\right| \text { counts } / \mathrm{m} / \mathrm{sec} . \tag{3.6}
\end{equation*}
$$

where $H_{B W}(f)$ is the anti-alias filter (3 four-pole Butterworth filters) at low-pass corner $f_{B W}$;

$$
\begin{equation*}
\left|\mathrm{H}_{\mathrm{BW}}(\mathrm{f})\right|=\frac{1}{\left[1+\left(\frac{\mathrm{f}}{\mathrm{f}_{\mathrm{BW}}}\right)^{8}\right]^{3 / 2}} \tag{3.7}
\end{equation*}
$$

The modulus of transfer function of the system in counts/millimicron/ second is shown in Figure 3.9, assuming $R_{D} /\left(R_{S}+R_{D}\right)$ to be unity. This is the only correction required for VSD estimation, since the phase information is not essential.

FIGURE CAPTIONS

Figure 3.1 Prominent thermal springs and the Battle Mountain high heat flow region in northwestern Nevada. Leach Hot Springs is located in the center of the high heat flow area.

Figure 3.2 Mapped faults and pertinent geophysical traverses in the Leach Hot Springs area. Hachured lines indicate down-faulted sides of scarplets; ball symbols indicate downthrown side of other faults. Star shows location of Leach Hot Springs. Heavy solid lines are survey lines E, B, and G with tick marks every 1 km . $\mathrm{AC}, \mathrm{A} 2 \mathrm{~N}$, and GP are observation sites discussed in text.

Figure 3.3 Lithologic map, Leach Hot Springs area, Qal: Alluvium, Qos: older sinter deposits, Qsg: sinter gravels, Qtg: Quaternary-Tertiary gravels and fanglomerates, Tb: Tertiary basalt, Tr: Tertiary rhyolite, Tt: tuff, Ts: Tertiary sedimentary rocks, Kqm: quartz monzonite, $\mathrm{Kg}: ~ g r a n i t i c$ rock, md: mafic dike, TRg: Triassic granitic rocks, TR: Undifferentiated Traissic sedimentary rocks, P : undifferentiated Paleozoic sedimentary rocks.

Figure 3.4 Geophysical survey lines in Grass Valley, Nevada.
Figure 3.5 Profiles on line E of Bouguer gravity anomaly, P-wave delay, migrated seismic reflection section, and the instantaneous microseismic field, showing east margin fault (trace at 1E) and the maximum sediment thickness around 2W. Averaged section compressional velocities shown: (A) $1.8 \mathrm{~km} / \mathrm{sec}$ Quaternary alluvium,
(B) $2.9 \mathrm{~km} / \mathrm{sec}$ Tertiary sediments, and (C) $4.0 \mathrm{~km} / \mathrm{sec}$ Paleozoic rocks. A detailed explanation of the microseismic field contour is given in Figure 4.6.

Figure 3.6 Bouguer gravity anomaly map of Grass Valley, Nevada. Station locations are shown as dots on the map. The gravity low axis along the eastern side of the valley corresponds to the greatest thickness of sediment.

Figure 3.7 Block diagram of a typical seismic station.
Figure 3.8 Block diagram of the central receiving and recording system. The sp1itter box at the center of the figure indicates the device distributing a multiplexed signal to two or more discriminators.

Figure 3.9 The modulus of transfer function of data acquisition, playback, and digitizing systems. The gain of the amplifier is 120 dB . ζ represents the geophone damping factor. $H_{p}(f)$ and $H_{R C}(f)$ are not included in the response shown (see text). $R_{D} /\left(R_{S}+R_{D}\right)$ of $H_{g}(f)$ is assumed to be unity in calculating these responses.

Hot Springs in Northwestern Nevada

Figure 3.1

XBL 771-7423
Figure 3.2

CBB 751-49

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

$\stackrel{1}{\underset{\sim}{1}}$

Figure 3.8

Figure 3.9
IV. AMPLITUDE VARIATIONS OF GROUND NOISE

4.1 Introduction

The mapping of ground noise amplitude in selected frequency bands has often been used to locate presumed noise sources in geothermal areas. Such surveys, however, rarely give repeatable or easily interpretable results. We have investigated this exploration technique in Grass Valley by first establishing the general characteristics of the microseismic field, and then using this knowledge to design and execute an appropriate survey for more quantitative measurements; In this chapter, the field procedures, data processing techniques, and the observed temporal and spatial variations of seismic noise in Grass Valley are discussed. Weaknesses of the amplitude mapping technique in delineating buried noise sources are revealed in the discussion. In the final section of this chapter, the characteristic site-responses along line E and line G are compared for seismic noise and for waves from mine explosions. This comparison illustrates the amplification effects by the valley alluvium with respect to bedrock sites for shallow surface waves and for body waves.

4.2 Field Procedures

To study the spatial variations of ground noise amplitude, we occupied a reference site at E2W (see Figure 3.2) throughout the survey period. Normally, we recorded overnight, with stations spaced at 1 km intervals along the survey lines. The smoked-paper monitor record was checked every morning to verify the occurrence of low seismic noise level at the reference site; otherwise, the sites were re-occupied
another night, until low-noise conditions prevailed. Geophones were buried about one foot below the surface. Before and after a survey, all geophones were buried in a common hole to verify uniformity of their responses.

4.3 Data processing techniques: frequency spectrum estimation

It is well known that a stationary random process can be characterized by means of a power spectral density function. This function provides information on the power as a function of frequency for the process. For random processes, there are two power spectral density estimating techniques widely used, the autocorrelation method and the modified periodogram method.

4.3.1 Autocorrelation method

The power spectrum, $S_{n n}(f)$ of a function $\phi_{n}(t)$ is defined as the Fourier transform of its autocorrelation function, $C_{n n}(\tau)$. To estimate the power spectrum, we filter, pre-whiten and detrend the time series, and then calculate the unbiased autocorrelation function for the ith data window of length L samples by the discrete formula,

$$
i_{C_{n n}}(\tau)=\frac{1}{L-\tau} \sum_{\ell=0}^{L-1-\tau} i_{\phi_{n}}(\ell)^{i^{\prime}} \phi_{n}(\ell+\tau), \quad \begin{align*}
& \tau=0,1, \ldots, \ldots, J-1, \tag{4.1}\\
& i=1,2, . . ., ~
\end{align*}
$$

The autocorrelation functions are averaged to give

$$
\begin{equation*}
\hat{C}_{n n}(\tau)=\frac{1}{\bar{I}} \sum_{i=1}^{I}{ }^{i} C_{n n}(\tau), \quad \tau=0,1, \ldots, J-1 \tag{4.2}
\end{equation*}
$$

We utilize the Fast Fourier transform to obtain the power spectral density estimate by:

$$
\begin{equation*}
\hat{S}_{n n}\left(f_{R}\right)=\sum_{\tau=0}^{J-1} w(\tau) \hat{C}_{n n}(\tau) \exp \left(-j 2 \pi f_{R} \tau\right), \tag{4.3}
\end{equation*}
$$

where $f_{R}=\frac{R}{L}$ frequencies of discrete Fourier transform, $-\frac{1}{2}, \ldots, 0, \ldots, \frac{1}{2}$, and $w(\tau)$ is a data window function, or so-called lag window.

The autocorrelation method is a reasonable technique to estimate the smooth spectrum. However, problems may arise in obtaining the power spectral density from the autocorrelation function due to certain kinds of the data window $w(\tau)$. Unless the transform of the window is entirely positive, there is a possibility that the computed power spectral density may be negative, a highly undesirable result, if the spectrum has a sharp peak. This is because the computed power spectral density is the convolution of the window transform and the transform of the estimated correlation functions. Unless the transform of the window is positive for all frequencies, the possibility exists that, due to statistical variation in estimating the correlation function, the resulting convolutions may produce negative values for the power spectrum at some frequencies. There are windows whose transforms are entirely positive, e.g., the triangular window, etc., and such windows should be used in cases where other windows lead to the undesirable result.

4.3.2 Method of modified periodogram

The second and entirely equivalent estimation technique is based on the relation:

$$
\begin{equation*}
S_{n n}(f)=\lim _{T \rightarrow \infty} \frac{1}{2 T}\left|\int_{-T}^{T} \phi(t) \exp (-j 2 \pi f t) d t\right|^{2} \tag{4.4}
\end{equation*}
$$

For a finite duration of time series, Equation (4.4) can be approximated to be

$$
\begin{equation*}
\mathrm{i}_{\mathrm{S}_{\mathrm{nn}}}(\mathrm{f})=\frac{1}{\mathrm{~T}}\left|\int_{0}^{\mathrm{T}} \mathrm{i}_{\phi_{\mathrm{n}}}(\mathrm{t}) \exp (-\mathrm{j} 2 \pi \mathrm{ft}) \mathrm{dt}\right|^{2} \tag{4.5}
\end{equation*}
$$

The left hand side of Equation (4.5) results from the modulus-squared of the finite Fourier transform, which is called the periodogram. In terms of discrete time series, the periodogram can be expressed as

$$
\begin{align*}
i_{\Phi_{n}}\left(f_{R}\right) & =\sum_{\ell=0}^{L-1} w(\ell)^{i} \phi_{n}(\ell) \exp \left[-j 2 \pi \ell\left(\frac{R}{L}\right)\right] \tag{4.6}\\
& =\sum_{\ell=0}^{L-1} w(\ell)^{i} \phi_{n}(\ell) \exp \left[-j 2 \pi \ell f_{R}\right], R=-\frac{L}{2}, \ldots,-1,0,1, \ldots, \frac{L}{2},(4.7) \tag{4.7}
\end{align*}
$$

where $w(\ell)$ is a data window whose purpose is to reduce the side-1obe amplitude hence reducing the effect of spectral leakage. The transform of Equation (4.7) is effected through the Fast Fourier transform algorithm, which requires the correction factor:

$$
\begin{equation*}
i_{X_{n}}(f)=2(\Delta t)^{i^{\prime}} \Phi_{n}\left(f_{R}\right), \tag{4.8}
\end{equation*}
$$

where Δt is the sampling interval of the discrete time series.
The disadvantage of the periodogram as an estimate of the power spectrum is that the variance of $\dot{i}_{\Phi_{n}}\left(f_{R}\right)$ is approximately $S_{n n}^{2}(f)$, under conditions of reasonable regularity, even when based on a lengthy stretch of data (Brillinger, 1975). One way to reduce the variance of the estimate is to average several statistically independent periodograms according to

$$
\begin{equation*}
\hat{S}_{\mathrm{nn}}(\mathrm{f})=\left.\left.\frac{1}{\bar{U}} \frac{1}{\mathrm{I}} \sum_{\mathrm{i}=1}^{\mathrm{I}}\right|^{\mathrm{i}} \mathrm{X}_{\mathrm{n}}(\mathrm{f})\right|^{2} \tag{4.9}
\end{equation*}
$$

where I is the number of periodograms, and U is the energy in the data window, defined as

$$
\begin{equation*}
\mathrm{U}=\left[\frac{1}{\mathrm{~L}} \sum_{\ell=0}^{\mathrm{L}-1} \mathrm{w}^{2}(\ell)\right] \mathrm{T} \tag{4.10}
\end{equation*}
$$

where $T=\Delta t(L-1)$.
As L approaches infinity $\hat{S}_{n n}(f)$ approaches asymptotically $S(\mathrm{f}) \chi_{\nu}^{2} / \nu$ if $2 \pi \mathrm{f} \equiv 0(\bmod \pi)$, and asymptotically $S(\mathrm{f}) \chi_{\nu}^{2} /(\nu / 2)$ if $2 \pi f= \pm \pi, \pm 3 \pi, \ldots$ etc. (Brillinger, 1975), where χ_{v}^{2} is a chi-squared variate with v degrees of freedom. The number of degress of freedom v of the smoothed estimator is

$$
\begin{equation*}
v=2 \cdot \mathrm{I} \cdot \mathrm{~b}_{1}, \tag{4.11}
\end{equation*}
$$

where b_{1} is the standardized bandwidth of data window (Jenkins and Watts, 1968) given by

$$
\begin{equation*}
b_{1}=\frac{L}{\sum_{\ell=0}^{L-1} w^{2}(\ell)} \tag{4.12}
\end{equation*}
$$

$b_{1}=1$ for rectangular data window. This leads to the 100γ percent confidence interval for $S(f)$ to be:

$$
\begin{equation*}
\frac{\nu S_{n n}(f)}{x_{\nu}^{2}\left(\frac{1+\gamma}{2}\right)}<S(f) \quad \frac{\nu \hat{S}_{n n}(f)}{x_{\nu}^{2}\left(\frac{1-\gamma}{2}\right)} \text { for } 2 \pi f \not \equiv 0(\bmod \pi) \tag{4.13}
\end{equation*}
$$

where $\gamma=0.9$ for 90% confidence limits. The velocity spectral density, VSD or $V_{n}(f)$, is obtained by taking the square root of the power spectral density and correcting it for system response $H_{D}(f)$ as follows:

$$
\begin{equation*}
V_{n}(f)=\frac{\sqrt{\hat{S}_{n n}(f)}}{\left|\mathrm{H}_{\mathrm{D}}(f)\right|} \mathrm{m} \sec ^{-1} \mathrm{~Hz}^{-1 / 2} \tag{4.14}
\end{equation*}
$$

where $H_{D}(f)$ is given in Equation(3.6). We normally present VSD in units of millimicrons (nanometers, $10^{-9} \mathrm{~m}$) $\mathrm{sec}^{-1} \mathrm{~Hz}{ }^{-1 / 2}$.

4.3.3 Grass Valley data processing method

Data were selected from the quietest recording period in the early morming hours. At least 28 simultaneous blocks of data were chosen from each of the recording stations, avoiding any spurious transient events. Each data block of length 12.8 seconds was filtered and digitized. The resulting 512-point records were tapered by a 10% cosine data window and Fourier transformed. The power spectral density function is estimated by the method of modified periodogram.

4.4 Temporal variation of ground noise

The total seismic noise amplitude $\sigma(x, y, t, f)$ can be modeled very generally as the sum of three sorts of noises,

$$
\begin{equation*}
\sigma(x, y, t, f)=\sigma_{i}(x, y, t, f)+\sigma_{m}(x, y, t, f)+\sigma_{\ell}(x, y, t, f), \tag{4.15}
\end{equation*}
$$

where
$\sigma_{i}(x, y, t, f)$ is the intrinsic noise at the site, including geothermal noise,
$\sigma_{m}(x, y, t, f)$ is the microseismic component from distant sources, and $\sigma_{\ell}(x, y, t, f)$ is the noise generated locally at the surface by human activity and atmospheric distrubances.

If we are interested only in intrinsic noise, the sampling and processing procedures must exclude the effect of the other two noise sources. To minimize local sources, $\sigma_{\ell}(x, y, t, f)$, the data must be taken between midnight and dawn, because normally the noise level is low.

Figure 4.1 presents the diurnal variation of seismic noise at the reference site E2W. To construct this figure, transient-free noise data were chosen to estimate the VSD every hour for a 30 hour period. Roughly 6 minutes of seismic noise actually went into each hourly average. The spectral density was then contoured as a function of time and frequency. It can be seen that noise is high over the whole band of analysis from 9 A.M. to 7 P.M., the result of more disturbed daytime meteorological conditions and cultural activity. This confirms a well known result that seismic noise VSD is minimum at 2-4 A.M. local time, and this was the period we sampled for the best data.

We found, in Grass Valley, that the time of minimum ground noise at the reference site, $E 2 W$, coincides with the quietest period at all other sites in the region. For example, simultaneous data were sampled every hour from stations E 2 W and K 1.5 E , located approximately 11 km apart. The time-varying VSD over a 12 hour period from 9 P.M. to 9 A.M. next morning are presented in Figure 4.2. The figure indicates that at 2 A.M. the data are the quietest at both sides.

A typical survey is carried out over a period of several days, so that long term secular variations are apparent in the data. The nature of this variation over a 9 day period at the reference site, $E 2 W$, is shown in Figure 4.3. We estimate one VSD every 24 hours, using the quietest data during early morning hours, and contour the VSD from day 211 to day 219. In this figure, the high amplitude seismic noise appears from day 214 to day 216 and is related to regional weather conditions. On those three days, there were thunderstorms starting in the afternoon and ending in the early evening throughout the region.

In order to eliminate temporal variations of the observed microseisms, the band-limited power of seismic noise at each site, obtained by integrating VSD over the frequency band of interest, is normalized by the simultaneous power in the same frequency band at the reference site, provided that data are both sampled from the quiet period in early morning. Mapping the normalized power gives the spatial distribution of relative intrinsic noise power level.

4.5 Spatial variation of ground noise

Estimation of ground noise VSD from simultaneous sampling in the early morning, with stations at 1 km spacing, yields relative intrinsic noise power contour maps as illustrated for the frequency band of $2-4 \mathrm{~Hz}$ (Figure 4.4A), 5-7 Hz (Figure 4.4B) and $10-12 \mathrm{~Hz}$ (Figure 4.4C). High noise levels are found at Leach Hot Springs and near the center of Grass Valley, as anticipated, but there are also local anomalies such as in the areas around G2W and G3W, H1E and H2E (see Figure 3.2 for site locations). Those ground noise anomalies, especially in $5-7 \mathrm{~Hz}$ band, correlating spatially with the occurrence of Bouger gravity anomalies (Figure 3.6), imply the occurrence of thickest alluvial deposits. The long-term stability of these anomalies is reproducible as indicated by close agreement with the results of a preliminary survey carried out in the summer of 1975, a year earlier than the time at which data shown were taken.

Leach Hot Springs clearly generates seismic noise, but the noise is localized and does not propagate unattenuated more than a few km . In the vicinity of the springs, noise spectra show the high amplitude
seismic noise over a wide frequency band; 500 meters northwest of the hot springs (A 3.7 N) the amplitude of the noise at all frequencies greater than 1 Hz has attenuated nearly 20 dB . The spectrum of the hot springs noise can be seen in Figure 4.5 (top) which compares the hot springs site with A 3.7 N and the valley edge site, AC . Note the wide-band nature of the hot springs noise.

In the valley center, station E5W, the noise has a distinctive broad peak around 5.5 Hz , as can be seen at the bottom of Figure 4.5 . The character of the broad valley peak varies from site to site, probably as a consequence of changes in near surface properties. In Figure 4.4 B , the areas of high amplitude seismic noise in $5-7 \mathrm{~Hz}$ band generally correspond to the areas of thick alluvium. The details of noise variation across the valley are illustrated by data for three typical survey lines, E, B, and G, shown in Figures 4.6, 4.7, and 4.8.

The instantaneous ground noise level along 8.25 km of line E is presented in Figure 4.6 for three different times of recording. Data were taken simultaneously from sites at E6W, $5 \mathrm{~W}, 4 \mathrm{~W}, 3 \mathrm{~W}, 2 \mathrm{~W}, 1 \mathrm{~W}, 1 \mathrm{E}$, 1.25E, and 2.25E. In this figure there is a clear peak at 5.5 Hz extending westward. The source of this we11-defined and band-1imited peak is not clearly understood, though it is doubtless related to near-surface properties. (We know it is a surface wave with a wavelength of about 50 m). A wide-band ridge of relatively large amplitude noise appears at E3W, and is frequently seen to extend to $1 W$. Maximum valley fill and lowest topography occurs around 2 W . A remarkable feature seen in the figure is the dramatic 10 dB contrast between points $1 E$ and l.25E, spanning the Hot Springs fault. It seems the
local noise field, generated by hot springs, is less attenuated east of the fault than west of it, probably due to high-Q surface rocks on the east being in faulted contact with alluvium west of the fault. This geological feature can be seen in the faults map (Figure 3.2) as well as in the Bouguer gravity anomaly, the P-wave delay profiles, and the seismic reflection section (Figure 3.5).

Asymmetrical ridges of wide-band noise with sharp gradients to the east are seen near 2 W in line B (Figure 4.7) and near 1 E in line G (Fioure 4.8). These ridoes in the noise contours, as was the case for line E, correspond in position to the location of the minimum Bouguer anomaly along each line and to the location of the thickest alluvium (Beyer, et a1., 1976). The positions of high gradients in ground noise east of the noise ridges on lines B and G apparently correlate with locations of shallow faults. The prominent broad peak of 6.5 to 7 Hz , seen at G 3 W in Figure 4.8 and C 2.5 W and C 4.5 W in Figure 4.9, are probably also related to properties of shallow alluvium.

At the south end of Grass Valley, the ground noise level is generally lower than at the north, and this contrast is presumably due to larger distance from the hot springs and thinner alluvial deposits to the south. The noise profiles along those survey lines in the southern part of the valley, e.g. line H (Figure 4.10), line K (Figure 4.11) and line R (Figure 4.12), do not show high gradients. The close similarity in the noise profiles along lines H, K is not surprising since the shallow geology is similar along the lines. The consistent anomaly appearing in the vicinity of $\mathrm{H} 2 \mathrm{E}, \mathrm{K} .5 \mathrm{E}$ and RIE in the frequency band of 3 to 6 Hz may result from the localized occurrence of thick alluvium.

We see strong evidence, then, that the conventional ground noise survey reveals anomalies due not only to radiating sources, but also to variation in shallow geological structure, even after diurnal and secular variations are carefully eliminated. The noise power mapping technique cannot discriminate between the anomaly due to a buried seismic source and that associated with alluvial response. The method does provide an alternate way to map shallow geology and to detect lateral variations of near-surface structure.

4.6 Site-response characteristics

We conclude from the previous section that the spatial distribution of microseismic amplitude in a particular frequency band is strongly affected by the properties of near-surface material. The VSD of a bedrock site, away from active sources, always shows a smooth spectrum with no dominant peaks, whereas the VSD at an alluvium site always shows a well-defined peak in the spectrum. The spectral peak doubtless results from frequency-selective amplification related to the propagation characteristics of surface waves in the section of alluvium. Similar site-responses have been reported by Kanai and Tanaka (1961) and Katz (1976). Kanai and Tanaka (1961) suggested that at a given site the microtremor response correlates with the period distribution curve of local earthquakes. In Japan, microtremor recording is used extensively to determine the predominant frequency associated with various subsoil structures (Kanai, et al., 1966): The results of such measurement have been used to determine "foundation coefficients" in earthquake-resistant construction. In a similar study in the San Francisco Bay area,

Borcherdt (1970) compared the microseism-derived site-responses with the spectral amplification factors derived from nuclear explosion data. Borcherdt observed that the spectral peaks of the horizontal component of the microseisms agree with those of the nuclear explosion data, but that the predominant frequencies of horizontal microseisms do not always coincide with those of the vertical component. In contrast to the above authors, Udwadia and Trifunac (1973) found no correlation between the spectra of microtremors and the ground's response to earthquakes recorded in E1 Centro, California.

In Grass Valley, we have investigated the correlation between earth noise spectra and seismic event spectra using signals generated by mine blasts at the Duval Mine, some 50 km to the east. Verticalcomponent data were recorded simultaneously along survey lines. The VSD of the explosion arrival at each site is estimated from a data block of 6.4 sec (256 data points) and averaged over 5 adjacent frequency components. The explosion arrivals along line E are presented in Figure 4.13. The corresponding background noise data taken a few minutes before the explosion arrivals are shown in Figure 4.14. The analog records of the explosion do not show significant differences in amplitude and frequency characteristics over the line, while the background noise in the valley sites (E2W, E3W, E4W, E5W, and EbW) is apparently different from that in hill sites (E2, 25E, E1, 25E, E1E, E1W). The spectra of explosion arrivals and background noise, presented in Figure 4.15, show 1ittle similarity. We removed the source characteristics of mine blast arrivals by normalizing the VSD at each recording site, using the VSD of site E1E as a reference. The identical
normalization was applied to the VSD of background noise. The normalized results along line E are shown in Figure 4.16 , where the resonant effect of valley fill in the band around 5 Hz is clearly shown on the noise spectrum but not on the blast spectrum. There is very little similarity between variation in the mine blast arrival and variation in background noise. The similar data set along the survey line G also shows very little correlation between blast arrivals and noise (Figure 4.17).

FIGURE CAPTIONS
Figure 4.1 Diurnal variation of ground noise level at reference site E2W, from hour 10, day 212 to hour 16, day 213, in 1976. Noise levels are normalized with respect to $10^{-11} \mathrm{~m} / \mathrm{sec} / \sqrt{\mathrm{Hz}}$, (OdB), and contour interval is 2 dB . Note the minimum noise level (hachured) between 2-4 A.M. for all frequencies greater than 2 Hz .

Figure 4.2 The simultaneous temporal variation of ground noise over a 12 hour period at sites E2W and K1.5E, approximately 11 km apart. Noise levels are normalized with respect to $10^{-11} \mathrm{~m} / \mathrm{sec} / \sqrt{\mathrm{lz}},(\mathrm{OdB})$, and contour interval is 5 dB . Note that the minimum noise level is coincident at both sites in the early morning.

Figure 4.3 Secular variation of early morning quiet ground noise level from day 211 to day 219 of 1976 at E2W with repsect to $10^{-11} \mathrm{~m} / \mathrm{sec} / \sqrt{\mathrm{Hz}}$, (OdB). Contour interval is 2 dB . Thunderstorm and unsettled regional weather characterized days 214-216, the period of greatest early morning noise level.

Figure 4.4 The power contours of relative intrinsic noise with respect to reference site E 2 W in three frequency bands. Contour interval is 3 dB . Solid circles indicate sampling points.

$$
\text { (A) } 2-4 \mathrm{~Hz} \text {, (B) } 5-7 \mathrm{~Hz} \text {, (C) } 10-12 \mathrm{~Hz}
$$

Figure 4.5 Velocity spectral density (VSD) of ground noise at Hot Springs and at site $\mathrm{A} 3.7 \mathrm{~N}, 500 \mathrm{~m} \mathrm{NW}$ of the hot springs (upper) and at E5W, at center of the valley (lower)
compared to bedrock site AC, at the valley edge. The error bars for $A 3.7 \mathrm{~N}$ and AC sites are 95% confidence limits for the estimated VSD. Data represent spectral averages over 32 data blocks of 12.8 sec length, for each site.

Figure 4.6 Instantaneous noise field along survey line E for three different quiet periods. Abscissa is station location, with 1 km spacing, and ordinate is frequency. Contour interval is 2 dB . Note the high wide-band noise level at $1 W$ (A and B) and $3 \mathrm{~W}(\mathrm{C})$, the region of thick alluvium, and also the consistently sharp gradient across the valley margin fault traced to 1 E . Note also the typical valley resonant peak near 6 Hz to the west.

Figure 4.7 Instantaneous noise field along survey line B. Abscissa is station location, with 1 km spacing, and ordinate is frequency. Contour interval is 2 dB . Note the high wide-band noise level at the valley center near 2 W .

Figure 4.8 Instantaneous noise field along survey line G. Abscissa is station location, with 1 km spacing, and ordinate is frequency. Contour interval is 2 dB . Note the high wide-band noise level at the valley center near 1E. Sharp gradients may indicate valley faults.

Figure 4.9 Instantaneous noise field along portion of survey line C. Abscissa is station location, with 1 km spacing, and ordinate is frequency. Contour interval is 2 dB . Note the bandlimited peaks at both 2.5 W and 4.5 W , probably the result of alluvial resonant effects.

Figure 4.10 Instantaneous noise field along survey line H. Abscissa is station location, with 1 km spacing, and ordinate is frequency. Contour interval is 2 dB . Note the gentle increase in noise level toward the east reaching a peak at 2E, which may correspond to resonance of the alluvial layer.

Figure 4.11 Instantaneous noise field along survey line K. Abscissa is station location, with 1 km spacing, and ordinate is frequency. Contour interval is 2 dB . Note the gentle increase in noise level toward the east, reaching a high frequency ridge at 1 W and a low frequency peak at 1.5 E , which corresponds to local thick alluvial layer.

Figure 4.12 Instantaneous noise field along survey line R. Abscissa is station location, with 1 km spacing, and ordinate is frequency. Contour interval is 5 dB . Note the quiet nature of the noise field along the line, the low frequency peak at 1 E corresponds to the same features at H1E, H2E and K1.5E.

Figure 4.13 Mine blast arrivals recorded at sites along survey line E. Note the early arrival at E1E, in the vicinity of Leach Hot Springs. The scale factor is $1230 \times 10^{-9} \mathrm{~m} / \mathrm{sec}$ per cm of the amplitude of displayed record at 4.5 Hz . The geophones of identical response were used.

Figure 4.14 Typical seismic noise data at sites along survey line E. The scale factor is $129 \times 10^{-9} \mathrm{~m} / \mathrm{sec}$ per cm of the amplitude of displayed record at 4.5 Hz . The geophones of identical response were used.

Figure 4.15 Velocity spectral densities (VSD) of the mine explosion event (upper curve) and the seismic noise (lower curve) at each recording site along line E. Abscissa is frequency and ordinate is VSD in $10^{-9} \mathrm{~m} / \mathrm{sec} / \sqrt{\mathrm{Hz}}$. Scale is indicated in Frame H.

Figure 4.16 Relative VSD at sites along survey line E. VSD in Figure 4.15 are normalized with respect to site E1E. Solid curves are mine blast arrivals and the dotted curves are seismic noise.

Figure 4.17 Velocity spectral densities (VSD) of the mine explosion event (upper curve) and the seismic noise (lower curve) at each recording site along line G. Abscissa is frequency and ordinate is VSD in $10^{-9} \mathrm{~m} / \mathrm{sec} / \sqrt{\mathrm{Hz}}$.

Figure 4.1

XBL 777-5862

Figure 4.2

Figure 4.3

C

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

XBL 779-2472
Figure 4.12

SECOND

E1.25E warcumaunarrwatumu

E6w GWMMMana
\qquad

Figure 4.13

SECOND

E5W AM
E6W Hhowh

Figure 4.14

XBL 778-9828

Figure 4.15

EIE $=$ REFERENCE

XBL 779-2475

Figure 4.16

Figure 4.17

V. PROPAGATION CHARACTERISTICS OF GROUND NOISE

5.1 Introduction

We have shown in Chapter 4 that conventional noise power mapping techniques provide little information to make it possible to differentiate the effects of shallow geology from those due to buried sources. Seismic waves emitted from a buried reservoir source should be amenable to detection through local array measurements, because such vertically incident body waves have high apparent phase velocity and time-invariant propagation direction. The measurement of apparent phase velocity and azimuth is complicated for microseisms by multipath arrivals of both body waves and ambient surface waves. The reliable estimation of these propagation parameters therefore requires a properly designed array in conjunction with frequency-wavenumber ($\mathrm{f}-\mathrm{k}$) analysis. The horizontal propagating surface waves will appear in the $f-k$ diagram as low velocity waves crossing the array, differing from the vertically incident body waves. The accurate estimation of the propagation parameters can provide the added data necessary to interpret the ambiguous noise power anomaly obtained by the method described in the previous chapter.

This chapter opens with a coherence study of seismic noise in Grass Valley conducted in order to design the array. The array design and the field program are presented in the following section. To my knowledge this work represents a first attempt at mapping the propagation parameters of microseisms in a geothermal area by using a non-aliasing roving array and advanced array processing techniques. The frequencywavenumber ($f-k$) processing schemes used are the frequency domain
beam-forming method, BFM (Lacoss et al., 1969), and the maximum-1ikelihood method, MLM (Capon, 1969). We compare the two array processing techniques in terms of their response to identical input data. The $\mathrm{f}-\mathrm{k}$ analyses of Grass Valley data are presented in the last two sections.

5.2 Coherence of ground noise

To design a full-scale ground noise survey, we first deployed a pilot 12 -element L-shaped array on alluvium and at the hot springs to determine the coherence properties of the noise field as a function of sensor separation.

The coherence function estimate, $\hat{R}_{m n}(f)$, between signals m and n is given by

$$
\begin{equation*}
\hat{R}_{m n}(f)=\frac{\left|\hat{S}_{m n}(f)\right|}{\sqrt{\hat{S}_{m m}(f) \hat{S}_{n n}(f)}} \tag{5.1}
\end{equation*}
$$

where $\hat{S}_{m n}(f)$ is the estimate of cross-power spectral density. $\hat{S}_{m n}(f)$ and $\hat{S}_{n n}(f)$ are estimates of auto-power spectral density. This was defined in Equation (4.9). The 100% confidence interval for coherence estimates in the range of $0.59 \leqslant R_{m n}(f) \leqslant 0.97$ with $2 I \geqslant 40$ degrees of freedom is calculated, according to Equation (6.111) of Bendat and Piersol (1971), by

$$
\begin{align*}
& {\left[\tanh \left\{g(f)-(2 I-2)^{-1}-\sigma_{g} Z_{\gamma / 2}\right\}\right]^{1 / 2}<R_{m n}(f)} \\
& {\left[\tanh \left\{g(f)-(2 I-2)^{-1}+\sigma_{g} Z_{\gamma / 2}\right\}\right]^{1 / 2},} \tag{5.2}
\end{align*}
$$

where $Z_{\gamma / 2}$ is a standard normal variate and

$$
\begin{equation*}
g(f)=\frac{1}{2} \ln \left[\frac{1+\hat{R}_{m n}(f)}{1-\hat{R}_{m n}(f)}\right]=\tanh ^{-1} \hat{R}_{m n}(f), \tag{5.3}
\end{equation*}
$$

and $I=$ number of data blocks being averaged, and

$$
\begin{equation*}
\sigma_{g}=\sqrt{\frac{2 I}{2 I-2}} \tag{5.4}
\end{equation*}
$$

with 2 I degrees of freedom.
Coherence of ground noise in Grass Valley decreases as the geophone spacing increases, the relation between coherence and geophone spacing varying from site to site. In the vicinity of Leach Hot Springs, high coherence between two geophones 10 m apart is seen in the frequency bands of 2 to 8 Hz and 10 to 20 Hz (Figure 5.1). As geophone spacing increases to $30 \mathrm{~m}, 40 \mathrm{~m}$, and 60 m , the coherence decreases at high and low frequencies. At 60 m separation we can still observe high coherence in the $5-7 \mathrm{~Hz}$ band. There seems no obvious correlation between frequency bands with high coherence and the VSD (Figure 5.1E). In the valley, for example, at the intersection of line E and line M (EM), the frequency band of maximum coherence is 2 to 5 Hz when geophones are separated by 20 m (Figure 5.2). The coherence level and the width of the coherent frequency band decrease with increased geophone spacing to $40 \mathrm{~m}-60 \mathrm{~m}$ separation. The estimated coherence at nearby site E 2.75 W indicates some degree of coherence at 3 to 6 Hz , even at 120 m separation (Figure 5.2E). The degree of coherence seen, while variable, is generally low at valley sites, presumably the result of attenuation effects and interference from multi-path arrivals. Phase velocity and wavelength can be measured for the coherent part. Wavelengths as short as $10-20 \mathrm{~m}$ are present at the valley sites.

5.3 Roving array experiment

A small-aperture 12-geophone array was used. The array configuration and its impulse response in wavenumber space are shown in Figure 5.3. The existence of short wavelength noise components and the low coherence seen at large geophone separation, both dictated the tight array spacing used. An array of 100 m element separation or more, commonly used in ground noise studies elsewhere, would give spurious results because spatial aliasing folds the high-wavenumber noise components (which we have seen dominant in the valley alluvium) into low-wavenumber noise components. The spatial aliasing results in the detection of erroneously high-velocity microseisms, which are interpreted as body waves. We illustrate the effect of spatial aliasing due to inadequate element separation in Figure 5.4, where we processed a simulated 4 Hz plane wave with 50 m wavelength, propagating with phase velocity of $200 \mathrm{~m} / \mathrm{sec}$ across four arrays. Those arrays have identical array shapes and numbers of sensors but different sensor spacing. The diameters of the arrays are $50 \mathrm{~m}, 75 \mathrm{~m}, 250 \mathrm{~m}$, and 500 m , such that the sensor spacing for each array is proportional to the array size. Since the plane waves are propagating toward the azimuth of 60°, the folding effects are evident along the directions of 60° and 240°. Many interpretations of microseisms as body waves, based on coarse sensor separation, may well be incorrectly based on aliased low-velocity surface waves, as seen in Figure 5.4C. It is true, of course, that when the array is made small enough to accommodate the short-wavelength noise components, resolution for nearvertically incident body waves is seriously degraded, though the evidence of body waves should be visible and could be studied by appropriate array
expansion and spatial filtering.
To map the propagation parameters of the microseismic field, this 12-element array was placed each evening at a site. Sixteen sites in the region have been occupied. Data were transmitted by cable to the recording vehicle some 500 m from the array.

5.4 Frequency-wavenumber power spectral density estimation

5.4.1 Definition

The frequency-wavenumber power spectral density function (FKPSD) was introduced into seismology by Burg (1964) in the development of the optimum three-dimensional filter derived from the wiener multichannel theory. Burg (1964) illustrated the optimum three-dimensional filter by a theoretical problem of P -wave enhancement in the presence of ambient Rayleigh waves. The FKPSD, a three-dimensional equivalent of ordinary spectral density function, is given by the relation

$$
\begin{equation*}
P(f, \underline{k})=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c(\tau, \underline{\rho}) \exp [-j 2 \pi(f \tau+\underline{k} \cdot \underline{\rho})] d \tau d \rho_{x} d \rho_{y}, \tag{5.5}
\end{equation*}
$$

where $c(\tau: \underline{\rho})$ is the correlation function with time delay τ and spatial lag $\underline{\rho}, \underline{k}$ is the vector wavenumber in cycles $/ \mathrm{km}$.

The correlation function of the noise field is defined as

$$
\begin{equation*}
c(\tau, \underline{\rho})=E[\phi(\mathrm{t}, \underline{\mathrm{r}}) \cdot \phi(\mathrm{t}+\mathrm{\tau}, \underline{\mathrm{r}}+\underline{\rho})], \tag{5.6}
\end{equation*}
$$

where E denotes the averaged value, or expectation, and $\phi(t, \underline{r})$ is the time series of the noise field at seismometer locations $\underline{r}=(x, y)$.

The array processing is normally carried out in the frequency domain rather than in the time domain because of computation time considerations.

With carefully designed filter coefficients, however, the time domain operation has the advantage of better resolution than the frequency domain operation (Capon, et al., 1967 and Lacoss, et al., 1969). In the following sections, I compare the techniques for estimating FKPSD using the conventional and maximum-1ikelihood method in the frequency domain.

5.4.2 Conventional method (BFM)

The conventional method, commonly known as the frequency domain beam forming method (BFM), estimates the FKPSD, $P(f, \underline{k})$, by the relation

$$
\begin{equation*}
\hat{P}(f, \underline{k})=\frac{1}{N^{2}} \underline{a}^{\prime} \cdot \underline{\underline{S}} \cdot \underline{a}, \tag{5.7}
\end{equation*}
$$

where N is the number of geophones in the array and \underline{a}^{\prime}, the conjugate transpose of \mathfrak{a}, is the row vector

$$
\begin{equation*}
\underline{\mathrm{a}}^{\prime}=\left(\mathrm{e}^{\mathrm{j} 2 \pi \underline{k} \cdot \underline{r}_{1}}, \mathrm{e}^{\mathrm{j} 2 \pi \underline{k} \cdot \underline{\mathrm{r}}_{2}}, \mathrm{e}^{\mathrm{j} 2 \pi \underline{\mathrm{k}} \cdot \underline{\mathrm{r}}_{3}}, \ldots ., \mathrm{e}^{\mathrm{j} 2 \pi \underline{\mathrm{k}} \cdot \underline{\mathrm{r}}_{N}}\right), \tag{5.8}
\end{equation*}
$$

where ${\underset{r}{r}}$ is the coordinate of $n{ }^{\text {th }}$ geophone location. $\underline{\underline{\hat{S}}}$ is the estimate of the spectral matrix between sensors. Each entry of $\hat{S}, \hat{S}_{m n}(f)$, is obtained from the averaged cross-power,
by the normalization

$$
\begin{equation*}
\hat{S}_{m n}(f)=\frac{\bar{S}_{m n}(f)}{\sqrt{\bar{S}_{m m}(f) \bar{S}_{n n}(f)}} \tag{5.9~A}
\end{equation*}
$$

where ${ }^{\mathrm{i}_{\Phi}}(\mathrm{f})$ is the Fourier transform of block noise sample i, from seismometer n located at ${\underset{-n}{n}}$.

The BFM estimate of FKPSD, by re-arranging Equation (5.7), is

$$
\begin{equation*}
\hat{P}(f, \underline{k})=\frac{1}{N^{2}} \sum_{m=1}^{N} \sum_{n=1}^{N} W_{m} W_{n}^{*} \hat{S}_{m n}(f) \exp \left[-j 2 \pi \underline{k} \cdot\left(\underline{r}_{m}-\underline{r}_{n}\right)\right] \tag{5.10}
\end{equation*}
$$

or

$$
\begin{equation*}
\hat{P}(f, \underline{k})=\frac{1}{\bar{I}} \sum_{i=1}^{\mathrm{I}}\left|\frac{1}{N} \sum_{n=1}^{N} W_{n} i_{\Phi_{n}}(f) \exp \left[-j 2 \pi \underline{k} \cdot \underline{r}_{n}\right]\right|^{2} \tag{5.11}
\end{equation*}
$$

 advancing the phase of sinusoid observed at ${\underset{n}{n}}$ by the amount of the time delay with respect to the origin of the array assuming a plane wave propagating toward the azimuth \underline{k} with phase velocity $\underline{V} . \underline{V}$ is given by

$$
\begin{equation*}
\underline{V}=\frac{f}{|\underline{k}|} \mathrm{km} / \mathrm{sec} \tag{5.12}
\end{equation*}
$$

Taking $W_{m}=W_{n}=1$, the BFM applies uniform weighting to each array element before the delay-and-sum operation. The BFM is efficient in computational time and provides an accurate estimate of azimuth and phase velocity if the noise field has high signal-to-noise ratio in a unique direction and represents a single mode of wave propagation. On the other hand, in the presence of multi-path propagation, the result in wavenumber space always shows an ambiguous pattern of peaks due to smearing of the true spectrum. The big side-lobes in the impulse response of the array (Figure 5.3) cause serious leakage in estimating spectral density.

Statistical properties of the estimator $\hat{P}(f, k)$ were given by Capon and Goodman (1970). The a priori assumptions in deriving the probability
distribution are the following:

1) The sensor outputs comprise a multi-dimensional Gaussian random process with zero mean and stationary discrete time series, and
2) The length of the segments employed is long so that ${ }^{\frac{1}{i}} \Phi_{m}(f)$ is statistically independent of $\mathrm{k}_{\Phi_{\mathrm{n}}}(\mathrm{f}), \mathrm{m} \neq \mathrm{n}$, then $\zeta_{1}, \zeta_{2}, \zeta_{3}, \ldots, \zeta_{\mathrm{I}}$ are I independent and identically distributed N-variate complex Gaussian random variables, where ζ_{i} is a column vector defined as

$$
\begin{equation*}
\zeta_{i}=\operatorname{Col}\left[\Phi_{1 i}(f), \Phi_{2 i}(f), \Phi_{3 i}(f), \cdots, \Phi_{N i}(f)\right], \tag{5.13}
\end{equation*}
$$

where $\Phi_{N i}$ (f) is the Fourier transform of data in the $i^{\text {th }}$ segment, $n^{\text {th }}$ channel, frequency f.

The $N \times N$ matrix-valued random variables, $\underset{\underline{S}}{(f)}$ defined in Equation (5.9), have a complex Wishart distribution of dimension N and 2I degree of freedom (when $\left|\underline{-}_{0}\right| \neq 0$). The random variable $\hat{P}(f, \underline{k})$ thus is a multiple of a Chi-square variable with mean and variance given by

$$
\begin{align*}
E\{\hat{P}(f, \underline{k})\} & =\int_{-f_{N}}^{f} \int_{-\infty}^{f} \int_{-\infty}^{\infty} P(x, \underline{k})\left|B\left(\underline{k}-\underline{k}_{o}\right) W_{L}\left(x-f_{o}\right)\right|^{2} d x d k x d k y, \tag{5.14}\\
\operatorname{var}\{\hat{P}(f, \underline{k})\}= & \frac{1}{\bar{T}}\left[E\left\{\hat{P}\left(f_{0}, k_{o}\right)\right\}^{2}\right], \quad f_{o} \neq 0, f_{N} \\
& \frac{2}{\bar{T}}\left[E\left\{\hat{P}\left(f_{0}, k_{0}\right)\right\}^{2}\right], \quad f_{0}=0, f_{N}, \tag{5.15}
\end{align*}
$$

where f_{N} is the Nyquist frequency and $P(f, \underline{k})$ is the frequency-wavenumber power spectrum. $|B(k)|^{2}$ is the array response function

$$
\begin{equation*}
B(\underline{k})=\frac{1}{N} \sum_{n=1}^{N} \exp \left(j \underline{k} \cdot{\underset{n}{n}}^{N}\right) \tag{5.16}
\end{equation*}
$$

$\left|W_{L}(x)\right|^{2}$ is the frequency window function

$$
\begin{equation*}
\left|W_{L}(x)\right|^{2}=\frac{1}{L}\left|\frac{\sin (L / 2) x}{\sin (1 / 2) x}\right|^{2} \tag{5.17}
\end{equation*}
$$

$E\left\{\hat{P}\left(f, k_{0}\right)\right\}$ is obtained by means of a frequency-wavenumber window $\left|B\left(\underline{k}_{-k_{0}}\right)\right|^{2} \cdot\left|W_{L}(x-f)\right|^{2}$. Hence $\hat{P}(f, \underline{k})$ will be an asymptotically unbiased estimate of $C P(f, k)$ as

$$
\begin{equation*}
\int_{-\pi}^{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|W_{L}(x-f) \cdot B\left(\underline{k}-\underline{k}_{0}\right)\right|^{2} d x d k x d k y=C \tag{5.18}
\end{equation*}
$$

The $\operatorname{var}\left\{\hat{P}\left(f, \underline{k}_{o}\right)\right\}$ approaches zero as I approaches infinity such that $\hat{P}(f, \underline{k})$ is a consistent estimate for $\operatorname{CP}(f, \underline{k})$. The stability of the estimate is independent of the FKPSD, seismometer locations, or the weights $W_{n}, n=1, \ldots, N($ lacoss, et al., 1969) and is given by

$$
\nu=\frac{2 E\left\{\hat{P}\left(f_{o}, k_{o}\right)\right\}^{2}}{\operatorname{var}\left\{\hat{P}\left(f_{o}, k_{o}\right)\right\}} \cdot b_{1}=\left\{\begin{array}{cl}
2 I b_{1} & \text { for } f_{o} \neq 0 \text { or } f_{N} \tag{5.19}\\
I b_{1} & \text { for } f_{o}=0 \text { or } f_{N}
\end{array}\right.
$$

where b_{1} is dependent on the spectral window defined in Equation (4.12) and the 100γ percent confidence interval for $\hat{P}\left(f_{o}, k_{o}\right)$ is

$$
\begin{equation*}
\frac{v \hat{P}\left(f_{o}, k_{0}\right)}{x_{v}^{2}\left(\frac{1+\gamma}{2}\right)}<P\left(f_{o}, k_{o}\right)<\frac{v \hat{p}\left(f_{0}, k_{o}\right)}{x_{v}^{2}\left(\frac{1-\gamma}{2}\right)} . \tag{5.20}
\end{equation*}
$$

For 24 data blocks, each block tapered by the rectangular data window, $v=48$, the 90% confidence 1imits are about 1.58 dB above and -1.24 dB below $\hat{P}\left(f_{0}, k_{0}\right)$ for $f_{o} \neq 0$ or f_{N}.

5.4.3 Maximum-1ikelihood method (MLM)

The maximum-likelihood estimate for FKPSD is based on the application of optimal weighting functions which correspond to a maximum-likelihood filter in 2-dimensional wavenumber space to control the shape of the frequency-wavenumber window function, i.e., the beam pattern of the array impulse response. The construction of the maximum-likelihood filter is based on the coherence characteristics of the data among array sensors. These optimal weighting functions, when applied to the output of each array element, result in the maximum signal-to-noise ratio in the array signal estimation. At a selected frequency component, the maximum-likelihood filter is able to pass undistorted a monochromatic plane wave traveling at a velocity corresponding to a steering wavenumber, k_{o}, and to suppress in an optimal least squares sense the power of those waves traveling at velocities corresponding to wavenumbers other than \underline{k}_{0}. The weighting function changes as the spectrum changes. The maximum-likelihood estimate for FKPSD can be written as

$$
\begin{equation*}
\tilde{P}(f, \underline{k})=\sum_{m=1}^{N} \sum_{n=1}^{N} A_{m}(f) A_{n}^{*}(f) \hat{S}_{m n}(f) \exp [-j 2 \pi(\underline{k} \cdot \underline{\rho})] \tag{5.21}
\end{equation*}
$$

where $A_{m}(f)$ and $A_{n}(f)$ are weights applied to the outputs of array elements m and n respectively. Note that $A_{m}(f)$ and $A_{n}(f)$ are functions of frequency, wavenumber, and spatial coordinates of the array element.

To consider the optimal weighting function in the "distortionless" sense and with optimal suppression of noise, we rearrange Equations (5.21) into the form

$$
\begin{equation*}
\tilde{P}(f, \underline{k})=\sum_{m=1}^{N} \sum_{n=1}^{N} A_{m}(f) A_{n}^{*}(f) \tilde{S}_{m n}(f) \tag{5.22}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{S}_{m n}(f)=\hat{S}_{m n}(f) \exp \left(-j 2 \pi \underline{k} \cdot x_{m}\right) \exp \left(j 2 \pi k \cdot x_{-n}\right), \tag{5.23}
\end{equation*}
$$

is the spectral matrix with delays.
Define a weighting vector

$$
\begin{equation*}
\underline{W}=\operatorname{col}\left[A_{1}(f), A_{2}(f), \cdots, A_{n}(f)\right] \tag{5.24}
\end{equation*}
$$

Equation (5.22) becomes

$$
\begin{equation*}
\tilde{P}(f, k)=\underline{W} \cdot \underline{\underline{S}} \cdot \underline{W}, \tag{5.25}
\end{equation*}
$$

where \underline{W}^{\prime} is the conjugate transpose of \underline{W}.
In this optimization problem, we desire minimum array output power for $\underline{k} \neq{\underset{-}{0}}^{0}$, which is equivalent to minimizing the quantity $\left(W^{\prime} \cdot \underline{\underline{S}} \cdot W\right)$. The constraint of distortionless filter response at $\underline{k}=\underline{k}_{\mathrm{o}}$ requires the sum of all N coefficients to be unity over the narrow wavenumber band around $\underline{k}=\underline{k}_{0}$, i.e.

$$
\begin{equation*}
\sum_{n=1}^{N} A_{n}\left(f, k_{0}\right)=1 \tag{5.26}
\end{equation*}
$$

or

$$
\begin{equation*}
\underline{C}^{\mathrm{T}} \cdot \underline{W}=1, \tag{5.27}
\end{equation*}
$$

where $\underline{C}=\operatorname{col}[1,1, . . ., 1]$.
The problem of finding the optimum set of filter weights, $\underline{W}_{\text {opt }}$, is summarized by Equations (5.25) and (5.27) as

$$
\begin{align*}
& \operatorname{minimize}\left(\underline{W}^{\prime} \cdot \underline{\tilde{S}} \cdot \underline{W}\right) \text { with respect to } W \tag{5.29}\\
& \text { subject to } \underline{C}^{T} \cdot \underline{W}=1 \tag{5.30}
\end{align*}
$$

Using the method of Lagrange multipliers in the calculus of variations,
we set up the equation as:

$$
\begin{equation*}
H(\underline{W})=\frac{1}{2} \underline{W} \cdot \underline{\underline{S}} \cdot \underline{W}+\lambda\left(\underline{C}^{T} \underline{W}-1\right) \tag{5.31}
\end{equation*}
$$

where the coefficient $1 / 2$ is introduced to simplify later arithmetic and λ is an undetermined Lagrange multiplier.
Taking the gradient of Equation (5.31) with respect to W and equating to zero,

$$
\begin{equation*}
\nabla_{\underline{W}} \mathrm{H}(\underline{W})=\underline{\tilde{S}} \cdot \underline{W}+\underline{C} \lambda=0 \tag{5.32}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\underline{W}=-\underline{\underline{S}}^{-1} \underline{C} \lambda \tag{5.33}
\end{equation*}
$$

substituting (5.33) into (5.30) we obtain

$$
\begin{equation*}
\lambda=-\left(\underline{\mathrm{C}}^{\mathrm{T}} \underline{\underline{S}}^{-1} \underline{\mathrm{C}}\right)^{-1} \tag{5.34}
\end{equation*}
$$

From Equations (5.33) and (5.34), the optimal weighting vector is obtained as

$$
\begin{equation*}
\underline{W}_{o p t}=\left(\underline{\underline{S}}^{-1} \cdot \underline{C}\right)\left(\underline{C}^{T} \cdot \underline{\underline{S}}^{-1} \cdot \underline{C}\right)^{-1} \tag{5.35}
\end{equation*}
$$

and the optimal weighting functions are:

$$
\begin{equation*}
A_{n}(f)=\frac{\sum_{m=1}^{N} \tilde{q}_{m n}(f)}{\sum_{m=1}^{N} \sum_{n=1}^{N} \tilde{\mathrm{q}}_{m n}(f)}, n=1, \ldots, N \tag{5.36}
\end{equation*}
$$

where the matrix $\left\{\tilde{\mathrm{q}}_{\mathrm{mn}}(\mathrm{f})\right\}$ is the inverse of the delayed spectral matrix, $\left\{\tilde{S}_{m n}(\mathrm{f})\right\}^{-1}=\underline{\underline{S}}^{-1}$, as defined in Equation (5.23).

The filter obtained from the above optimization procedures is a distortionless form of a constrained least squares filter, or constrained

LMS filter (Frost, 1972). The right hand side of Equation (5.36) is identical to the coefficients of the maximum-1ikelihood filter derived by Capon (1973) using the maximum-1ikelihood estimation technique.

Substituting Equation (5.35) into Equation (5.25), the estimate for FKPSD is:

$$
\begin{align*}
\tilde{P}(f, \underline{k}) & =\left(\frac{\underline{C}^{T} \cdot \underline{\tilde{S}}^{-1}}{\underline{C^{T}} \cdot \underline{\tilde{S}}^{-1} \cdot \underline{C}}\right) \cdot \tilde{\underline{S}} \cdot\left(\frac{\tilde{\tilde{S}}^{-1} \cdot \underline{C}}{\underline{\underline{C}^{T}} \cdot \underline{\tilde{S}}^{-1} \cdot \underline{C}}\right) \tag{5.37}\\
& =\left(\underline{C}^{T} \cdot \underline{\underline{S}}^{-1} \cdot \underline{C}\right)^{-1} \tag{5.38}\\
& =\left(\underline{a}^{\prime} \cdot \underline{\hat{S}}^{-1} \cdot \underline{a}\right)^{-1} .
\end{align*}
$$

This is just the high-resolution estimate for $P(f, \underline{k})$ given by Capon(1969).
The justification for the usage of $\tilde{P}(f, \underline{k})$ as an estimation for $P(f, k)$ is provided by an important property of the maximum-1ikelihood estimator. When the maximum-1ikelihood estimator is used in signal estimation, it is identical to the minimum-variance unbiased estimator of the signal (Capon et al., 1967; and Capon, 1973). This is the consequence of minimizing the variance of the array output, $\left(\underline{W}^{\prime} \cdot \underline{\tilde{S}} \cdot \underline{W}\right)$, in Equation (5.29). Therefore, $\tilde{\mathrm{P}}(\mathrm{f}, \underline{\mathrm{k})}$ is a minimum-variance unbiased estimate for $P(f, k)$.

The statistical properties of $\tilde{P}(f, \underline{k})$ have been discussed by Capon and Goodman (1970), who show that $\tilde{P}(f, k)$ is a multiple of chi-square variable with $2(I-N+1)$ degrees of freedom, if $f_{o}=0$; or f_{N}. The mean and variance of $\tilde{P}(f, k)$ are given by

$$
\begin{equation*}
E\left\{\tilde{P}\left(f_{0}, \underline{k}_{0}\right)\right\}=\left(\frac{I-N+1}{I}\right) \int_{-f_{N}}^{f_{N}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(x, k)\left|W_{L}\left(x-f_{0}\right) \tilde{B}\left(f_{0}, \underline{k} ; k_{-}\right)\right|^{2} d x d k x d k y \tag{5.39}
\end{equation*}
$$

$$
\begin{align*}
& \operatorname{var}\left\{\tilde{\mathrm{P}}\left(\mathrm{f}_{0}, \mathrm{k}_{-}\right)\right\}=\left(\frac{1}{\mathrm{I}-\mathrm{N}+\mathrm{I}}\right)\left[E\left\{\tilde{\mathrm{P}}\left(\mathrm{f}_{0}, \mathrm{k}_{0}\right)\right\}\right]^{2}, \quad \mathrm{f}_{0} \neq 0 \text { or } f_{N} \tag{5.40}\\
& \text { or }\left(\frac{2}{I-N+1}\right)\left[E\left\{\tilde{P}\left(f_{0}, k_{0}\right)\right\}\right]^{2}, f_{0}=0 \text { or } f_{N} \tag{5.41}
\end{align*}
$$

The confidence limits for $\tilde{P}\left(f_{0}, k_{0}\right)$ can be obtained in a manner similar to that discussed for the BFM . If $\mathrm{I}=24, \mathrm{~N}=12$, and the rectangular taper is used, there are 26 degrees of freedom and the 90% confidence limits are 2.28 dB above and -1.76 dB below $\tilde{\mathrm{P}}\left(\mathrm{f}_{0}, \mathrm{k}_{0}\right)$, for $\mathrm{f}_{0} \neq 0$ or f_{N}. In the article discussing the frequency domain beam forming method, Lacoss et al. (1969) have shown that as long as the requirement $W_{n m}=W_{m}^{*}$ is satisfied, the stability of any frequency domain beam forming estimate is independent of the seismometer location, FKPSD, or the weights W_{n}, $\mathrm{n}=1, \ldots ., N . W_{\mathrm{mn}}$ represents $W_{\mathrm{m}} \mathrm{W}_{\mathrm{n}}$ and W_{m} is the weighting function applied on $m^{\text {th }}$ sensor output. The requirement $W_{n m}=W_{m}^{*}$ ensures that $\tilde{P}\left(f_{0}, \underline{k}_{o}\right)$ be real. Since the weighting function of MLM satisfies the above requirements, the confidence limits of the MLM estimate depend only on the number of data blocks and array sensors.

Equation (5.39) indicates that $E\left\{\left(f_{0}, k_{0}\right)\right\}$ is obtained by means of a frequency-wavenumber window, $\left|W_{L}\left(x-f_{o}\right) \cdot \tilde{B}\left(f_{o}, \underline{k}_{0} \underline{k}_{o}\right)\right|^{2}$ where

$$
\begin{equation*}
\tilde{B}\left(f_{0}, \underline{k} ; \underline{k}_{0}\right)=\sum_{n=1}^{N} A_{n}(f) \exp \left[j\left(\underline{k}-\underline{k}_{0}\right) \cdot \underline{r}_{n}\right] ; \tag{5.42}
\end{equation*}
$$

therefore $\tilde{P}\left(f_{0}, k_{0}\right)$ is an asymptotically unbiased estimator for $C P\left(f_{0}, k_{0}\right)$, if the window approaches a three-dimensional delta function in such a way that

$$
\begin{equation*}
\left(\frac{I-N+1}{I}\right) \int_{-f_{N}}^{f_{N}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|W_{L}\left(x-f_{0}\right) \tilde{B}\left(f_{0}, \underline{k} ; \underline{k}_{0}\right)\right|^{2} d x d k x d k y=C \tag{5.43}
\end{equation*}
$$

5.4.4 Comparing the FKPSD estimation techniques

The term "high resolution $f-\mathrm{k}$ spectrum" is commonly used for maximum-1ike1ihood (MLM) estimation of FKPSD, because, under favorable conditions, this method always results in a spectrum with sharper peaks and lower side-lobes than that estimated by conventional (BFM) methods. Based on theoretical analyses, however, Cox (1973) has found that the MLM has a disadvantage relative to the BFM in terms of its sensitivity to measurement errors, especially in the case of channel mismatch. Mismatch may result from distortion in the waveform during propagation, from amplitude, phase and position errors in the sensors, or in the sampling and digitization. We have examined the effects of mismatch by processing simulated data with both MIM and BFM. Input data are 4 Hz plane waves superimposed upon random noise of varying amplitude level. The 4 Hz plane wave propagates with phase velocity of $200 \mathrm{~m} / \mathrm{sec}$ across an array in 50 m diameter. A block of data without random noise components is shown in Figure 5.5. We have found from the results of BFM that, regardless of the signal-to-noise ratios of input data, the f-k diagrams at 4 Hz are all identical to Figure 5.6A. This figure shows a shifted array response, centered around the wavenumber of the simulated signal. The peak value of $f-k$ spectrum at 4 Hz is independent of the signal-tonoise ratios between 48.8 dB and 10.6 dB . On the other hand, the results of MLM analysis indicate that MLM is sensitive to signal-to-noise ratio of the input data. This effect is illustrated by the $f-k$ plots for signal-to-noise ratio of 48.8 dB (Figure 5.6 B), 30.6 dB (Figure 5.6C), 25.6 dB (Figure 5.6D), 20 dB (Figure 5.6E) and 10.6 db (Figure 5.6F). Those figures clearly indicate that MLM suppresses the side-lobes more efficiently and produces higher resolutions than BFM. The high
resolution effect is a distinct advantage in the case of multiple arrivals.
The desirable characteristics of MLM are results of the combination of the side-lobe suppression and the noise rejection. We shall discuss these operations by assuming that $\stackrel{\underset{N}{\hat{S}} \text { consists of signal-plus-noise, }}{\text {, }}$ so that we may express $\hat{\underline{\underline{\hat{S}}}}$ as the form

$$
\begin{equation*}
\underline{\underline{\hat{s}}}=\sigma_{o}^{2} \underline{\underline{\hat{p}}}+\sigma_{1}^{2} \underline{d} \cdot \underline{d}^{\prime}, \tag{5.44}
\end{equation*}
$$

where
is the noise spectral matrix, is normalized to have its trace equal to the number of sensors, is the input noise spectral level averaged across the sensors, is the averaged input power spectrum of the coherent microseismic signal,
d is a directional vector of microseismic field, defined as

$$
\mathrm{d}=\left[\begin{array}{ccc}
\exp \left(\mathrm{j} 2 \pi \underline{k}_{\mathrm{o}}\right. & \cdots & \left.\underline{x}_{1}\right) \tag{5.45}\\
\exp \left(\mathrm{j} 2 \pi \underline{k}_{\mathrm{o}}\right. & \left.\cdot \underline{x}_{2}\right) \\
\vdots & \\
\vdots & \\
\exp \left(\mathrm{j} 2 \pi \underline{k}_{\mathrm{o}}\right. & \cdot & \left.\underline{x}_{\mathrm{N}}\right)
\end{array}\right]
$$

k_{o} is a wavenumber vector in the direction to which the microseismic field is propagating.

We can also write a general expression for estimate FKPSD as

$$
\begin{equation*}
P(f, \underline{k})=\tilde{W}^{\prime} \cdot \underline{\underline{s}} \cdot \underline{\underline{w}} \tag{5.46}
\end{equation*}
$$

where \underline{W} is the vector of generalized weighting functions,

$$
\begin{equation*}
\tilde{W}^{\prime}=\frac{1}{\mathrm{~N}} \underline{a}^{\prime} \tag{5.47}
\end{equation*}
$$

for BFM , and

$$
\begin{equation*}
\underline{\tilde{W}}=\left(\underline{\underline{S}}^{-1} \cdot \underline{C}\right)\left(\underline{C}^{T} \cdot \underline{\underline{S}}^{-1} \cdot \underline{C}\right)^{-1}=(\underline{\underline{S}} \cdot \underline{a})\left(\underline{a}^{\prime} \cdot \underline{\underline{S}}^{\prime} \cdot \underline{a}\right)^{-1} \tag{5.48}
\end{equation*}
$$

for MLM.
Substituting Equation (5.44) to Equation (5.46)

$$
\begin{equation*}
P(f, \underline{k})=\sigma_{o}^{2} \tilde{W}^{\prime} \cdot \underline{\underline{Q}} \cdot \underline{\tilde{W}}+\sigma_{1}^{2}\left|\underline{\underline{W}}^{\prime} \cdot \underline{d}\right|^{2} \tag{5.49}
\end{equation*}
$$

We define an inner product between two colunn vectors a and d by $\underline{a^{\prime}} \cdot \underline{\underline{C}} \cdot \underline{d}$, where $\underline{\underline{C}}$ is a positive definite Hermitian matrix, and the cosine-square of the generalized angle between \underline{a} and \underline{d} to be

$$
\begin{equation*}
\cos ^{2}(\underline{a}, \underline{d} ; \underline{\underline{C}})=\left|\underline{a}^{*} \cdot \underline{\underline{C}} \cdot \underline{d}\right|^{2} /\left\{\left(\underline{a^{\prime}} \cdot \underline{\underline{C}} \cdot \underline{a}\right)\left(\mathrm{d}^{\prime} \cdot \underline{\underline{C}} \cdot \underline{d}\right)\right\} \tag{5.50}
\end{equation*}
$$

BFM. For BFM, the output spectrum can be written as

$$
\begin{equation*}
\hat{\mathrm{P}}\left(\mathrm{f}, \underline{\mathrm{k}} ; \underline{k}_{\mathrm{o}}\right)=\frac{\sigma_{o}^{2}}{N^{2}}\left(\underline{a}^{\prime} \cdot \hat{\underline{o}} \cdot \underline{a}\right)+\sigma_{1}^{2} \cos ^{2}(\underline{a}, \underline{d} ; \underline{I}) \tag{5.51}
\end{equation*}
$$

The first term is the noise response, the second term is the signal response, and $\cos ^{2}(\underline{a}, \underline{d} ; \underline{I})$ is the array impulse response shifted by the steering vector a to the "direction" \underline{d}, as shown in Figure 5.6A. It is evident that signal response depends on the cosine square of the generalized angle between \underline{a} and \underline{d} in inner product space and is not affected by the noise spectral matrix $\hat{\underline{Q}}$. Therefore, the signal response is relatively insensitive to small mismatch between \underline{a} and \underline{d}, as well as input signal-to-noise ratio. The noise response is reduced
by increase N which is the number of sensors in the array.
MLM. The output spectrum of MLM is obtained by substituting Equation (5.48) into Equation (5.49),

$$
\begin{align*}
& \tilde{\mathrm{P}}\left(\mathrm{f}, \underline{\mathrm{k}} ; \underline{\mathrm{k}}_{\mathrm{o}}\right)=\frac{\sigma_{\mathrm{o}}^{2}}{\underline{\mathrm{a}}^{\cdot} \cdot \hat{\underline{Q}}^{-1} \cdot \underline{a}}\left\{1+\frac{\left[2(\mathrm{~S} / \mathrm{N})_{\max }+(\mathrm{S} / \mathrm{N})_{\max }^{2}\right] \sin \left(\underline{a}, \underline{\mathrm{a}} ; \hat{\underline{Q}}^{-1}\right)}{\left[1+(\mathrm{S} / \mathrm{N})_{\max } \sin ^{2}\left(\underline{\mathrm{a}}, \underline{\left.\left.\mathrm{~d}, \hat{\underline{Q}}^{-1}\right)\right]^{2}}\right\}\right.}\right. \\
& +\sigma_{\underline{1}}^{2}\left(\frac{\underline{d}^{\prime} \cdot \underline{\hat{O}}^{-1} \cdot \underline{d}}{\underline{a}^{\prime} \cdot \underline{\hat{Q}}^{-1} \cdot \underline{a}}\right)\left(\frac{\cos ^{2}\left(\underline{a}, \underline{d} ; \hat{\underline{Q}}^{-1}\right)}{\left\{1+(\mathrm{S} / \mathrm{N})_{\max } \sin ^{2}\left(\underline{a}, \underline{d} ; \hat{\underline{Q}}^{-1}\right\}\right\}^{2}}\right), \tag{5.52}
\end{align*}
$$

where $(S / N)_{\max }$ is the maximum output signal-to-noise spectral ratio defined as:

$$
\begin{align*}
& (\mathrm{S} / \mathrm{N})_{\max }=\left(\underline{\mathrm{d}}^{\prime} \cdot \underline{\underline{Q}}^{-1} \cdot \underline{d}\right) \frac{\sigma_{1}^{2}}{\sigma_{0}^{2}}, \text { and } \tag{5.53}\\
& \sin ^{2}\left(\underline{\mathrm{a}}, \underline{\mathrm{~d}} ; \hat{\underline{Q}}^{-1}\right)=1=\cos ^{2}\left(\underline{a}, \underline{\mathrm{~d}} ; \hat{\underline{Q}}^{-1}\right) \quad . \tag{5.54}
\end{align*}
$$

The expressions for signal and noise responses appearing in Equation (5.52) are more complicated than those of the BFM. It is evident from Equation (5.52) that both $(S / N)_{\max }$ and $\sin ^{2}\left(\underline{a}, \underline{d} ; \underline{O}^{-1}\right)$ play important roles in signal expression and noise rejection. The suppression of spurious side-lobes due to finite dimension array response can be seen from the behavior of the second term in Equation (5.4). As a deviates away from \underline{d}, the quantity of $\cos ^{2}\left(\underline{a}, \underline{d} ; \hat{\underline{Q}}^{-1}\right)$ becomes smaller while $\sin ^{2}\left(\underline{a}, \underline{d} ; \underline{\underline{Q}}^{-1}\right)$ becomes larger. The signal suppression can be significant at $\underline{a} \neq \underline{d}$ when $(\mathrm{S} / \mathrm{N})_{\max }$ is larger than unity.

Let us turn our attention to the first term of Equation (5.52), i.e. the noise response. To examine the unusual nature of the noise response, we let $\underline{\underline{Q}}=\underline{\underline{I}}$, such that the quantity ($\underline{a}^{\prime} \cdot \hat{\underline{Q}}^{-1} \cdot \underline{a}$) is a constant. Then as $\sin ^{2}(\underline{a}, \underline{d} ; \underline{I})$ varies from zero to one, the noise response increases from the value $\sigma_{0}^{2} / \mathrm{N}$ at $\sin ^{2}(\underline{a}, \underline{d} ; \underline{I})=0$, until it reaches a maximum of $\left(\frac{\sigma_{0}^{2}}{N}\right) \frac{\left[2+(\mathrm{S} / \mathrm{N})_{\max }\right]^{2}}{4+4(\mathrm{~S} / \mathrm{N})_{\max }}$ at $\sin ^{2}(\underline{a}, \underline{\mathrm{~d}} ; \mathrm{I})=1 /\left(2+(\mathrm{S} / \mathrm{N})_{\max }\right)$.

This peculiar noise response is due to the fact that the MLM estimator treats the mismatched signal as an unwanted interference and performs a compromise between suppressing the signal and rejecting the real noise. The stronger the mismatched signal, the more importance the estimator puts on suppressing it. In suppressing the mismatched signal it accepts a lesser rejection of noise. Near the point $\sin ^{2}(\underline{a}, \underline{d} ; \underline{I})=0$, the signal suppression is minimum. As $\sin ^{2}(\underline{a}, \underline{d} ; \underline{\underline{I}})$ increases, the greater suppression of the signal is possible with a corresponding increasing penalty in noise rejection. Eventually the mismatch reaches the point where the signal suppression is sufficient so that a further penalty in noise response is not justified. The processor then reverses the trend and places greater emphasis on rejecting the noise.

The MLM, however, is not an optimal array processor. The terms in large braces in Equation (5.52) deviate the output spectrum of MLM away from that of an optimal array processor. We will discuss the optimal array processor later in this section. Look back at Equation (5.36) where we used the cross-power spectral matrix of the signal-plus-noise to construct the weighting function for MLM.

The optimal array processor, on the other hand, uses the cross-power spectral
matrix of noise alone to construct the weighting functions in order to enhance the transient signal, such as earthquake or explosion arrivals. Unfortunately, such an optimal array processor is not applicable to microseismic data because of the difficulty in separating signal from noise in microseismic data. It appears that, at present, MLM is the best way to process two-dimensional array data for high resolution in the presence of multi-path interference, the normal situation in ground noise studies. It is worthwhile, nevertheless, to consider the responses of the optimal array processor.

Optimal Array Processor. The output spectrum given by Cox (1973) is

$$
\begin{equation*}
P\left(f, \underline{k} ; \underline{k}_{o}\right)=\frac{\sigma_{o}^{2}}{\left(\underline{a}^{\prime} \cdot \underline{\hat{Q}}^{-1} \cdot \underline{a}\right)}+\sigma_{1}^{2}\left(\frac{\underline{d}^{\prime} \cdot \underline{\underline{Q}}^{-1} \cdot \underline{d}}{\underline{a}^{\prime} \cdot \underline{\hat{Q}}^{-1} \cdot \underline{a}}\right) \cos ^{2}\left(\underline{a}, \underline{d} ; \underline{\underline{Q}}^{-1}\right) \tag{5.55}
\end{equation*}
$$

which results from substituting $\underline{\tilde{W}}^{\prime}=\left(\underline{\underline{Q}}^{-1} \cdot \underline{a}\right)\left(\underline{a}^{\prime} \cdot \underline{\hat{Q}}^{-1} \cdot \underline{a}\right)^{-1}$ into Equation (5.49). Again, the first term corresponds to the noise response and the second term corresponds to the signal. Notice that Equation (5.55) reduces to Equation (5.51) for the case of spatially uncorrelated noise, $\underline{\underline{Q}}=\underline{\underline{I}}$, and $\underline{\mathrm{a}}=\underline{\mathrm{d}}$. .

In order to realize the effects of optimization, one must understand the effect of the matrix \underline{Q}^{-1}, since we have defined $\hat{\underline{Q}}$ as a noise spectral matrix in Equation (5.44), the small eigenvalues of $\underline{\underline{0}}$ correspond to the elements of array with less noise. The effect of introducing $\underline{\underline{Q}}^{-1}$ in $\cos ^{2}\left(\underline{a}, \underline{d} ; \underline{\underline{Q}}^{-1}\right)$ can be compared with $\cos ^{2}(\underline{a}, \underline{d} ; \underline{1})$ of Equation (5.51) where there is no optimization involved. Cox (1973) pointed out that $\underline{\underline{Q}}^{-1}$ in $\cos ^{2}\left(\underline{a}, \underline{d} ; \hat{\underline{Q}}^{-1}\right)$ is equivalent to $\cos ^{2}(\underline{a}, \underline{\mathrm{~d}} ; \underline{\underline{I}})$ with multip1ications of scaling factors to the projections of \underline{a} and \underline{d} on the eigenvectors of $\hat{\underline{Q}}$.

Since $\hat{\underline{\varrho}}$ has been normalized to have its trace equal to $N, \sum_{n=1}^{N} \lambda_{n}=N$. The scaling factors associated with $\hat{\underline{Q}}^{-1}$ are $\sqrt{1 / \lambda_{n}}$ which emphasizes components of \underline{a} and \underline{d} corresponding to small eigenvalues of $\hat{\underline{Q}}$, and de-emphasizes components corresponding to large eigenvalues of $\hat{\underline{Q}}$. Therefore the quantity $\left\{\begin{array}{l}\underline{d^{\prime}} \cdot \hat{\underline{O}}^{-1} \cdot \underline{d} \\ \underline{a}^{\prime} \cdot \hat{\underline{Q}}^{-1} \cdot \underline{a}\end{array}\right\} \cos ^{2}\left(\underline{a}, \underline{d} ; \hat{\underline{Q}}^{-1}\right)$ gives rise to signal gain, for the assumed signal direction. $\left\{\begin{array}{l}\mathrm{d}^{\prime} \cdot \hat{\underline{Q}}^{-1} \cdot \underline{d} \\ \frac{\underline{\mathrm{~T}}^{\prime} \cdot \underline{\hat{Q}}^{-1} \cdot \underline{a}}{}\end{array}\right\}$
 noise. The choice of \tilde{W}^{\prime} results in the optimal estimator which provides the maximum gain for $\underline{a}=\underline{d}$ and optimal suppression for $\underline{a} \neq \underline{d}$.

5.4.5 Grass Valley data processing method

Transient-free quiet-interval data blocks from each of the 12 elements of the array are selected for processing. The number and length of the data blocks are selected on the basis of resolution and statistical stability of the estimated power spectral density. A MLM comparison for different numbers and lengths of data blocks, holding the total number of data points constant, is illustrated with array data from site E5.9W (Figure 5.7). The results of nrocessing the identical data using three different lencths are shown in Figure 5.8 for 12 blocks x 128 points, 24 blocks x 64 points, and 48 blocks x 32 points. The 12 blocks x 128 points (Figure 5.8 A) provides the highest resolution, indicating the multiple directions of propagation. However, the greater number of data points in the time domain requires the analysis of more frequency components and the FKPSD estimated in such a way is statistically less stable than the smaller number of data points. The 48 blocks x 32 points (Figure 5.8C) has only 16 discrete frequency
components from DC to Nyquist frequency. In this case, the coarse frequency interval may result in an erroneous phase velocity estimate. I, therefore, have selected 24 blocks $x 64$ data points (Figure 5.8B). to process Grass Valley array data; this combination provides adequate resolution in wavenumber space and reasonable stability in the statistical estimation. In the figures, FKPSD are estimated for a desired frequency component at each of 41×41 grid points in wavenumber space, then normalized with respect to peak value and contoured in dB. Normally, data are processed in a wide frequency band and the maximum FKPSD of each frequency component is plotted as shown in Figure 5.9 for data from sites E5.9W, GP, and A2N. Those frequencies corresponding to the FKPSD maxima are selected for interpretation. The wavenumber and frequency of a FKPSD maximm provides the estimate of apparent phase velocity and direction of propagation for the most coherent propagating plane wave in the data sample. In case the microseismic field has very low coherence across the array sensors, the plot of maximum FKPSD over a wide frequency band will show a low normalized curve without distinct peaks. Accordingly, in Figure 5.9, the coherence of array data recorded at site A 2 N is higher than that recorded at site GP in the frequency band of 2.54 Hz to 12.9 Hz . A comparison of BFM and MLM is provided in Figures 5.8B and 5.8D for the case of 24 blocks $\times 64$ points. The greater resolution in MLM is apparent in resolving the multiple directions of propagation. Consequently, our processing method was normally MLM using 24 blocks x 64 points.

5.5 Grass Valley data interpretation

Valley sites. The noise anomaly in the center of the valley, e.g. E5.9W at 5 to 7 Hz (Figure 4.4B), can be explained by the superposition of multi-path surface waves propagating in the shallow alluvial section. The absence of a unique and time-invariant propagation direction, as seen in Figure 5.10, indicates clearly that the high amplitude ground noise at this site is not due to a local buried source. Further, the uniform propagation velocity, $|k| \cong 16$ cycles $/ \mathrm{km}$, seen at all azimuths suggests a surface wave nature of the noise field. Similar multiazimuth surface waves are seen also in the $f-k$ results at 5.71 Hz for the array data at sites E 0.5 W and M 2.9 N (see Figure 3.4 for site locations).

Leach Hot Springs. Time-invariant azimuths of propagating noise fields are seen at sites A2N, B0.35W, E2.9E, and GP (see Figure 3.2 for site locations) in the vicinity of Leach Hot Springs. Typical noise data recorded in this area show highly coherent energy in the array. Data from site $A 2 N$ are shown in Figure 5.11. Except at B0.35W, the dominant frequency of the propagating noise field in the area is 4.4 Hz . The $\mathrm{f}-\mathrm{k}$ plots, at this frequency are shown in Figures 5.12A, 5.12C, and 5.12E. The unique azimuth in each plot is in a direction away from the hot springs. At B 0.35 W the dominant frequency of noise field is 2.8 Hz . In the same frequency band, we also see distinct 2.5 Hz noise components at sites A2N and GP. Noise in this lower frequency band propagates constantly during quiet recording periods at an azimuth around 210°, as indicated in Figures 5.12B, 5.12D, and 5.12 F for sites A2N, GP, and B0.35N. The phase velocities estimated from these plots
indicate that the microseisms are apparently fundamental mode Rayleigh waves.

Another interesting feature appears at C 6 W and at the intersection of lines L and H (site $L H$) where $f-k$ analyses indicate that the noise fields at both sites propagate away from the hills (Figures 5.13C, 5.13D, 5.13 E and 5.13 F). There is a possibility that the hills respond to gusty winds and generate ground noise.

5.6 Dispersion characteristics and shallow structure

On the assumption that the microseismic field consists of surface waves, the $f-k$ analysis technique allows direct measurement of the local dispersion curve by selecting phase velocities corresponding to the frequencies with peak FKPSD. As an example, in Figure 5.14 we show phase velocities so estimated, along with computed fundamental and first higher mode Rayleigh wave dispersion curves, for a model based on P-wave velocities from a shallow refraction survey in the area. The effect of the very shallow velocity structure is illustrated clearly. Lateral variations in the upper $10-20 \mathrm{~m}$ will control the surface wave propagation characteristics. In estimating dispersion curves, we do not restrict sampling to the quiet periods, since larger microseisms are very coherent across the array. The dispersion measurements, besides providing local observations of phase velocity for shallow structure mapping, also provide a method of verifying the wave nature of the microseisms. It is clear that waves with periods of 1 sec and greater must be analyzed for structural information at geothermal target depths, if the microseisms are fundamental mode Rayleigh waves (see, for example, McEvilly and Stauder, 1965).

FIGURE CAPTIONS

Figure 5.1 Estimated coherence near Leach Hot Springs for various geophone spacings of (A) 10 m , (B) 30 m , (C) 40 m , and (D) 60 m in a single line. Note the coherence decreases as geophone spacing increases, along with narrower coherent frequency bands. Frame E is the typical VSD of this site.

Figure 5.2 Estimated coherence at valley sites, EM (A-D) and E2.75W (E), for linear geophone spacings of (A) 20 m (NS direction), (B) 20 m (EW direction), (C) 40 m , (D) 60 m , and (E) 120 m .

Figure 5.3 Array configuration and its contoured impulse response in wavenumber space, plotted to kx and $\mathrm{ky}=71 \mathrm{cycles} / \mathrm{km}$. The effective Nyquist wavenumber can be seen to vary with azimuth in the range of about $50-70 \mathrm{cyc} 1 \mathrm{es} / \mathrm{km}$. The interior square outlines the standard $f-k$ plot range of 35.7 cycles/km, used in subsequent figures. Radii of the concentric circles in array are indicated.

Figure 5.4 High-resolution $f-k$ power spectral density estimates for a simulated 4 Hz plane wave signal propagating $\mathrm{N} 60^{\circ} \mathrm{E}$ across the array at horizontal phase velocity $200 \mathrm{~m} / \mathrm{s}$ ($\mathrm{k}=20 \mathrm{cyc} \mathrm{es} / \mathrm{km}$), to illustrate spatial aliasing. The array configuration is the same as shown in Figure 5.3. The array dimension scales are (A) 1 time, (B) 1.5 times, (C) 5 times, (D) 10 times, the radii values indicated in Figure 5.3. The maximum kx and ky values in the plots are (A) 71.4 , (B) 47.6 , (C) 14.3 , (D) 7.1 cycles $/ \mathrm{km}$ corresponding approximately to the effective Nyquist wavenumbers for the arrays.

The f-k power spectral density contours are $-1.0,-3.0$, $-6.0,-9.0,-12.0 \mathrm{~dB}$ below the main peak. Circles indicate the constant velocities shown, expanding with array size. Aliasing is apparent in the high phase velocities in Frames (B), (C), and (D), easily misinterpreted as detected body waves. The 90% confidence limits on the estimated FKPSD are $\pm 1.9 \mathrm{~dB}$, based on the multiple of chi-square variable with approximately 26 degrees of freedom.

Figure 5.5 Noise-free simulated 4 Hz plane waves crossing the array of Figure 5.3 with horizontal phase velocity of $200 \mathrm{~m} / \mathrm{sec}$. Figure 5.6 Comparison of $f-k$ resolutions using BFM (A) and MLM (B to F) on the simulated plane waves shown in Figure 5.5 , with noise added. MLM resolution deteriorates as the signal-to-noise ratio of the input data varies from (B) 48.8 dB , (C) 30.6 dB , (D) 25.6 dB , (E) 20 dB , to (F) 10.6 dB , whereas BFM is insensitive to signal-to-noise ratio in the same range. The BFM resolutions for all noise levels are all identical to (A). Contoured lines are at $-1,-3,-6,-9$, and -12 dB below the main peak.

Figure 5.7 Typical seismic noise data in the valley, at site E5.9W, recorded by the array shown in Figure 5.3. The difference in signal amplitude among traces is a consequence of the difference in geophone damping resistor of each channel. The scale factor, in $10^{-9} \mathrm{~m} / \mathrm{sec}$ per cm of displayed record amplitude, at 4.5 Hz , are shown for each trace on the right margin.

Figure $5.8 \quad \mathrm{f}-\mathrm{k}$ results for site E 5.9 W for different data block lengths, comparing $M L M$ and $B F M$.
(A) 12 data blocks, each with 128 points, processed by MLM, with 90% confidence 1 imits of $\pm 7.7 \mathrm{~dB}$.
(B) 24 data blocks, each with 64 points, processed by MLM, with 90% confidence 1 imits of $\pm 1.96 \mathrm{~dB}$,
(C) 48 data blocks, each with 64 points, processed by MM with 90% confidence limits of $\pm 1.16 \mathrm{~dB}$,
(D) 24 data blocks, each with 64 points, processed by BFM, with 90% confidence 1 imits of $\pm 1.4 \mathrm{~dB}$.

The frequency on each frame corresponds to a maximum FKPSD (see Figure 5.9). The range of wavenumber plotted is 35.7 cycles $/ \mathrm{km}$. Contour lines are at $-1,-3,-6,-9$, and -12 dB below the main peak.

Figure 5.9 Examples of maximum FKPSD plots as a function of frequency, independent of the wavenumber. The maximum FKPSD at each frequency is normalized with respect to a common, reference power leve1. Array data are taken from sites A2N, E5.9W and GP.

Figure 5.10 The time-variant nature of propagating seismic noise at valley site E5.9W. Data are selected from the 4th, 5th, 7 th, 8 th, 9 th, and 10 th hours of the recording period, as indicated, and processed by MLM using 24 blocks with 64 points per data block. Circles indicate velocities of peaks given along with azimuth in each plot.

Figure 5.11 Typical seismic noise data at site A2N, 1 km SE of Leach Hot Springs, recorded by the array shown in Figure 5.3. Note the high coherence across the array. The difference in signal amplitude among traces is resulted from the different geophone damping resistor of each channe1. The scale factor, in $10^{-9} \mathrm{~m} / \mathrm{sec}$ per cm of displayed record amplitude, at 4.5 Hz , are shown for each trace on the right margin.

Figure 5.12 High-resolution $\mathrm{f}-\mathrm{k}$ results in wavenumber space for sites A2N, GP, E2.9E, and B0.35W located near Leach Hot Springs. The frequency on each frame corresponds to a maximun in the maximum FKPSD plot (Figure 5.9). The maximum wavenumber plotted is 35.7 cycles $/ \mathrm{km}$, except for frame (F), where it is $17.9 \mathrm{cycles} / \mathrm{km}$. The contoured lines are $-1,-3,-6$, -9 , and -12 dB below the main peak. The horizontal phase velocity and the time-invariant direction of the propagating seismic noise field are indicated on each frame. These noise components are apparently fundamental mode Rayleigh wave generated at the hot springs, where near-surface velocities exceed $4 \mathrm{~km} / \mathrm{sec}$.

Figure 5.13 High-resolution $\mathrm{f}-\mathrm{k}$ results in wavenumber space for sites B 2.6 W , C6W and LH. The maximum wavenumber plotted in 35.7 cycles $/ \mathrm{km}$. The contoured lines are $-1,-3,-6,-9$, and -12 dB below the main peak.

Figure 5.14 Rayleigh wave dispersion curves for fundamental and first higher modes, computed for the model shown, compared with observed ground noise phase velocities at site E5.9W.

The observed phase velocities were determined at various times by f-k analysis, the hour indicated by symbol type.

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

```
TEST12
TEST11
TEST10
TESTOG
TESTO8
TEST07
TESTOG
TESTO5
TESTO4
TESTD3
TESTO2
TESTO1
```


Figure 5.6

0

E5.9W	12	SOMMmono	75
E 5.9W	11		50
E5.9W	10		39
E5.9W	09		90
E5.9W	08		75
E5.9W	07		39
E5.9W	06		39
E5.9W	05		30
E5.9W	04		47
E5.9W	03		82
E5.9W	02		50
E5.9W	01 $6 \quad 4$		39
974	64		

Figure 5.7

Figure 5.8

XBL 779-2463
Figure 5.9

Figure 5.10
A2

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

VI. SUMMARY AND RECOMMENDATIONS

6.1 Summary

The main results of a study of microseisms in Grass Valley, Nevada, using a simple field system, are summarized below:

Diurnal variation in the $2-20 \mathrm{~Hz}$ noise field is regular. A consistent diurnal variation that repeats from day to day is due apparently to meteorological and cultural sources, with typically 15 dB variation seen from the mid-day high noise level to the low noise level in the early morning hours of 2-4 A.M. Secular variations, due to regional weather patterns, can produce a $5-10 \mathrm{~dB}$ range in the early morning minimum noise levels over a duration of a few days.

For spectral stability in investigating spatial variation of noise, at least 28 quiet data blocks, each 12.8 sec long, were taken simultaneously at the network stations and the spectra were averaged for each site. This procedure produced consistent results throughout the area, revealing a characteristically low amplitude smooth noise spectra at hard rock sites, a prominent peak at $4-6 \mathrm{~Hz}$ at valley sites, and wideband, high amplitude noise, apparently due to very shallow sources, at hot springs sites. Contour maps of noise level, normalized to a reference site, are dominated by the hot springs noise levels outlining the regions of maximum alluvium thickness. Major faults are evident when they produce a shallow lateral contrast in rock properties.

Microseisms in the $2-10 \mathrm{~Hz}$ band are predominantly fundamental mode Rayleigh waves, characterized by low velocities and wavelengths as small as 20 m , requiring closely spaced arrays for adequate spatial sampling.

High resolution $f-k$ processing, with proper data sampling, provides a powerful technique for mapping the phase velocity and the direction of propagation of the noise field, revealing local sources and 1ateral changes in shallow subsurface structure.

No evidence for a significant body wave component in the noise field was found, although it becomes clear that improper spatial sampling can give a false indication through aliasing. Noise emanating from a deep reservoir would be evident as body waves and could be traced to its source given a reasonably accurate velocity model.

6.2 Recommendations

Conventional seismic ground noise surveys, conducted as outlined in this study, require a large number of stations for economical implementation. With 100 stations, for example, a week-long survey could provide maps of noise amplitude distribution, P-wave delay time, and microearthquake locations, as well as $\mathrm{f}-\mathrm{k}$ analyses at many sites, utilizing a 2-3 man crew. It is not clear, however, that such data will be of significant value in delineating a geothermal reservoir.

The amplitude mapping of ground noise in certain frequency bands is a poor exploration technique for delineating buried geothermal systems. The results of the survey described in Chapter 4 indicate that the amplitude variations of microseisms in an area are controlled by the near-surface geology, especially lateral variations in thickness of the alluvial layer. The large amplitude surface wave generated by surface sources and propagating horizontally, will mask weak seismic waves emitted from a buried source. Therefore, amplitude mapping only
reveals information on the very shallow structure.
On the other hand, the technique of $f-\mathrm{k}$ analysis can, theoretically, map the wavenumber of the microseisms, discriminating the vertically incident body waves from the surface waves. The yet open question of whether a reservoir acts as a radiator of seismic body waves can be answered through careful $\mathrm{f}-\mathrm{k}$ analyses in existent geothermal areas. The array to be used for further study must be a non-aliased array of larger diameter than that used in this study. The expansion in array size will improve the resolution around the origin of the $f-k$ diagram. This improvement would provide a more accurate estimate for power at the small wavenumbers, such that the azimuth and the apparent velocity of the long-wavelength body waves are estimated more accurately. The amplitudes of body waves radiating from a source at depth are apparently much smaller than those of the ambient surface waves. In order to extract useful information from the body waves, a sophisticated signal detection and processing scheme is required. However, the $f-\mathrm{k}$ analysis technique may fail to detect the geothermal system at depth if our assumption of body wave radiation from the reservoir is not valid, or if the emanating body waves are either attenuated or completely masked by the ambient surface waves. It is fortunate that the ambient surface waves have shorter wavelengths that the body waves because then the detection of weak body waves can be improved by designing a more sophisticated array to cancel short wave-lengths, as is commonly done in conventional seismic reflection surveying.

If the assumption about radiated body waves is indeed valid, and such body waves are detectable, we can trace the recorded wavefronts
to their source, given a reasonably accurate velocity model. There are two schemes which have been used for projecting waves observed at the surface back into the earth and locating the source region, and these methods may be applicable to the geothermal reservoir delineation problem.

The first method is seismic ray tracing described by Julian (1970); Engdah1 and Lee (1976). If the array diameter is much smaller than the distance to the buried source, the microseismic field propagates as a plane wave across the array. Estimation of the azimuth and the apparent velocity of the propagating noise field from $f-\mathrm{k}$ analysis along with the knowledge of the near-surface velocity distribution, can give us the incident angle of noise. Given a reasonable velocity structure in the area and simultaneously occupied array sites, we can reconstruct ray paths to each site. The intersection of these ray paths outlines the region of the radiating source.

Another approach is much like that used in a conventional reflection survey with two-dimensional surface coverage but without a surface controlled source. The coherent noise fields recorded by a two-dimensional surface array are projected downward into the assumed subsurface model. The reconstruction of the coherent noise field propagating in an upward direction, at a selected frequency, can be carried out by the wave equation migration technique, using a finite-difference approximation such as described by Claerbout (1976). The restriction of this approach to microseismic data is that the noise field must propagate as a spherical wavefront across the geophone array. The spherical wavefront exists in the situation where the array dimension is greater than the
distance to the source. In this case, we can outline the region of radiating sources in terms of the convergent pattern of the extrapolated wave fields.

It is clear that the ray tracing and the wave equation migration are applicable at different source-array distances in the application of delineating geothermal reservoirs. In a practical exploration program, we do not know the depth of geothermal reservoirs, nor do we know the shape of the wavefront across the array. One way of solving the problem is to place a non-aliased array at several sites and search for the evidence of time-invariant, high velocity body waves. As soon as the body waves are detected, one may compare several f-k diagrams, using data of identical recording periods but of different sizes of sub-array. The deterioration of the resolution in the $f-k$ diagrams as we expand the size of the sub-array, indicates that the plane wave assumption is violated and the wavefront migration techniques should be applied. On the other hand, if the noise fields propagate as plane waves across the large array, the resolution in the f-k diagrams will be improved as we expand the size of sub-arrays and the $f-k$ analysis with seismic ray tracing are the proper techniques to locate the noise source.

Based on this study, I conclude that, if the geothermal system is indeed emanating detectable body waves, the analysis of ambient ground motion or seismic noise, can be applied to the delineation of geothermal reservoirs. In fact, if the radiated body waves exist, the method can be one of the most effective geophysical methods in geothermal explorations.

REFERENCES

Båth, M., 1974, Spectral analysis in geophysics: p. 448-462, E1sevier Scientific Publishing Company.

Beyer, A., Dey, A., Liaw, A., Majer, E., McEvilly, T.V., Morrison, H. F., and Wollenberg, H., 1976, Geological and geophysical studies in Grass Valley, Nevada: Preliminary open file report, LBL-5262.

Bendat, J.S., and Piersol, A.G., 1971, Random data: Analysis and measurement procedures, Wiley interscience, p. 193-194.

Borcherdt, R.D., 1970, Effects of local geology on ground motion near San Francisco Bay: Bull. Seismol. Soc. Am. vol. 60, p. 29-61.

Brillinger, D.R., 1975, Time series: data analysis and theory: Holt, Rinehard and Winston Inc., p. 125 and p. 151.

Brune, J.N., and Oliver, J., 1959, The seismic noise of the earth's surface: Bull. Seismo1. Soc. Am. vo1. 49, p. 349-353.

Burg, J.P., 1964, Three-dimensional filtering with an array of seismometers: Geophysics. vo1. 29, p. 693-713.

Capon, J., 1969, High-resolution frequency-wavenumber spectrum analysis: Proc. IEEE, vo1. 57, p. 1408-1418.

Capon, J., 1973, Signal processing and frequency wavenumber spectrum analysis for a large aperture seismic array: in Methods of Computational Physics vol. 13, p. 1-59, Academic Press.

Capon, J., Greenfie1d, R.J., and Kolker, R.J., 1967, Multidimensiona1 maximum-1ikelihood processing of a large aperture seismic array, Proc. IEEE, vo1. 55, p. 192-211.

Capon, J., and Goodman, N.R., 1970, Probability distributions for estimators of the frequency-wavenumber spectrum; Proc. IEEE, vol. 58, p. 1785-1786.

Claerbout, J.F., 1976, Fundamenta1s of geophysical data processing, McGrawHill Book Company, p. 184-226.

Clacy, G.R.T., 1968, Geothermal ground noise amplitude and frequency spectra in New Zealand volcanic region: J. Geophys. Res. vol. 73, p. 5377-5383.

Combs, J., and Rotstein, Y., 1975, Microearthquake studies at the Coso geothermal area, China Lake, California: 2nd U.N.Sym. on the Dev. and Use of Geothermal Resources, San Francisco, 1975, p. 909-916.

Cox, H., 1973, Resolving power and sensitivity to mismatch of optimum array processors: Jour. Acoustical Soc. of A., vol. 54, no. 3, p. 771-785.

Douze, E.J., 1967, Short-period seismic noise: Bull. Seism. Soc. Am., vo1. 57, p. 55-81.

Douze, E.J., and Sorre11s, G.G., 1972, Geothermal ground-noise surveys: Geophysics, vol. 37, p. 813-824.

Engdah1, E.R., and Lee, W.H.K., 1976, Relocation of local earthquakes by seismic ray tracing: J. Geophys. Res., vo1. 81, p. 4400-4406.

Fix, J.E., 1972, Ambient earth motion in the period range from 0.1 to 2560 sec.: Bull. Seism. Soc. Am., vol. 62, p. 1753-1760.

Frantti, G.E., 1963, The nature of high-frequency earth noise spectra: Geophysics, vol. 28, p. 547-562.

Frost, 0.L., 1972, An algorithm for linearly constrained adaptive array processing: Proc. IEEE, vol. 60, p. 926-935.

Goforth, T.T., Douze, E.J., and Sorre11s, G.G., 1972, Seismic noise measurements in a geothermal area: Geophysical Prospecting, vol. 20 , p. 76-82.

Gutenberg, B., and Andrews, F., 1956, Bibliography of microseisms: 2nd ed., Seismological Laboratory, Ca1ifornia Institute of Technology, Pasadena, 134 p.

Haubrich, R.A., Munk, W.H., and Snodgrass, F.E., 1963, Comparative spectra of microseisms and swe11: Bull. SEismol. Soc. Am., vol. 53, p. 27-37.

Haubrich, R.A., and Mackenzie, G.S., 1965, Earth noise 5-500 millicycles per second: 2. Reaction of the earth to oceans and the atmosphere: J. Geophys. Res., vol. 70, p. 1429-1440.

Haubrich, R.A., and McCamy, K., 1969, Microseisms: Coastal and pelagic sources: Rev. of Geophys. Res., vol. 70, p. 539-571.

Iyer, H.M., 1958, A study of direction of arrival of microseisms at Kew Observatory, Geophys. Jour., vol. 1, p. 32-43.

Iyer, H.M., 1974, Search for geothermal seismic noise in the East Mesa area, Imperial Valley, California: U.S.G.S. Open-file report no. 74-96. 52 р.

Iyer, H.M., and Hitchcock, T., 1974, Seismic noise measurements in Yellowstone National Park: Geophysics, vol. 39, p. 389-400.

Iyer, H.M., and Hitchcock, T., 1976, Seismic noise survey in Long Valley, California: J. Geophys. Res., vo1. 81, p. 821-840.

Jenkins, G.M., and Watts, D.G., 1968, Spectral analysis and its application: Holden-Day Inc., p. 255-257.

Julian, B.R., 1970, Ray tracing in arbitrary heterogeneous media: Tech. Note 1970-45, Lincoln Lab., Lexington, Mass.

Kanai, K., and Tanaka, T., 1961, On microtremors. VIII: Bull. of the Earthquake Res. Inst., vol. 39, p. 97-114.

Kanai, K., Tanaka, T., Morishita, T., and Osada, K., 1966, Observation of microtremors, XI (Matsushiro earthquakes swarm area): Bull. Earthquake Res. Inst., vol. 44, p. 1297-1333.

Katz, L.J., 1976, Microtremor analysis of local geological conditions: Bull. Seism. Soc. Am., vol. 66, p. 45-60.

Lacoss, R.T., Kelly, E.M., and Toksöz, M.N., 1969, Estimation of seismic noise structure using arrays: Geophysics, vol. 34, p. 21-38.

Lysmer, J., and Drake, L.A., 1972, A finite element method for seismology: in Methods in Computational Physics, vol. II, Academic Press.

Longuet-Higgins, M.S., 1950, A theroy of the origin of microseisms: Phil. Trans. Royal Soc. London, Ser. A., vol. 243, p. 1-15.

Luongo, G., and Rapo11a, A., 1973, Seismic noise in Lipari and Vulcano Islands, Southern Thyrrenian Sea, Italy: Geothermics, vo1. 2, p. 29-31.

McEvilly, T.V., and Stauder, W.S.J., 1965, Effect of sedimentary thickness on short-period Rayleigh-wave dispersion: Geophysics, vol. 30, p. 198-203.

Murphy, A.J., Savino, J., Rynn, J.M.W., Choy, G.L., and McCamy, K., 1972, Observations of long-period ($10-100 \mathrm{sec}$) seismic noise at several worldwide locations: J. Geophys. Res. vol. 77, p. 5042-5049.

Nicholls, H.R., Rinehart, J.S., 1967, Geophysical study of geyser action in Yellowstone National Park: J. Geophys. Res. vol. 72, p. 4651-4663.

Oliver, J., and Page, R., 1963, Concurrent storm of long and ultralong period microseisms: Bull. Seism. Soc. Am., vol. 53, p. 15-26.

Peterson, J., Butler, H.M., Holcomb, L.G., and Hutt, C.R., 1976 , The seismic research observatory: Bull. Seism. Soc.Am., Vol.66,p.2049-2068.

Sass, J.H., Lachenbruch, A.H., Monroe, R.J., Greene, G.W., and Moses, T.H., 1971, Heat flow in the western United States: J. Geophys. Res., vol. 76, p. 6376-6413.

Savino, J., McCamy, K., and Hade, G., 1972, Structures in earth noise beyond twenty seconds--a window for earthquakes: Bull. Seism. Soc. Am., vol. 62, p. 141-176.

Sorre11s, G.G., McDonald, J.A., Der, Z.A., and Herrin, E., 1971, Earth Motion caused by local atmospheric pressure changes: Geophys. J.R. Astr. Soc., vol. 26, p. 83-98.

Toksoz, M.N., and Lacoss, R.T., 1968, Microseisms: mode structure and sources: Science, vol. 159, p. 872-873.

Udwadia, F.E., and Trifunac, M.D., 1973, Comparison of earthquake and microtremor ground motions in El Centro, California: Bull. Seismol. Soc. Am., vol. 63, p. 1227-1253.

Vinnik, L.P., 1971, Origin of longitudinal microseismic waves: Izv., Earth Physics, No. 10, p. 17-30.

Whiteford, P.C., 1970, Ground movement in Waiotapu geothermal region, New Zealand: Geothermics, (special issue on proceedings of the U.N. Sym. Dev. Util. of Geothermal Resources). 2 (part III), p. 478-486.

Whiteford, P.C., 1975, Studies of the propagation and source locations of geothermal seismic noise, 2nd U.N. Sym. on the Dev. and Use of Geothermal Resource, San Francisco, 1975, p. 1263-1271.

Whorf, T., 1972, Teleseismic and earth noise monitoring with the BlockMoore Quartz accelerometer. Geophys. J.R. Astr. Soc., vol. 31, p. 205-238.

APPENDIX A NOTATION

$\mathrm{A}_{\mathrm{m}}(\mathrm{f})$	maximum-likelihood filter coefficients
b_{1}	standardized bandwidth of data window
$\|\mathrm{B}(\underline{\mathrm{k}})\|^{2}$	array response function
$c(\tau, p)$	cross-correlation function
$c_{n n}{ }^{(\tau)}$	autocorrelation function
d	directional vector of microseismic field
E	expectation
E(f)	transfer function of earth medium
f	frequency, Hz
f_{H}	cut-off frequency of a low-pass filter
$\mathrm{f}_{\text {L }}$	cut-off frequency of a high-pass filter
f_{p}	tape recorder band width
$\mathrm{f}_{\text {s }}$	natural frequency of geophone, Hz
G	generator constant of geophone
G(f)	transfer function of local geology
h	thickness of the layer
H(f)	transfer function of all system element
$\mathrm{H}_{\text {A }}$	amplification of the amplifier
$\mathrm{H}_{\mathrm{BW}}(\mathrm{f})$	transfer function of Butterworth filter
$\mathrm{H}_{\mathrm{D}}(\mathrm{f})$	transfer function of the digitized signal
$\mathrm{H}_{\mathrm{g}}(\mathrm{f})$	transfer function of geophone
$\mathrm{H}_{\mathrm{p}}(\mathrm{f})$	transfer function of the low-pass filter in the playback system
$\mathrm{H}_{\mathrm{RC}}(\mathrm{f})$	transfer function of RC low-pass filter

I
number of data blocks source characteristic of seismic waves complex i
vector wavenumber
number of data points in each data block
index for $m^{\text {th }}$ geophone
index for $\mathrm{n}^{\text {th }}$ geophone
number of geophones in the array
frequency-wavenumber spectrum (FKPSD)
the BFM estimate for FKPSD
the MLM estimate for FKPSD
the inverse of delayed spectral matrix
random noise spectral matrix
vector of geophone location
damping resistance of geophone
coherence function estimate between sensors m and n
geophone coil resistance
power spectrum
power spectral density estimate for the $n^{\text {th }}$ sensor output
averaged cross-power spectrum
normalized cross-power spectrım
normalized spectral matrix
time
length of each data block in seconds
sampling interval of the discrete time series

energy of the data window
phase velocity vector
velocity spectral density
VCO full scale
data window, lag window, weighting function
weighting vector; $\tilde{\underline{w}}=$ vector of generalized weighting function

Fourier transform of the time series ${\underset{\phi}{\mathrm{n}}}_{\mathrm{i}}(\mathrm{t})$
shear-wave velocity
damping factor of geophone
phase angle
number of degrees of freedom
spatial lag
observed microseisms
intrinsic noise at the site
local noise component
microseismic component from the distance source
noise component
component of coherent microseismic signal
temporal lag
time series of $\mathrm{n}^{\text {th }}$ geophone output
discrete Fourier transform of time series ${ }^{\mathbf{i}}{ }_{\phi_{n}}(t)$
chi-square variable with v degrees of freedom

APPENDIX B
 DATA PROCESSING NOTES

B. 1 Introduction

Three programs have been written in FORTRAN IV for the CDC 7600 machine and RUN 76 compiler at the Lawrence Berkeley Laboratory. Program DUMP reads the digital data from the tape (TAPE 5) generated by the digitizer located in Haviland Hall of the University of California at Berkeley. It then unpacks each 12 bit tape word into one 60 bit CDC word, and writes the data onto another tape (TAPE 3) in binary mode. Program VSD reads the data from TAPE 3, estimates the velocity spectral density of the time series from each geophone output by the method of modified periodogram, and plots the result using both the Graphical Display System (GDS) at the University of California, Berkeley and the 1ine printer (see subroutine YPLOTLG). Program FKPSD reads the array data from TAPE 3 and estimates the frequency wavenumber power spectral density (FKPSD) by either the conventional frequency domain beam forming method (BFM) or the maximum-likelihood method (MLM), and finally presents the result of $f-\mathrm{k}$ analysis by the GDS and the line printer.

B. 2 Digitization

The field tape is played back at 3 inches per second, i.e., 25 times faster than the recording speed. This shifts the band of 0.25 Hz to 10 Hz up to the band of 6.25 Hz and 250 Hz , which are the limits of our filters. The 12 bit digitizer in Haviland Hall is normally set to digitize 2500 data points per record at the rate of 1000 data points per second (real time), which results in the digitization of 62.5 sec analog data into 2500
digital data in TAPE 5. The header (starting time of each record) and the tailer (the stop time of each record) are written in front of and behind each record in TAPE 5. If the header and/or tailer are not written along with the digital data, the variable NSUP needs to be reset in the subroutine READTAP which is called from the program DUMP.

B. 3 Program DUMP

i) Data structure in TAPE 5

As an example, we digitize five records (NSEG = 5) from each geophone output at each channel of the tape recorder, the starting time (header) of each record is denoted by $T(I), I=1,2,3,4,5$. The sequence of data in TAPE 5 is as follows:
.Ch. 2 Ch. 3 Ch. 4 Ch.5. . . . Ch. 14

T(1)	1	6	11	16	. (NREC-4)
T(2)	2	7	12	17	- (NREC-3)
T(3)	3	8	13	18	. (NREC-2)
T(4)	4	9	14	19	- (NREC-1)
T (5)	5	10	15	20	- (NREC)
					ile (EOF)

An end-of-file mark is required behind the last record.
ii) Input data cards
(1) The first input data card defines the number of records in the file and the record to be plotted by the GDS.
(2) An input data card is required for each geophone output. Each card defines the number of the record digitized from the geophone output, the correction factor for geophone polarization, the identification of the geophone output, and the gain factor of the playback system.
iii) Output

The time series of each digital record (2500 data points) with its starting time and stop time are printed, such that the bad record is recognizable and can be deleted. When the number of records in TAPE 5 is large, e.g., NREC >50, it is recommended to dispose the output into microfiche. The unpacked digital data are written in another magnetic tape (TAPE 3) for further processing.

Three types of bad record may occur during this process. The record with a parity error can be skipped by the computer operator under the specification on the control card. In case of parity error, both the number of record in the file (NREC) and the number of the record at that particular geophone output (NSEG) must be reset in input data cards. then, the data in TAPE 5 ought to be reprocessed. Another kind of bad record may happen when the number of words per record does not equal to 502 words (when both the header and tailer are written). If this happens, the translation of this record is skipped by the program and is not written in TAPE 3. The last kind of bad record is the record with clipped amplitude. In this case, the values of clipped data points are listed in front of the printed output data. This kind of bad record sha11 be deleted by the user under the specifications in the input data cards of programs VSD or FKPSD.
iv) Data structure in TAPE 3

For each record, the unpacked data are written onto TAPE 3 in binary mode by the statements
(1) WRITE (3) (NDAYS, NHOURS, MIN, NSEC) for the starting time of the record,
(2) WRITE (3) (NDAYS, NHOURS, MIN, NSEC) for the stop time of the record,
(3) WRITE (3) (STAT, NB, J) for the record identification, the sequence of record at each geophone output,
(4) WRITE (3) (NVAL (I), $I=1,2500$) for the values of digital data,
(5) WRITE (3) (MORE) to indicate the last record of the geophone output if $\mathrm{MORE}=0$, otherwise $\mathrm{MORE}=1$.
v) Sample input and output

To unpack and translate one record in TAPE 5 from the site HO.5E sampled from the first record of the $10^{\text {th }}$ hour (STAT $=H 0.5 E 1001$), the sample input cards are:

INPUT DATA CARDS FOR PROGRAM DUMP

```
    1 0}
1 1.0 H0.5E1001 1.0
```

and the printed output is:
 note that data hill start 3 samples lateg cue ti the mritine of the meader.
STOP TIME 295 CAYSE 10 MULPS, 1 MINUTES - E SECONDS.
the chrbecticam facticr fif pclarizaticne 1.0 cain of tre play back system e 1.00

\qquad
\qquad
\qquad

B. 4 Program VSD

The program VSD estimates the velocity spectral density of each geophone output stored in TAPE 3. Each record of 2500 data points is divided into several data blocks of ($2 * *$ NPOW) points per block. The maximum number of data point per block is 512 which is set by the dimension of arrays in the program. Each time series is multiplied by a 10% cosine bell taper before FFT. The power spectral density estimate of each geophone output is obtained by the method of periodogram described in section 4.3.2. This program also calculates 90% confidence limits of the estimated VSD.
i) Input data cards
(1) The first data card specifies the option for punched data deck of VSD, the NPOW to define the data point per block, and the record length in second.
(2) An input data card is required for each geophone output. This card specifies the termination of data processing, the option for VSD plot by the GDS, the identification of each geophone output, the bad records to be deleted, and the parameters of acquisition and playback systems.
ii) Output

The VSD estimate of each geophone output is plotted by subroutine YPLOTLG in a log-linear scale and GDS in a $\log -\log$ scale along with 90% confidence limits. The estimated VSD are punched on decks for further processing, if the variable IPUNCH is set to be 1.
iii) Sample input and output

To estimate VSD of the digital data obtained from both site HS and site A 3.7 N , we need the digital data in magnetic tape (TAPE 3) and the following input data cards INPUT DATA CARDS FOR PROGRAM VSD

0	962.5				
10102	HS	3.40999 .00	0.30102 .00	30.00	5.00310 .00
00102	A3.7N	3.40999 .00	0.30114 .00	30.00	5.00310 .00

Portion of the printed output (VSD of site HS from DC to 8.99 Hz) is presented as follows:

B. 5 Program FKPSD

The program FKPSD estimates FKPSD of the array geophone outputs stored in TAPE 3. This program is set up to process the data obtained by the maximum of 12 array elements and the maximum of 512 data points per block. Each data block is multiplied by a Hamming window to reduce the leakage effect in the Fourier transform. The FKPSD can be estimated by either BFM described in Section 5.4.2, or MLM described in Section 5.4.3. The variable $I ; O N V E N=1$ directs the program through the conventional BFM, and the ICONVEN $=0$ directs the program through MIM. At a frequency component the FKPSD are estimated at each of 41×41 grid points in a two-dimensional wavenumber space. In addition to estimate FKPSD, this program also provides the options to calculate the coherence between two geophone outputs with its confidence limits and the VSD by specifying ICOHER $=1$ and NVSDPL $\geqslant 1$.

We have found that the starting time of each digital record can drift a few msec to 250 msec from the designated starting time on the front panel of the digitizer; this results from inconstant acceleration of the tape drive before recording the digital record on tape. In order to correct the effect of random drifting, the digital data must be plotted by the GDS and compared with the analog data before the estimation of FKPSD.
i) Input data cards
(1) The first card specifies the record length, the variable NPOW to define the number of data points per block, the number of data points per record, the maximum number of data blocks to be processed, and the number of records per sensor output
of which starting-time correction is required.
(2) The second card defines the contour levels in the $f-k$ plot.
(3) The third card specifies the options for BFM or MLM, for $f-k$ plot by GDS, and for VSD plot.
(4) A card specifies the termination of the data processing, the number of array elements, the parameters of the playback system, the station identification, the minimum geophone spacing in the array, the scale of output wavenumber, and the options for coherence calculation and FKPSD estimations. This card is required for each array data set.
(5) Specification of the desired frequency component for estimating FKPSD. This card is required for each array data set.
(6) Correction time for each record. This card is required for each array data set.
(7) The coordinate of array elements. This card is required for each array data set.
(8) This card specifies the identifications of each geophone output, the parameters of geophone, and the option to skip the bad record. A card is required for each geophone output.

ii) Output

The estimated FKPSD in the wavenumber space are normalized with respect to the peak-valued FKPSD at each desired frequency component. The normalized FKPSD are multiplied by -10 to save space of the sign and the decimal point, then, printed in integer format, contoured by symbols, and plotted by GDS. The maximum FKPSD over the frequency band are plotted by the șubroutine YPLOT.

iii) Sample input and output

There are two array data sets, E5.9W04 and E5.9W05, stored in TAPE 3. This example skips the array data at E5.9W04 and estimates the FKPSD of the array data at E5.9W05 in four frequency components, i.e. the 7 th, 8 th, 9 th and 10 th discrete frequency components. The sequential number of discrete frequency components is defined by the statements FK2.153 and FK2. 154 of program FKPSD. The starting-time correction for each record is as follows:

$$
\begin{aligned}
& \text { E5.0W0501(1) }=0.0 \mathrm{sec} \quad, \quad \mathrm{E} 5.9 \mathrm{~W} 0501(2)=0.04 \mathrm{sec} \\
& \text { E5.0W0502 (1) }=0.0 \mathrm{sec} \quad, \quad \text { E5. } 9 \mathrm{~W} 0502(2)=0.04 \mathrm{sec} \\
& \text { E5. } 9 \mathrm{~W} 0503(1)=0.0 \mathrm{sec} \quad, \quad \mathrm{E} 5.9 \mathrm{~W} 0503(2)=0.02 \mathrm{sec} \\
& \text { E5. } 9 \mathrm{~W} 0504(1)=0.0 \mathrm{sec} \quad, \quad \mathrm{E} 5.9 \mathrm{~W} 0504(2)=0.0 \mathrm{sec} \\
& \text { E5. } 9 \mathrm{~W} 0505(1)=0.0 \mathrm{sec} \quad, \quad \mathrm{E} 5.9 \mathrm{~W} 0505(2)=0.04 \mathrm{sec} \\
& \text { E5. } 9 \mathrm{~W} 0506(1)=0.0 \mathrm{sec} \quad, \quad E 5.9 \mathrm{~W} 0506(2)=0.04 \mathrm{sec} \\
& \text { E5. } 9 \mathrm{W0507(1)}=0.0 \mathrm{sec} \quad, \quad \mathrm{E} 5.9 \mathrm{~W} 0507(2)=0.04 \mathrm{sec} \\
& \text { E5. } 9 \mathrm{~W} 0508(1)=0.0 \mathrm{sec} \quad, \quad E 5.9 \mathrm{~W} 0508(2)=0.0 \mathrm{sec} \\
& \text { E5. } 9 \mathrm{~W} 0509(1)=0.0 \mathrm{sec} \quad \text { E5. } 9 \mathrm{WO} 0509(2)=0.0 \mathrm{sec} \\
& \text { E5. } 9 \mathrm{WO} 0510(1)=0.0 \mathrm{sec} \quad, \quad \text { E5. } 9 \mathrm{~W} 0510(2)=0.04 \mathrm{sec} \\
& \mathrm{E} 5.9 \mathrm{~W} 0511(1)=0.0 \mathrm{sec} \quad, \quad \mathrm{E} 5.9 \mathrm{~W} 0511(2)=0.04 \mathrm{sec} \\
& \text { E5. } 9 \mathrm{~W} 0512(1)=0.0 \mathrm{sec} \ldots, \quad \mathrm{E} 5.9 \mathrm{~W} 0512(2)=0.04 \mathrm{sec} .
\end{aligned}
$$

We take only the first record of each geophone output to estimate FKPSD and set the maximum number of data blocks taken from each channel to be 24 , and the number of data points per block to be $2^{6}=64$. The sample input data cards are following:

The printed output for the 9th Frequency component at E5.9W05 is
 nut三 that tafe values printed are t-10icpsorpmaxil in de.

nfy ${ }^{\prime}$,
$\stackrel{0}{0}$

 2001701311731661611581561551541541541541551571601651711781851901931941931911891.187186185185186169192196199202204205206205203 ... $2801 d 01 / 4169166163161160159158151156155154155156159164170177182186189190190199139189190191194198202206209212214215215214212$ 171774171164167i66165164162161159156154192151151153156161167173178182184186187199191193197201205210216217220222223223222220

 2442442423122921920518515812488668011313513813312712211011511311010699897556342133649411613314515215160162162
 257256252245234219200178151121906459831001011031051081101121121101061009078635047597897113126135141146150152155

 193141150160183179175169163255147138127117106979088 91100111124136145151156159162165168270171172173174176170180182183184

 17617117177178177175172169165161156152140144142141143148155163172179186191195197199197194189185183182184187191195198202204 1751761771717617517317169166163160150154151150151153159165173181180195200203206205202197190184101181104188192197202206209 1751761/0172174173171170168166164161159158136156157160165172180188195202207210211210205191188181178179102107193199204209213
 177175183174168166164163162162161161161161161162163167172179187195202209213215214200199180170171169172117184191199206212217

B. 6 Program 1isting


```
GXSPEC(1)=0.0 APLOT.41
GXSPEC(2)=0.0 APLOT.42
GXSPEC(3)=2.0 APLOT.43
GXSPEC(4)=2.0 APLOT.44
XTICK(1,1)=1.0 - A
XTICK(1,2)=1.0 APLOT.40
XTICK(2,1)=1.
XTICK(2,1)=0.1
APLOT.47
XTICK(2,2)=0.2 
XTICK(3,1)=30.0 APLOT.49
XIICK(3.2)=3.0 APLOT.50
YTlCK(1.1)=1.0 APLOT.51
YTICK(2.1)=0.1 APLOT.52
YTILK(3,1)=0.0 APLOT.53
YTICK(1,2)=1.0 APLCT.54
YTICK(2,2)=0.2
APLOT.55
YTICK(3,2)=2.0 : APLOT.56
CALL GXLILIIGXSPEC,XIICK,YIIGK,SPECSS APLOT.57
-
EivD
APLOT.58
APLOT.59
SUORCJTINE REAUTAP(NKEL,J,IPRINT,NNFL,SPECS,NVAL)
READTAP.
C THIS Phugram ktalS a tape written by the haviland hall reaviap.
C JlUIIILE: AND UUMPS THF FILES AS PRINIED OUTPUT ANE MAGNFIIC TAPE READTAP
C ANDIUR PUNCHED OECNS. 
C..... NSUP=SJU FLR THE RECLPL N/L FEADER AND TAILEF....
C
    CMMMHN/BLKI/A1(Ela),LEA,MCATA
    GINENSIU'Y SPEGS(1)
    SPECS\1<1=YY.し
    NSUP=502
    NSUP=502
    1F (EuF,b) 7C,12
    12 CONTINUE
C IF (IOCHECK,O) 14,15
C 14 PRINT OL,J
C yl FÖKitat liHl,* PaRITY ERRCR IN RECOR[*,14,///,)
C 15 CONTINUE:* PARITY ERRCR IN RECORL*,14,%%,%)
    LEN=LENGTH(5)
    LEN=LENGTH(5)
    lF(LEN.LT.U.) LEN=-LEN
    IF (LEN.EQ.NSUP) GO TL OO
        PKINT 3,J,LEN
    3 FORIAAT 1IHI* ThE NUPbER CF WCRCS IN RECORD*,14,* IS*,15./,
    1* TMIS DOES NGT AGREE MITH THE EXPECIED NUMBER*,///,i READTAP.
        AVAL=0
        GO TO 50
    6O CONTINUE
    PKINT 4,J,LEN
    4 FUKMATIIHI,* RECURU NLNOER *,I3,* CCNTAINS *,is,* WOROS.*,/%/.) KEADTAP.
        NVAL=1
            IF (J.NF.IPFINT) GC TC 50
            PRINI S,(NI(I),I=1,LEN)
        5 \text { FURMAI (4G2b)}
    50 FURMAT (4G25)
C 70 CONTINUE
C 70 CONTINUE
    71 FURMAT(* EOF EACCLNTEREC. STOP.*)
KEADTAP.
READTAP.
    READTAP.
    READTAP.
    READTAP.
READTAP.
    READTAP.
    READTAP.
C
READTAP.
```



```
    ", ", m
    READTAP
READTAP.
READTAP.
READTAP.
READTAP.
READTAP.
READTAP.
PEINT 3,J,LEN GO TL 6O
* READTAP.
    REAOTAP.
    READTAP.
READTAPP
READTAP.
READTAP.
C %1 FÖKItAT IIHI,* PARITY ERKCR IN RECOR[*,14,///,), READTAP.
READTAP:
READTAP.
                    READTAP.
    READTAP.
READTAP.
    READTAP.
                    READTAP.
READTAP.
    READTAP.
    KEADTAP.
READTAP.
READTAP.
READTAP.
READTAP.
C
prINT 7L
READTAP.
71 FURMAT (* EOF EACCLNTEREC STOP#) READIAP.
```


DO $104 \mathrm{~J} 2=1,12$ TRANS. 10
NT(J2) = SHIFT(N1(501), 3*J2).AND.7B trans. 10
104 CUNTINUE
TRANS. 10 TRANS. 11
CALL TIME(NT, NDAYS,NHCURS,MIN,NSEC)
CALL TIME(NT, NDAYS,NHCURS,MIN,NSEC)
PRINT T,NUAYS, NHOURS,MIA,NSEC TRANS. 1240 CUNTINUETRANS. 11
IF IIDEC .LT. I) IUEC = 1 TRANS. 11
MD = MOATA/ICEC TRANS. 11SAMP $=$ SAMP\#FL
DU $120 \mathrm{JM=1,MC}$RANS. 11
$J A=1 D F(\#(J M-1)+1$TRANS. 11
If (N(JA).Gt. 2048) $N(J A)=N(J A)-4096+1$IF (N(JA).EO. 4055) $N(J A)=-1$TRANS. 11
TRANS. 12TRANS. 12
RETURN TRANS. 12
END TRANS. 12
SUBROUTINE UNPK(InORDI UNPK. 2
UNPK. 3UNPK. 4
Cumauí /blKI/Ni(sIL), LEA, MDATA
CUMMUN TOLK3/א(2500),NH(12),NT(1Z̈)
DO 43 I=1,LEN

$$
0 \text { ó } 14 \times 11=1,12
$$

$$
N H(11)=\text { SHIFT }(N)(1), 3 *[1), A N C .78
$$

CONTINUE
OO IS II=1.2
N(II)=5H1FI(N1(1),12*11+36).AND.7777B
UNPK. 4
UNPK. 5
JNPK. 6UNPK. 7UNPK. 8NPKK.UNPK. 9
UNPK. 10UNPK. 11UNPK. 12UNPK.
UNPK. 13
JNPK. 14UNPK. 15
UNPK. 16
UNPK.
UNPK. 17
UNPK. 18
UNPK. 19
UNPK. 19
UNPK. 20
UNPK. 20
UNPK. 21
UNPK. 22
Gう 104
16 IF (I.NE.2) GO TO 12
$1 I=2$
12 DU $1712=1,5$
$I I=I I+1$
NCILI=SHIFT(N1611,12*12).ANC.77778
IWOKU=I
IF III.GF.MDATAI GO TC 21
17 Continue
43 CONT INUE
21 RETURN
END
UNPK. 23
UNPK. 24
UNPK. 25
UNPK. 26
100
$1 \quad 1.0$ HO.SE1001 1.0

C. NSKIP(NNSKIP) = SEQUENTIAL NUMEER OF DATA BLCCK TO EE SKIPPPD.	VSD. 43
C. NVAL (NSMP) = DIGITAL TIME SERIES UF ONE RECURD BLOCK.	VSD. 44
C. NSMP = NUMSER OF SAMPLING PCINT IN EACH RECORD	VSO. 45
C. POWOST $=$ POWEK SPECTRAL DEASITY	VSD. 46
C. RLCUT = CUT OFF FREGUENCY(1) CF 2-PCLE RC LOW-PASS FILTER.	VS0.47
C. RD = OAMPING RESISTANCE OF THE SEISMOMETER, IN KILD-OHMS.	VS0.48
C. RECLEN = LENGTH CF EALH RECORD BLUCK [F 2500 POINTS IIN SECOND).	VSO. 49
C. RS = COIL ReSISIANCE OF Tre SEISMOMETER. IN KIlo-ohms.	VSD. 50
C. SAMIN = SAmpliag interival in real tine domain.	VS0. 51
C. VCDFS = FULL SCALE VOLTAGF CF voltage controllec oscillator.	VSD. 52
C. VS = VELUCIIY SPECIRAL DENSITY, IN MILLIMICRON/SEC/SQRT(HZ)	VSD. 53
C.	VSO. 54
\boldsymbol{C}.	VS0.55
C. THE INPUT DATA CARUS ARE	VS0. 56
C. (1) IPUNCH,NPUW,RECLEN (215,F5.0)	VS0. 57
C - (2) MORE2, IIVSPL, IMVSPL, INDEX3, INDEX4, LABELI, NNSKIP, (NSKIPIII, I= 1 ,	VSD. 58
C. 6),RS,RD, DMPFT,GAIN, RCCUT, VCOFS, NBW, BWCUT (511, AI 0, 712,6F6.2,	VSD. 59
C. II,F4.1) FLR EACH SEISMCMETER DUTPUT.	VS0.60
C.	VSD. 61
C......AUTHOR ALFREO LIANG-CHI LIAW	
C ENGINEERING GEGSCIENCE	
C UNIVERSITY CF CALIFCRNIA, BERKELEY	
C.....DATE SEPTEMBEK 1977	
C.	VS0.62
	VSO. 63
	VS0.64
CUMPLEX DATA,FUATA,CFCATA,PCWDST	VSD. 65
CCMPLEX X	VSD. 66
COMMON /BLK1/FREC(257)	VS0.67
COMMON / HLK2/VS(257)	VSD. 68
CUMMLN /bLK3/ EkPLU(257), ERRBD(257)	V S0.69
COMMO'A / BLK4/NKLC,LABELI	VSU. 70
CUMmun /blks/Incexi, INDEX2	VSD. 71
LIMMMON /BLKO/RLFS(257)	VS0. 72
COMMGN /BLKT/SIAT	VS0. 73
CLCMmLn / blkb/II	VS0. 74
dimensiun nval (2500), LATA(512),FUATA(257), CFOATA ${ }^{\text {(257), POWDST(257) }}$	VSD. 75
OIMENSION SUMFS(257),FS(257), SPECS(12),RFFS(257)	VS0.76
DIMENSION PHASE(257)	VSD. 77
UIMENSICN NSKIP(6), CHI5(10), CHI95(20)	VSD. 78
DIMENSIGIV DATAnID(512)	VSO. 79
DIMEASION A(257,12), X(12)	VSD. 80
DATA CHI95/0.0C 39,0.052,0.117,0.178,0.229,0.272,0.310,0.342,0.369,	VSD. 81
$10.394,0.416,0.436,0.453,0.469,0.484,0.498,0.510,0.522,0.532,0.543 /$	VSD. 82
DATA CHI5/3.84,3.00,2.60,2.37,2.21,2.1C,2.01,1.94,1.88,1.83/	VSD. 83
DATA NSMP/2500/,MIAPER/10/,2/1.645/	VS0. 84
	VSD. 85
READ 1,IPUNCH,NPGh, RECLEN	VSD. 86
1 FURMAT (215.F5.01	VSD. 87
	VSD. 88
SPECS(12)=99.	VSD. 89
NPTT $=2 * *$ NPOW	VSD. 90
NPTF1=(NPTT/Z) 1	VS0.91
NPTF=NPTF1-1	VSD. 92
SAMIN=RECLEN/(NSMP-1)	\checkmark SO. 93
PERIGD $=(S A M I N) *(N P T I-1)$	VSD. 94
PI=4.*ATAN(1.)	VSD. 95
P12-PI*2.0	VSD. 96
MI = NPTI*MTAPER/100	VSD. 97
M2 =NPTT-M1	VSD. 98
NTAPER=0	VSD.99
NT RFUN=0	VSD. 100

SUBROUTINE FFT(A,M,A,PI)

FFT*R. 2
C.....THIS FFT SUBRLUTINE PERFORMS THE FCRMARD FAST FOURIER TRANSFORM
C. CNLY. AFTEK CCOLEY,LEHIS,WELCH,OQTAINEC FRCM L-R. RABINER AND B.
C GOLD-- THEORY ANO APPLICATION OF DIGITAL SIGNAL PROCESSING. C......N $=2$ \#*M
C......Al(N) $=$ the ariar lf data tl be trainsfurmed. C......FUURIER IRANSFORM IS TrE FORM CF (feali-IIImagi.

LCMPLEX A(iv),U,h,T
NV2 $=$ N/2
$\mathrm{NM1}=\mathrm{N}-1$
$J=1$
FFT*R. 3
FFT*R.4 FFT*R. 5 FFT*R. 6 FFT*R. 7 FFT*R. 8 FFT*R. 9 FFT*R. 10 FFT*R. 11 FFT*R. 12

DU $71=1$, NM1
IF (I.GE.J) GC IC 5
$T=A(J)$
$A(J)=A(1)$
$A(1)=T$
$5 \mathrm{~K}=\mathrm{NV} 2$
6 1F(K.GE.J) GLTC 7
$J=J-K$
$K=k / 2$
GU \boldsymbol{T} し
$7 \mathrm{~J}=\mathrm{J}+\mathrm{K}$
DO $20 \mathrm{~L}=1, \mathrm{~N}$:
LE $=2$ * * L
LEL=LE/2
U=(1.U.0.)
$W=$ CMPLXICCSIPI/LEI),SIN(PI/LEI)
CO $20 \mathrm{~J}=1$, LEL
DU $10 \mathrm{I}=\mathrm{J}, \mathrm{A}, \mathrm{LE}$
$I P=I+L E I$
$\mathrm{T}=\mathrm{A}(\mathrm{I} \mid \mathrm{P}) \mathrm{H}_{\mathrm{U}} \mathrm{I}$
$A(1 P)=A(I)-T$
$10 \mathrm{~A}(\mathrm{I})=\mathrm{A}(\mathrm{I})+\mathrm{T}$
$20 \mathrm{U}=\mathrm{U} * \mathrm{~W}$
RETURN
END
FFT*R. 13
FFT*R. 14
FFT*R. 15
FFT*R. 16
FFT*R. 17
FFT*R. 18
FFT*R. 19
FFT*R. 20
FFT*R. 21
FFT*R. 22
FFT*R. 23
FFT\#R. 24
FFI*R. 25
FFT*R. 26
FFT*R. 27
FFT*R. 28
FFT*R. 29
FFT*R-30
FFT*R. 31
FFT*R. 32
FFT*R. 33
FFT*R. 34
FFT*R. 35
FFT*R. 36
FFT*R. 37
FFT*R. 38

SU甘KOUTINE GEOPHCA(VS,FS,OMAFT,PI2,NPTF,RS,RDI
C......MODULUS CORRECTICA GNLY.
C.... SUERLUTINE GEUPHOA IS USED TC CGRRECT TME VELGCITY SENSITIVITY, C DAMPING KESISTANCE, ANC EENERATCR CGNSTANCE.

GEOPH. 2
GEOPH. 3
GEOPH. 4
GEOPH. 5
GEOPH. 6
C......WG = NATURAL FREGUENCY CF THE SEISMCMETER (IN HZI:

C GS = GENERATUR CUNSTANCE UF THE SEISMUMETER (IN VOLT/METER/SECJ.
C RS = LCIL RESISIANCE.
C KID = DAMPING RESISTANCE.
DMPFT $=$ DAMPING FACTCR.
LLMALN / dLK1/FKEU(257)
DIMENSIDN VS(257), FS(257)
DATA WG/4.5/.GS/71.17/
GEOPH. 7 GEOPH. 8
GEOPH. 9 GEOPH. 9
GEOPH. 10 GEOPH. 11 GEOPH. 12 GEOPH. 12
GEOPH. 13 GEOPH. 14 GEOPH. 15
WS = WG*PI2
GEOPH. 16
$m S 2=n S * W S$
RO2 $=2.0$ *UMPF T
$R D=R D * 1000.0$
GEOPH. 17
GEOPH. 18
GEOPH. 19
GEOPH. 20


```
    CALL SAXLGT(SPECS) PLFS.45
    SPECS(27)=-0.15
    CALL SAXLGK(SPECS)
    SPECS(13)=FLCAT(NPTF)
    SPECS(14)=1.0
    SPECS(15)=1.0
    SPECS(30)=97.
    CALL SLLGLG(X,Y,SPECS)
    IF (II.EQ.O) GO TC 15
    SPECS(13)=FLUAT(NPTF)
    DU 12 I=1,104
    Y(I)=ERRBU(I)
    IF (Y(I).GI.YMAX) Y(II)=YNAX
    IF (Y(I).LT.YMIN) Y(I)=YMIN
1 2 \text { CONTINUE P}
SPECS(16)=17.C
    SPECS(17)=0.05
    SPECS(18)=0.05
    CALL PSLGLG(X,Y,SPECS)
    OU 13 I=1,INPTF
    Y(I)=ERR&O(I)
    IF (Y(I).GT.YMAX) Y(I)=YMAX
    IF (r(I).LT. YMIN) Y(I)=YMIN
13 CuNTINUE
    CALL PSLGLG(X,Y,SPEGS)
15 SPECS(17)=.1
    SPECS(18)=-1
    SPECS(y)=10.0
    SPECSI191=0.0
    SPECS(21)=1.0
    SPECS(24)=0.0
    SPECS(29)=2.0
    CALL NCLGE(SPECS)
    SPECS(20)=0.0
    SPECS(20)=0.0
    CALL NOLGL(SPECS)
    SPECS(17)=0.15
    SPECS(10)=0.15
    SPECS(24)=C.2
    CALL TITLEBII&HFREQUENCY (HZI,SPECS)
    SPECS(20)=40.0
    SPECS(26)=0.4
    CALL TITLEL(3UHVSD (MILLIMICRCN/SEC/SORT(H2)),SPECS)
    SPECS(17)=0.15
    SPECS(18)=0.15
    SPECS(19)=0.0
    SPECS(20)=0.0
    SPECS(21)=1.0
    SPECS(23)=6.8
    RULE=1.0
```



```
    IFIlI.EG.OI GO IO 20. 
```



```
    VALUE=NREC
    CALL DECVALIRULE, VALUE,SPECS!
    IINE(1)=LADELI:
    LINE(3)=0
    Gi TO 2i
LINE(1)=STAT PLFS.105
LINE(2)=0
PLFS.45
PLFS.46
PLFS.47
PLFS.48
PLFS.49
PLFS.50
PLFS.51
PLFS.52
PLFS.53
PLFS.53
PLFS.54
PLFS.55
PLFS.56
PLFS.57
PLFS.57
PLFS.58
PLFS.59
PLFS.60
PLFS.6l
PLFS.62
PLFS.63
PLFS.64
PLFS.64
PLFS.65
PLFS.66
PLFS.67
PLFS.68
PLFS.69
PLFS. }7
PLFS.}7
PLFS.72
PLFS.72
PLFS. }7
PLFS. }7
PLFS. }7
PLFS.75
PLFS. }7
PLFS.76
PLFS.77
PLFS.78
PLFS.79
PLFS.80
PLFS.81
PLFS.82
PLFS. }8
PLFS. }8
PLFS.85
PLFS.86
PLFS. }8
PLFS.88
PLFS.88
PLFS.90
PLFS.91
PLFS.92
PLFS.92
PLFS. }9
PLFS. }9
PLFS. }9
PLFS.95
PLFS. }9
PLFS. }10
S.100
PLFS. 101
PLFS.101
PLFS. }10
PLFS.104
PLFS. }10
PLFS.106
```


	PRINT 5, TITLE,IG, IE, IK, PMAX, PMIN	YPLLI. 13
5	FORMAT (1H1, 10X,*YPLCT.......*,A10, /, 10X.*IE=*, 15, 2 X ,	YPPLLI.14
		YPLLI. 15
	PRINT 6, (ISCALE(I), $=1,11$)	YPLLI. 16
6		YPLLI. 17
	DO $7 \mathrm{I}=1,2$	YPLLI.18
7	PRINT ${ }^{\text {d }}$	YPLLI. 19
8	FORMAY(13x, (11(1H. ,9x))1	YPLLI. 20
	Pifint 12	YPLLI. 21
12	FOKMAT (6x,1+X,7x,1CCH	YPLLI 122
	1....	HYPLLI. 23
	(Y)	YPLLI. 24
C....P	PRINT BCDY OF GRAPH	YPLLI. 25
	OO $10 \mathrm{I}=1 \mathrm{E}, \mathrm{IE}, \mathrm{IK}$	YPLLI. 26
	$1 \mathrm{Y}=\mathrm{C} * \mathrm{Y}(1)-\mathrm{B}$	YPLLI. 27
C	Crieck that y is on scale	YPLLI. 28
	IFIIY .LT. 1 . OR. IY .GT. 100) GL ic 13	YPLLI. 29
	KMAP(IY) $=$ KY	YPLLI. 30
	PRINT 9, X(I), (KMAF(J), J=1, 100), Y(1). I	YPLLI. 31
9		YPLLI. 32
	Gu 1014	YPLLI. 33
13	PRINT 9, X(I), (KMAP(J), J=1, 100), Y(1)	YPLLI. 34
	GO TO 10	YPLLI. 35
14	KMAP(IY) = KBLAAK	YPLLI. 36
10	cuntidue	YPLLI. 37
	RETJRiv	YPLLI. 38
	EvD	YPLLI. 39

0	y
10102	$H S$
00102	A3.7i

	READ 5,NVFY, (NFY(1),I=1,NNFY)	FK2.102
	NFI = NFY(2)-NFY(1)	FK2.163
	$00220 \quad l=2$, NNFY	FK2.164
	$11=1+1$	FK2.165
	NF2 =NFY(11)-NFY(1)	FK2.160
	IF (NFI.NE.NF2) G() TU 227	FK2.167
	IFKYPL=1	FK2.108
	It (IL.GE.NNFY) GU 10229	FK2.169
220	culvilnue	FK2.170
	G) Tい 229	FK2.171
227	IFKYPL $=0$	FK2.172
229	cuivtlate	FK2.173
c.	StATEMEIVTS FRZ.170 AINU HK2.226 ALE USEU UNLY mHEN THAT	FK2.114
c.	3 RECORDS/ARRAY ELENENT, $\mathrm{H} 2500=2$, ATSU THE FIKST KECURU GEING TO	FK2.175
C.	ESTIMATE FKPSD.	FK2.1751
	$10 E L=-1$	FK2.17t
	NDTIME $=$ N $2500 * N S$	FK2.177
	READ G, (DTIME(I), I= 1, NDIIME)	FK2.170
	NAV $=\mathrm{NAV} 1 * 2+1$	FK2.17\%
	NAV2=ivtr-Navl	FK2.180
	XKIN $=(-1.0) /(2.0 * S P A L I N)$	FKL.101
	XKIN=XK.IN*SCALK	FK2.1c2
	DELK= (-2.0*XKINI/FLUAI (AKX-1)	FK2.183
	REAU $7,(X(1), I=1, N S)$	FK2.184
	If (EGF(illinputi.evt.j) GC TC <67\%	FK2.16
	CALL SELUNLITIME)	FKC.180
	PRINT 14, TIME	FK2.107
	NSKCON=O	FK2.180
	Du $730 \mathrm{~J}=1$, NS	FK2.109
	NSCON = NSCUN+1	FK2.190
	KEAD 8,SIAT, (NNSKIP, (NSKIP(1), I= 1, 9) , GAIt., KS, RU, DAPPET	FK2.191
	PRINT LS, STAT, NPTT, ICCHER, IFKPSO, STAlI), SPACIN,XKIN, DELK, X(J)	FK2.142
	PRINT LO, ICONVEN,IFKFLCT, NVSUPL,GAIA	FK2.193
	NB512 $=0$	FK2.154
	$M=3$	FK2.1>5
	GIT TU 377	FK2.14c
373	PRINT 17	FK<.1S7
		FK2.190
377	READ (3) (NDAYS,NHCURS,NIN,NSEC)	FK2.14s
	IF (EOF(3).NE.0) 6C IC 373	FKC. 200
	READ (3) (NCAYST, ALCUST, MINT, NSELT)	FK2.201
	READ (3) (STATN(J),Nड, JJ)	FK2.202
	IF (STATN(J).NE.STAT) GC TO 2675	FK2. 203
	READ (3) (NVAL (I), I= 1, NSMP)	FK2.204
	READ (3) (MORE)	FK2.205
-		FK2.206
	If (ISKARR.NE.0) GO TO E02	FK2. 207
	DU 46J $I=1$, NNSKIP	FK2.20i
	IF (NE.EG.NSKIP(1)) GC TO 602	FK2.209
460	CUNTINUE	FK2.210
		FK2.211
		FK2.212
	a	FK2. 213
		FK 2.214
	SHIFT $=0.0$	FK2.215
	DU $480 \mathrm{IGC}=1$, NSMP	FK2.216
	SHIFT = SHIFT+FLOAT (NVAL (IDC))	FK2.217
480	coiviln ue	FK2.218
	SHIFT $=$ SHIFT/FLOAT(NSMP)	FK2.21s
	DO 510 IUC $=1$, NSMP	FK2.226
	NVAL (IDC)=NVAL(IOC)-SHIFT	FK2.221
510	cantinue	FK2.222

	DO $1300 \mathrm{NA}=1$ ，NAV1	FK2．347
	$11=N F-N A$	FK2．340
	$12=N F+N A$	FK2．349
		FK2．350
1300	cuntinue	FK2．351
	$S F=S F+S M(J S, L S, N F)$	FK2．352
	T（NF）$=$ SF／FLOAT（NAV）	FK2．353
	GU TC 1320	FK＜．334
1316	$T(N F)=S M(J S, L S, N F)$	FK2．355
1320	CGNTINUE	FK2．350
	Di 1340 NF $=1, N \mathrm{NTF}$	FKく．3」？
	SM（JS，LS，NF）＝T（NF）	FK2．3 $=0$
1340	cunt inue	FK＜．3 ${ }^{\text {c }}$ ，
1350	cuntinue	FK2．3ic
1360	continue	FK2．3el
	$J S=1$	FK2．362
	$L S=1$	FK2．363
	PRINT $26,(S M 1 J S, L S, N F), N F=1, N P 1 F)$	FK2．364
1377	CONTINUE	FK2．365
		FKく．306
c		FK2．30 7
c．．．．	calculatinu the coherence	FK2．300
C．		－rKく．36\％
	If（ICUHEK．NE．I）GL TL lbes：	FK2． 310
	DU $1540 \mathrm{JS}=1, \mathrm{SO}$	FK2．371
	DU 1530 LS＝JS，NS	FK2．372
	IF（JS．EQ．LS）GE TS 1630	FK2． 373
	D．J 1400 NF $=1$ ，ivetf	FKく．374
	SMTENP $=$ SM（JS，JS，NF） SMM $^{\text {S }}$（LS，LS，NF）	FK2．375
	DEAN $=$ CSQUT（SNTEMP）	FK2．370
	SM（JS，LS，NF $)=$ SM（JS，LS，MA）／DEN	FK2．377
	CUH（NF）＝CAUS（SMIJS．LS，NF）	FK2．37t
1460	comi livue	FK2．37＇
	CALL CONFLIM（TERMZ，TERNZ，NPTFI	＋K2．38u
		FK2．301
	PRINT 27，NuSLĆ	FK2．302
	PKINT 23	FK2．35
	PRINT 29，（ERRELIE），EPRED（IE），IE＝1，NPTF）	FK2．304
	TSTA＝STATN（JS）	fK2．385
	IF IJS．GT．？GC TO 1530	FK2．360
	CALL PLOTCUHITSIA，LSANPTFI	FK2．387
	CALL NXTFRM（SPECS）	fK2．383
1530	CONTINUE	FK2． 389
1540	CUNTINUE	FK2．390
	DO 1570 JS $=1$ ，NS	FK2．3s1
	DO 1560 NF $=1$ ，NPIF	FK2．392
	SM（JS，JS，NF）＝1．C	FK2．393
1560	CUnTINUE	FK2．344
1570	Cunt inue	FK2．345
1569	IF（IFKPSO．EQ．O）GC TO 2671	$\begin{aligned} & \text { FK2. } 396 \\ & \text { FK2.397 } \end{aligned}$
	PRINT 30	FK2．348
		FK2．39\％
		FK2．400
		FK2．401
C．．．．．	DU LOOP 2600 EVALUATES THE FKPSU AT CIFFEFENT FREQUFNCIES．	FK2．402
		FK2．403
	CALL SECGNOITIMEI	FK2．404
	PRINT 14．TIME	FK2．405
	PDB $=0.0$	FK2．400
	DG 2600 NF $=1$ ，NINFY	FK2．407
	NVEL $=0$	FK2．408

SUBROUTINE AMPVCOIVS，NPTF，GAIN，VCEFS，KCCUT，

AMPVC． 2
C．．．．．SUbRIJUTINE AMPVCL CORRECTS THE GAIN ANC THE LGB－PASS FILTEP LF THEAMPVC． 4
C AMPLIFIER ANO THE VCO FLLL SEALE．AMPVC．S
C JHE LOH－PASS FILTEK AT ASI10 IS 2－FCLE RL FILTEK．AMPVL．G
CUNMUA／ALKL／トスEG（226）AMPVC． 1
DIMENSI：JN VS（225）AMPVC．O

GAI ：v＝GAIN／20．0
AMPVC．
GAIN＝10．0＊＊GA1N
AMPVC．1）
$A=$ G4IN＊204 B．0／V
AMPVL．II
$A=G 4 I N \neq 2048.0 / V E O F S \quad$ AMPVC． 12
D） $1 I=1, N P 1 F$
$A M P V C .13$
$d=F R F C(I) / R C C L T$
$\forall 2=0 * E+1$
AMPN． 14
VS（1）＝VS（1）＊$+2 / A$
AMPVC． 15
$\checkmark S(1)=V S(1) * 1.0 E+0 C$
AMPVC． 16
1 CINTIAUF：
$A M P V C .16$
$A M P V C .17$
RETUKン
AMPVC． 18
RETUUS
AMPVC． 15
AMPVC． 20

SUERGUTINE ANTIALI（VS，FIL，NBW，EWCUT，NPTF）
ANTAL－2
C．．．．．SUUROUTINF ANTIAII IS USED TO CUREECT MOUULUS GF THE TRANSFER
C FUNCIION UF AREITRARY LOW PASS GUTTEFWCGTH FILTER SUCH AS THE ANTI－ALIASING FILTER USED IN THE HAVILAND HALL．

ANTAL． 3 AIVTAL． 4

NBh＝NUMEER CF FILTER STAGE
ANTAL． 5
NBh＝NUMEER LF FILTER STAGE＊ANTAL•7
NPDLE $=$ NUMBEA GF POLE CF THE FILTER．$\because \ldots \ldots$ ANTAL ． 8
COMPLEX VS
ANTAL． 9
CLMAUN／BLKI／FKEL（226）$\quad \because \quad$ ANTAL•IO
DIMENSIDIV VS（226），ANTAL－ 12
NPOLE $=4$
DU $1 \quad I=1$ ，NPTF
ANTAL． 13
N＝2＊NPULE
ANTAL． 14
$A=F R E Q 11 /$ BWCUT ANTAL． 16
$A=A$＊$\# N$
$A=A$ F＊N
$B=S$ QRT $(1+A)$
ANTAL． 17
$b=b \neq * \mathbb{B} W$
ANTAL -18
ATUTAL． 18
VS（I）＝VS（I）＊\＆
1 CONTINUE $\quad . \quad$ ANTAL． 21
RETURN
ENO ANTAL• $\angle 2$
ANTAL． 23

```
    SUBROUTINE CMXDIVIIN,IM,DET,IOIM,VI
C
C
    REPLACES B BY (A INVERSE)*BE CESTRCYS A.
    A IS N GY N, B IS iN BY M. A AND E ARE STLRED IN V(N,R+M).
    CUMPLEX SAVE,PIVOT, DETERM,DET,V,CAES
    OIMENSIU.V V(IDIM,I)
    INTEGEK P
    N=IN
    M=IM
    N+1=N-1
        ND1=N+1
        NP:M=N+M
        OETERM=(1.OEO,O.OEO)
        P=1
    202 continue
        IMIN=P+1
            FINO PIVIT
        PJIVIJT=O.OEO
        DO 2Jy I=P,N
        RSAVE=LAES(VII,P))
        IF (RSAVE.LE. RPIVLI) GC IC 2OS
        PDIVGT=RSAVE
        IBIG=1
    2CS CDNTINUS
        If (KPIVOT . ST. C.OEJ) GC IC 210
        SETERA=(V.UEU,U.OEOI
        Gu TL 2%J
    C
    210 p\VUT=V(IislG,F)
    DETEKM=DETEFM*PIVCI
        0.j 214 J=F, inPiA
        SAVE=V(IJIG,J)/PIVLT
        *(IGIG,J)=V(P,J)
        V(P,J)=SAVE
    21y cuNTINUE
        IF(ISIS .NE. H) UETEFN:=-UETERM
        IF (P -GE.N) GO TO <LC
        V(P,P)=(1.GEU,C.OEO)
    OU 239 l=IMIN,N
    OO <38 J=1NIN,NPM
    V(I,J)=V(I,J)-V(I,P)#V(P,J)
    230 CUINTINUE
    V(I,P)=(U.DEO,O.UEG) CMXDV.47
    239 CONTINUE
    P=P+1
    249 GOTU 202
C
    250. CIJNTINJE
    IF \M .LE. O\ GO TO 250
        OU 254KKNPINNPM
        DU 253 P=1,NM1
        l=N-*
        D) 2ち2 J=I,NNI
        V(I,K)=V(I,K)-V(J+1,K)*V(I,J+1)
    252 CDINTINUE
    253 CUNTINUE
    259 CONTINUE
    CrixDV. }
    CMKDV.S
    CMXUV.4
cmuuv.s
CMXDV.O
CMXUV.7
CMXOV. }
CMXJV.Y
CMXJV.G
CMXOV.1J
CMXDV:11
CMXOV. I2
CMxüv.1%
CMXUV.14
CMXOV.1S
CmXOV.16
CMXDV.17
CMXDV.17
CMXOV.1S
CMXDV. 20
CMXOV.21
CMXOV. 21
GMxOV. }2
CMXDV.<4
cmXuv. 25
CMXDV.2j
CMxivV-?7
C.4XOV.2%
(MX.)V.?:
CMxDV.3:
CMXDV-3:)
CMXJV.31
Cmxuv.32
cmx)V.33
CMXOVV.34
cmxov.3)
CMXJV.3e
CMXUV.37
CMXUV.37
GMKJV.3%
CMXUV.39
CxMDV.40
CMXDG.'1
CMXDV.42
CMXOV.42
GMXOV.43
CMXOV.44
CMXOV.45
CMXDV.4E
CMXDV.4e
CMXDV.4S
CMXDV.49
CMXOV.49
CMxOV.51
cmuuv.52
CMXDV.53
CMXDV.53
CMXOV.54
CMXOV.55
CMXDV.5%
CMXDV.57
CMXDV.58
CMXDV.5y
CMxOV.6J
MXOV.61
CMXOV.61
C
```



```
    GALL NUDLIL(SPECS) FKPL.61
    SPECS(17)=0.15 FKPL.62
    SPECS(18)=0.15
    SPECS(24)=0.2
    CALL TITLEE(I4HKX (LYCLES/KM),SPECS)
    SPECS(C6)=0.4
    CALL TlTLEL(14HKY (CYCLES/KM),SPECS)
    SPECS(22)=0.1
    SPELS(23)=6.0
    SPECS(17)=0.1
    SPECS(18)=U.1
    CALL TITLEG(rule,litLEVELS (Ll),Spf(S)
    SPECS(23)=4.C
    CALL TITLEGIRULE,ITHVELCCITY (KM/SEC),SPECS)
    SPECS(17)=0.1
    SPECS(18)=0.1
    SPECS(22)=0.3
    SPECS(28)=1.0
    OO 5 L=1,NL
    SPECS(23)=5.7-C.2*FLGAT(L-1)
    ValuE=ZLEVELIL)
    CALL CFiVAL(KULE,VALUE,SPECS)
    5 CuntlNUE
    SPECS(2a)=3.0
    DU O L=1,NVEL
    SPELS(23)=3.8-0.7*F(CAT(L-1)
    VaLJF=VE((L)
    GALl dEGVAL iflle,valle, specs)
    6 Cuntlivue
    SPECS(22)=1.0
    SNECS(<3)=1:J
    DO }7\textrm{L}=1\mathrm{ , NVEL
    SPECS(23)=3.8-0.2*FLGAT(L-1)
    ValuE =ALIMJ(L)
    GALL DECVAL(KULE,VALUE,SPECS)
    7 cuntinue
    SPECS(22)=0.3
    SPELS(23)=1.3
    SPECS(24)=4.0
    CALL SIGVALIRJLE,PMAXI,IPCNER,SPECS)
    SPiCS(2<)=6.l
    CALL TITLEGG(RULE,I3HPMAX = E,SPECS)
    SPECS(22)=7.4
    SPECS ( }28)=0
    VALUE=FLDAT(IPOWER)
    CALL OEC VAL(RULE,VALUE,SPECS)
    RETURI'
    ENO
```



```
    SJURJUTINE GEOPHCNIDATA,PIZ,CMPFT,RD,RS,NPIFI GEOPH.2
C.....SUERCLTINE GECFHCN IS USEC TO CORRECT THE,VELOLITY SENSITIVITY, ; GEOPH.4
```



```
C.....WG = NATURAL FKEQUENLY CF.THE SEISMCMEIER.IIN NZ VOLT/METER/SECI. GEOPPH.G
C GS = GEVERATCR CONSTANCE OF THE SEISMCNETER IIN VOLT/METER/SECI.
    RS = COIL RESISIANCE.
```



```
    UMPFT = DAMPING FACTCE.
    GOMPLEX DATA,E,PH
    COMMON/BLKI/FREO(226) 
```

```
        DIMENSIJTV PHASE(2',7) GEOPH.14
        OIME vSIIIN DATA(512)
        DATA WG/4.5/,GS/77.17%
    DATA LAO/IUHPRASE IEST/
        WS=W';*)
        WS2=WS*WS
        RU2=?.0*OMPFT
    RD=RO*1000.0
        RS=RS$1UUU.a
        D) 1 I=2,N|TF
        w &=PI2#FरEU(1-1)
        hF2=at*int
        A=w\vec{c}<-WS2
        A2 =A*A
        B=RU2**S*WE
        82=ij*is
        L=SORT (A2+C2)
        AMP =NE2/l
        PHASE(II=ATAN2(B,A)
        PA=PHASE(1)
        E=CMPLX(:OO,PA)
        PH=LEat(e)
PKINT 2, PMASE,PA,PH,ANF,LOTA(ll)
F!3,A\T Ijx, हE\Z.3!
        DAMA(I)=JATA(I)/IANR*PF)
        k=<S$+R:
        DaTA(1)=2ATA(I)%&/MO
    l GintIm,
        k+1 Uん<,
        Evu
```



```
    OlmenSluN w(ivPT!)
    ALFA= J.j4
    ALFAL =1.0-ALFA.
    A=FLLAT((NPTT-I)/2)
    EN|=C.0.
    0) 5 M=1,NPTT
    B=rLisAT(.4-1)
    AKG=PI2*(E-A)/FLUAT(PIPTT)
    W(M)=ALFA+ALFAI#COS(AKG)
    ENH=ENW+W(M)$W(N)
        5 CONTINUE
    RETURN
    ENO
    SUBRIJUTIGE PLGTCCHILAUELI,L,NPTFI
C.....THIS SUYPCUTINE PLGTS THE COHEPENCE BEThEEN'ThO SEISMOMETEK
C UJTPuTS.
    CumMUN /3LK1/X(22G)
    COMMAN /ULK2/Y(22G)
    COMMON /OLKI3/ERFUC(164), EMRUC(164)
    COMMON /OLKI3/ERKULILG4),ERN
    SPECS(1)=1.0
    SPECS(2)=1.5
    SPECS(3)=25.0
    SPECS(4)=0.3
GEOPH.1り
```



```
    GEUPH.17
    GEOPH.18
    GEJPH.17
    GEOPH. }2
    GEOPH. }2
    GEUPH.LI
    GEחPH. }2
    GEITPH. }2
    GEUPH.2",
    GECPH.<5
    GEUPH.<O
    GEOPH. }2
    GEUPH.2O
    GEUPH. }2
    GEOPH. }3
    GEOPH.31
    GEOPH.3?
    GEOPH.3?
    GEDPH.33
    GEOPH. 35
    GEIPM.je
    GEDPR.3&
    GEUPF:37
    GESPPH. 36
    GEOPH.39
    GE!JPH.40
    GECPH.4i
    GELPH.4i
    GELPH.42
    GEGPM.43
    GEOPM.44
    HAYMN. 2
    HAMMTS. }
    HAMMP:O
    HAMMN.4
```



```
    HAMYN.G
    HAMmiv. }
    HAMMIJ.?
    HAM:NN.3
    HAMMAN.Y
    HAMMN. IO
    HAMMiN. }1
    HAMM,N. 11
    HAMMN. }1
    HAMMN. }1
    HAMMiv. }1
    HAMMN. }2
    PLCOH. }
    PLCUH. }
    PLCUH. }
    PLCON.4
    PLCOH.5
    PLCOH.6
    PLCUH.7
    plcuH.a
    PLCOH.9
    PLCOH.10
    PLCOH.11
    PLCOH.112
    PLCOH.12
    PLCOH. }1
    PLCOH.14
```


E．do					$\text { PLCUM. } 77$ $\text { PLGCH. } 78$
SUBROJTINE PLUTVS					PLVS． 2 PLVS． 3
C．．．．．．this subruutiae pleits the velccity speltral density in legalog C．．．．．．SCALE．					PLVS． 4
					PLVS．S
					PLVS． PLVS． PLVS
	COMMUN／OLKI／X12＜0）				PLVS． 8
					PLYS．S
CUMMIUN／OLK14／Y（226），NPEC，NPTF					PLVS． 10
SPECS（1）＝1．0					PLVS． 11
					PLVS． 12
	$\operatorname{SPECS}(3)=25.0$				PLV5． 13
SPECS（4）$=0.3$					PLVS． 14
DO $8 \quad 1=1$ ，NPTF					PLVS． 15
IF（Y（1）．GT．L．OE＋03）GC TC E					PLVS． 12
IF（Y（I）．LT．1．OE－O1）GC Tns					PLVJ． 17
8 CuITINUE					PLVS．18
SPECS（5）＝1．UE＋03					PLVS．1，
SPELS（G）＝1．UE－シ1					PLVS．20
GO T！ 5					PLVS．èl
					PLVS． 22
SPECS $(5)=1.0$					PLVS． 23
GU TO 5					PLVJ． 24
y SPELS（5）＝1．UE＋01					PLVS．25
SPECS（O）$=1.0 E-0 S$					PLVS． 20
5 SPECS $(1)=7.815$					PLVS． 21
SPECS $(6)=5.2$					PLVS． 28
SPELS（11）$=1.0$					PLV2． 29
SPECS（12）$=$ ンヲ．					PLVS． 30
（ALL AXLGLG（SPECS）					PLVS． 31
YMAX $=$ SPECS（5）					PLVS． 32
YMIN＝SPECS（6）					PLVS．33
DJ $101=1$ ；NPTF					PLVS．34
IF（Y（I）．GT．YMAX）Y（1）$=$ Ymax					PLVS． 35
IF（Y（I）．LT．YMIN）Y（I）＝YMIN					PLVS． 36
10 Culvtinue					PLVS． 37
SPECS $(23)=-0.15$					PLVS．3i
CALL SAXLGI（SHECS）					PLVS．35
SPECS 27$)=-0.15$					PLVS． 40
（ALL SAXLGR（SPECS）					PLVS．41
SPECS（13）＝FLGAT（NPTF）					PLV5．42
SPECS（14）$=1.0$					PLV5． 43
SPECS（1b）$=1.0$					PLVS． 44
$\operatorname{SPECS}(30)=97$.					PLVS．45
CALL SLLGLG（ $X, Y, S P E C S$ ）					PLV5．46
15 Specs $(17)=.1$					PLVS．47
SPECS（18）＝．1					PLV5． 43
$\operatorname{SPECS}(y)=10.0$					PLVS．49
SPECS $(19)=0.0$					PLVS． 50
SPECS（21）＝1．0					PLVS．51
SPECS $(24)=0.0$					PLVS．52
SPECS $(29)=2.0$					PLVS．53
CALL NOLGB（SPECS）					PLVS．54
SPECS（20）$=0.0$					PLVS． 55
SPECS 120 ）$=0.0$					PLVS． 56
CALL NOLGL（SPECS）					PLVS． 57
	SPECS（17）$=0.15$				PLVS． 58
$\text { SPECS(IB) }=0.15$					PLYS．5Y

```
    SPtLS(L-)=0.2 PLVS.6:J
    CALL TITLEEIL4MFEEGJENCY (HZ1,SPECS) PLV3.OL
    SPECS(2J)=夕J.U
    PLVj.62
    SPECS(2U)= ふ.4
    PLVS.G.
    CALL TITLEL(BUHVSO (MILIIMICRTN/SEC/SGRT(HZ)),SPECS)
    PLVS.04
    SPECS(17)=.15
    SPECS(1E)=0.15
    SHRC5(14)=0.0
    SPr(CS(2))=0.0
    SPE65(21)=1.0
    SPE6S(2)})=c.
    RUL L=1.J
    SPFCS(2C)=2.15
    SPris(20)=0.0
    VALUH = NKEC
    CALL UFGVAL(RULE,VALUE,SPECS)
    LINE(1)=STAT(l)
    LINE (2)=10% QELCRDS
    LINE(3)=0
    SPECS(22)=0.b
    LALL JITEEG(FULE.LINE.SPECS)
    KETJ心:
    EilO
```



```
C
C.MAPMar vT.
    CLYHこM/SLKIJ/PLEVEL(IG), vPLEV
    01MENSI|N P(41,&1),Ktr(41)
```



```
        UMTA ん7/LF/
        PRI!jT 750゙
    750 FuR.a^T (1H:S
        PRIHT 70U, (PLFVEL\I),I=1,NPLEV)
    70. FJRMAT (LHL,* C@NTOM, LEVELS = *,7EI2.3)
        PRIfr %o己
```



```
        MRlivT 7Uu
```



```
        PKliv1 76l
    SYMCL. 2
    SYMC[.3
    SYMG:%
    SYME:S
    Sracicoi
    SYMLO. 
    SYMLU.7
    SYMCN.:
    SYMÖ二..
    SYMC̈J.1U
    SYYCU.11
    SYMCR:12
    SYMCR-12
    SYNuU.l;
    SYMCL.14
    SYMUO.1,
    SYMi!.lt
    SYMCS.lt
    SYMCL.17
    SYMU!.1"
```



```
        On 100 JKY=1,NKY
-SYMCC.21
-SYMCC. 21
    SYMCU.22
    SYACU. 24
        DU 200 kX=1,12kX
        IF (P(KX,JY).GE,PLEVFL(1)) GE TO. 10
    SYMCU-24
    SYMCL.2%
        IF (P(KX,JY),CE,PLEVFL(I)) CE TO,10, 
```



```
        IF (flkX,JY).GE.PLEVEL(I)I GU TC }3
        IF (D(KX,JY).GE.PLEVEL(4)),GU TO 40
        IF (P(KX,JY). CE.PLEVEL(5')) GC TC 50
SYILCL. 28
        IF (P(Kx,JY) C,E PLFVEL(5))'GC TC 50:..
        IF (P(KX,JY).GI.PLEVEL(C))GCTR: 6C SYMGS. }3
```



```
    60 KEY(KX)=K6 . SYMCL. 34
    G.JTG200 S S OMCO. S5
    50 KEY(KX)=K5 SM, SYCO. 30, 
```



```
    40 KEY(KX)=K4
```

```
        GOTH200 SYMCU.39
    30 KEY(KX)=K3
    SYMCO.4!
    G3 T(X200
    SYMCO.41
    Gu TL 2J0
    SYMCG.4
    O KEY(KX)=k2
    SYMCC.42
    G0 to 200
    SYMCL.43
    KEY(KX)=ki
    SYMCO.44
    10 KEY(KX)=KI SYMCO.44
200 LUNTINUE
    IF (JY.EU.21) GL TC 151
    IF (JY.EU.21)GG TC 151 
    SYMCL.46
    SYM&CO.46
    2SO FBRMAT (1HU,1X,41(2X,A1))
    GUT(LU)
    SYMCO.40
    SYMCO.4%
    151 PR[N1 1,2,(KEY(J),J=1,NKX)
    SYMCO.5)
    151 PRINT 122,(KEY(J),J=1,NKX)
    SYMCG.j1
    100 cuntlivue
        PRINT 761
        PRINT 700
        RETURN SYMCO.55
        ENU SYMCO.56
SrMce.52
        SUGRGUTINE YPLOT(Y,IB,IE,IK,PMAX,PMIN,TITLE,L,X) YPLUT.Z
        OIM:E.WSI-Y Y(1),KMAP\ICOI,ISCALE(II) YPLCT.5
        DAT, KbLANK,KY/1F, 1H#1 YMLUT.O
        DATA KBLANK,KY/IF,lH#!
        0u 2 I=1,100
    2 KMAP(1)=KELAIVK
C....户RINT vËGINNIING DF GKAFH
    i=100.0/(FMAK-HNIN)
        B=C*PMI:%
        SCAL5=1.0)/L
        C
        SCALK=1.J/L YPLUT.12
        PRINT 5,TITLE,L,IU,IE,IK,PNAX,PMIN YPLOT.IL
    5 FIKMLT (IHL,IOX,*YPLUT.......*,A10,15,/,10X,*10=*,15,2X,*IE=*,I5,2XYPLJT.1=
        1,*1K=*,15,2X,*PNAX=*,E12.3,2X,*PMIN=*,F12.3,//1) YPLIT.10
            PRINT O, (1SCALE(1),I=1,11) YPLOT.17
    6 FOKMATIIIX,5(12,EX),1X,I2,5(7X,13)) YPLUT.18
    OO 7 1=1,2 YPLOT.19
    7 PRINT%
    YPLOT.2.J
    8 FORIAATILJX,(1111H., OX))) YPLOT.21
    PRINT 12 YPLUT.22
    1 2
```



```
C....PKINT BCOY CF GRAPH YPLGT.26
    DO 1OI=IG,IE,IK YPLOT. }2
    OD IO I=IB,IE,IK YPLOT.27
C CHECK THAT Y IS CN SCALE YPLJT. 29
    IFIIY. LT. I .CK.IY.GT. IUOI GC TO 13 YPLOT. 30
    KMAP(IY)=KY 
    KMAP(IY)=KY 
    YPLOT.32
    9 FORMAT ( 2X,F4.3,1X,1HI,100A1,1FI,2X,E10.3,1X,14) YPLOT. }3
    GU TO 14 YPLOT. }3
    13 PKINT S, X(1),IKMAP(J),J=1,100),Y(I) YPLCT.35
    Gn TO 10 X(1),IKMAP(J),J=1,100),Y(1)
    GOTO 10 YPLUT.36
    14 KMAP(IY)=KLLANK YPLOT. 37
    10 CUNTINUE YPL.3T.30
    M
    RETURIN . YND YPLUT.40
62.50 r-1.0
```


