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Abstract

We consider the accuracy of predictions made by integer programming
(IP) models of sensor placement for water security applications. We have
recently shown that IP models can be used to find optimal sensor placements
for a variety of different performance criteria (e.g. minimize health impacts
and minimize time to detection). However, these models make a variety of
simplifying assumptions that might bias the final solution. We show that
our IP modeling assumptions are similar to models developed for other
sensor placement methodologies, and thus IP models should give similar
predictions. However, this discussion highlights that there are significant
differences in how temporal effects are modeled for sensor placement. We
describe how these modeling assumptions can impact sensor placements.

1 Introduction

Public water distribution systems are inherently vulnerable to accidental or inten-
tional contamination because of their distributed geography. The use of on-line,
real-time early warning systems (EWSs) is a promising strategy for mitigating
these risks. The general goal of an EWS is to identify a low probability and high
impact contamination incident while allowing sufficient time for an appropriate
response that mitigates any adverse impacts. An EWS complements conventional
routine monitoring by quickly providing information on unusual threats to a wa-
ter supply. Although several European countries have deployed EWSs to monitor
riverine water supplies (Drage et al., 1998; Schmitz et al., 1994; Stoks, 1994),
relatively few systems have been deployed for U.S. water supplies.

A key element of the design of an effective EWS is the placement of sen-
sors throughout the water network. A variety of technical approaches have been
developed to formulate and solve sensor placement problems in water networks,
including integer programming models (Berry et al., 2004, 2005; Lee et al., 1991;
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Lee and Deininger, 1992; Watson et al., 2004), combinatorial heuristics (Kessler
et al., 1998; Kumar et al., 1999; Ostfeld and Salomons, 2004), and general-purpose
metaheuristics (e.g. Ostfeld and Salomons (2004)). Integer programs can often be
solved to optimality in practice, thereby provide the ability to ensure that the best
solution is found. However, formulations like integer programs generally rely on
simplifying assumptions to limit the number of design parameters and to enable
the model to be solved with a particular method.

In this paper, we reconsider two integer programming formulations that we
have recently proposed for sensor placement in water networks. The static model
proposed by Berry et al. (2005) simply considers whether an attack can reach
a downstream population, while the dynamic model proposed by Berry et al.
(2004) uses the temporal dynamics of contaminant flow to determine whether a
downstream population is affected before the contaminant is detected. We critique
these models by considering the type of simplifying assumptions that they make,
and we contrast these sensor placement formulations with models used by other
sensor placement techniques. Further, we analyze the types of solutions that will
be generated by the static and dynamic formulations, and note practical trade-
offs in the solution of these problem formulations. Empirical comparisons of these
sensor placement formulations on real-world water networks confirm the types of
differences that we predict.

The general conclusion that we reach with these results is that both of these
integer programming formulations are worthy of further consideration. These
sensor placement formulations make simplifying assumptions that are similar to
models that have been optimized with heuristic search methods. Thus, we should
generally expect similar solutions. We have observed that static IP formulations
are often easier to solve than dynamic formulations, which suggests that these
formulations can be more effectively applied to large-scale problems. Although
static formulations can only approximately capture temporal aspects of contami-
nant flows, our experiments show that they can generate solutions whose expected
performance is similar to solutions of the dynamic formulations.

2 Comparing Sensor Placement Formulations

Sensor placement problems can be naturally formulated as optimization problems.
Although our focus is on detecting contaminant events within an EWS, method-
ologies for placing water quality monitoring stations are directly related to sensor
placement problems for EWS design. Consequently, we include them in our com-
parison of modeling approaches, and for simplicity of presentation we refer to the
placement of water quality monitoring stations as a sensor placement problem.
For EWS design, the goal of a sensor placement optimization formulation is
simple: to place a limited number of sensors in a water distribution network
such that the impact to public health of an accidental or intentional injection of
contaminant is minimized. However, no specific, concrete formulation for sensor
placement has emerged that is widely accepted by the water community. There
are a wide range of alternative objectives that are also important when considering



sensor placements, such as minimizing the cost of installing and maintaining the
sensors, minimizing the response time to a contamination event, and minimizing
the extent of contamination (which impacts the recovery costs). Additionally, it
is difficult to quantify the health impact of a contamination event because human
water usage is often poorly characterized, both in terms of water consumption
patterns, as well as how the water consumption impacts health effects. Conse-
quently, surrogate measures like the total volume of water consumed at all sites
have been used to model health impacts; this measure assumes that human wa-
ter consumption is proportional to water consumption at all junctions within the
network.

One common feature of sensor placement formulations is the simplifying as-
sumption that sensors can accurately measure water quality and/or the presence
of contaminants. Although this may be reasonable for water quality measure-
ments, it remains unclear how well this assumption will apply to EWS design
activities. New sensor technologies are needed to detect contaminant threats,
but these robustness and accuracy of these contaminant-specific sensors remains
unclear.

Sensor placement formulations can also be categorized by the manner in which
contaminant events are modeled. In a dynamic sensor placement formulation, the
impact of a contamination event at a network junction is determined exactly, using
a detailed water quality simulation to compute contaminant concentration time-
series for each junction in the network. In a static sensor placement formulation,
the impact of a contamination event is estimated by analyzing some combination
of (1) flow directions and velocities obtained via hydraulic simulation, (2) pipe
lengths, and (3) junction demands. This categorization reflects the fact that dy-
namic formulations capture temporal dynamics, while static formulations assume
one or more patterns of water flow separately. Although water network models
typically describe water flow with a set of flow patterns, static sensor placement
formulations do not model transitions between these flow patterns.

2.1 Static Formulations

Almost all of the research on sensor placement for water networks has considered
static sensor placement formulations. These sensor placement formulations are
distinguished by (a) the objective used for optimization and (b) how network
flows are modeled. An objective related to set covering was developed by Lee
et al. (1991; 1992) and subsequently refined by several researchers (see Ostfeld
and Salomons (2004) for a review). Sensor placement objectives are motivated by
the observation that water quality measurements at a sensor reflect the quality of
water at nearby points within the network. Specifically, network flow information
is used to compute a matrix that determines what fraction of water flow passes
through each junction, and this information is used to find sensors that maximize
the coverage of water flow.

Kessler et al. (1998) and Ostfeld and Kessler (2001) have developed a static
sensor placement formulation whose objective is to ensure that a pre-specified



maximum volume of water consumed prior to detection can be guaranteed. This
objective is solved using a set covering formulation, where sensors cover junctions
for which detection can be guaranteed within the pre-specified “level of service”.
This is a static sensor placement formulation, so the calculation of contaminant
consumption is an estimated quantity. This calculation is performed using an
auxiliary network, which has directional edges that are determined via analysis
of hydraulic simulation outputs. A directed edge is added in this network from
junction v; to v; if there is flow from v; to v; at any point in the simulation. These
directed edges are weighted by the average velocity from v; to v; over the course
of simulation, which allows the use of this auxiliary graph (along with network
pipe lengths) to estimate the shortest travel time between all pairs of vertices in
the original water network.

Finally, Berry et al. (2003; 2005) and Watson et al. (2004) describe a variety
of static sensor placement formulations that are formulated as integer programs
(IPs). The objective of the IP described by Berry et al. (2003; 2005) is to
minimize the expected fraction of the population exposed to a contamination
event. Hydraulic simulation results are used to compute a fixed flow orientation for
each pipe in the network over a series of p distinct non-overlapping time intervals,
referred to as patterns. A population consuming water at node v; is considered
exposed to a contamination from vertex v; there exists a flow path from v; to v,
along which there is no sensor. Watson et al. (2004) generalize this formulation
to consider a range of optimization objectives, some of which account for travel
times by considering contaminant propagation within each flow pattern separately
(instead of aggregating these into an auxiliary network as is done by Kessler et al.
(1998)).

2.2 Dynamic Formulations

The previous static sensor placement formulations cannot effectively model time
varying flow characteristics like contaminant dilution, concentration level, and
transport interactions. Instead, these models simply track the presence or absence
of contaminant at various network points. The rate of contaminant flow can be
modeled, but these flow calculations are only approximate because they do not
account for temporal variations (e.g. the effects of shifts between flow patterns).

By contrast, dynamic sensor placement formulations precisely characterize the
impact of a contamination event on the rest of the network. Dynamic SPOP
formulations use detailed water quality simulations to compute contaminant con-
centration time-series for each junction in a network. These time-series can be
used to exactly determine the impact of any contamination event, including how
contaminant impacts junctions through the network (e.g. how much contaminant
is consumed at every junction).

Ostfeld and Salomons (2004) propose a dynamic sensor placement formulation
whose objective is ensure that the expected impact of a contaminant event is
within a pre-specified level of service. In their model, this level of service is a
maximum volume of water consumed prior to detection that is above a given



contaminant concentration level. Mirroring the earlier approach of Kessler et al.,
Ostfeld and Salamons solve this objective using a set covering formulation, where
sensors cover junctions for which detection can be guaranteed within the pre-
specified level of service. The calculation of contaminant consumption is computed
using PiplineNet (Bahadur et al., 2003).

We have developed a similar dynamic sensor placement formulation for min-
imizing the expected volume of contaminated water consumed before detection
(Berry et al., 2004). This formulation is expressed and solved as a mixed-integer
program. Contaminant flow is modeled with a discrete event simulator in our
analysis, though we have subsequently demonstrated the use of EPANET for
more general water quality simulations.

3 Comparing Static and Dynamic Formulations

In the previous section, we described how dynamic sensor placement formulations
can be used to more accurately model the impact of contamination events. Dy-
namic formulations have the added advantage that a full range of attack types and
sensor characteristics can be modeled; the accuracy of the formulation is strictly
limited by the accuracy of the water quality simulation.

However, the accuracy of dynamic sensor placement formulations comes with
a price, specifically in the form of a very large number of expensive water quality
simulations. For large-scale applications, the computation of these quality simu-
lations is a clear bottleneck, and storage of the output of this simulation data can
be excessive. For example, on a large data set (with 3000+ junctions and pipes),
the size of our model input data is over 100MB. Furthermore, using water quality
simulation data for dynamic sensor placement optimization may require the use
of a high-end workstation. For example, on real-world sensor placement applica-
tions (with 10,000+ junctions and pipes), the linear programming relaxation of
the dynamic sensor placement IP described by (Berry et al., 2004) requires more
than the 4 gigabyte memory limitation of 32-bit workstations.

By contrast, static sensor placement formulations are based strictly on compar-
atively cheap hydraulic simulations. This contrast begs the question of whether
the additional accuracy in the dynamic formulations generates qualitatively better
sensor placement results. Although we have noted that there are many ways that
a dynamic formulation can more accurately model contaminant impacts, the ap-
proximations made by a static formulation may be reasonable given the fidelity of
data used for sensor placement. For example, in several large real-world datasets.
we have noted that the direction of water flow never changes on a large percent-
age of pipes. This suggests the there are may not be many drastic changes in
contaminant, flow within some water networks.

Thus it is clear that a better understanding of the differences between static
and dynamic problem formulations for sensor placement problems could be of
significant practical utility. In the next two sections, we consider a specific com-
parison between static and dynamic sensor placement formulations for the objec-
tive of minimizing the number of junctions contaminated within a network. This
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Figure 1: The IP formulation of the static sensor placement formulation to mini-
mize the number of junctions that are contaminated before detection.
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Figure 2: The IP formulation of the dynamic sensor placement formulation to
minimize the number of junctions that are contaminated before detection.

objective was chosen because it seems like an objective that would be minimally
by temporal effects; specifically, the value of this objective does not directly in-
volve the rate of contaminant flow (e.g. as does an objective like the volume of
contaminant consumed).

3.1 1IP Models

In this section we describe the static and dynamic formulations that we consider
in our experiments. Figure 1 shows the static IP formulation for sensor placement
to minimize the number of junctions that are contaminated before detection, and
Figure 2 shows corresponding dynamic IP formulation. In both models, the deci-
sion variables s; = 1 if we place a sensor on junction ¢, and 0 otherwise. A sensor
at a junction detects contaminants moving in any direction through that junction.
Both sensor placement formulations can use a bounded number of sensors, Spax.

The static formulation in Figure 1 considers each of the P flow patterns sepa-
rately. This formulation uses auxiliary variables ¢;,; to indicate whether junction
7 has been contaminated from an attack at junction ¢ in flow pattern p.

The dynamic formulation in Figure 2 considers entire the temporal flow pat-
tern. Consequently, the times and locations A of contaminant injection events
are explicitly defined. The auxiliary variables b,; indicated whether a sensor at
location i would raise an alarm for a contamination from a (note that a refers to
both the time and location of a contamination event). The set £ denotes the set
of all possible sensor locations, in addition to a dummy location (which is used
to capture the event that an attack is not detected). Finally, the values w,; are



the precomputed impact of a contamination event at a if the contaminant is first
detected at 7.

3.2 Experimental Comparisons

We apply and evaluate our dynamic and static formulations on two real-world
datasets:

e Dataset SNL-4: A dataset adapted from a local area network. This net-
work has approximately 450 nodes and 600 pipes, with a small number of
pumps and tanks.

e Dataset SNL-5: A dataset adapted from a moderately large southwestern
city. This network has approximately 3500 junctions and 3800 pipes, with
tanks and wells spread throughout the water network.

For each of these datasets, EPANET 2.0 (Rossman, 1999) was used to calculate the
flow directions for the attack scenarios. Furthermore, the impact of contamination
events was performed to compute the w,; data used by the dynamic model; no
water quality data was used in these calculations. Four flow patterns were used
in the static model, and for the dynamic model contamination events were set up
at four uniformly spaced times throughout a 24 hour period. The optimization
formulations are implicitly setup to consider contamination events at all junctions
within these water networks, with uniform likelihood of all contamination events.

We used the AMPL modeling language (Fourer et al., 2002) to formulate the
static and dynamic IPs, and these IPs were solved on a 64-bit Linux workstation
using the CPLEX 9.0.2 IP solver. Table 1 summarizes the performance of the
static and dynamic formulations on these two datasets. This table shows the final
value of the sensor placement found for these two formulations. The value of
solutions to the static formulation are estimates of their values in the dynamic
formulation. Thus this table includes results that validate the value of these
solutions in the dynamic model.

The results in Table 1 suggest that the static model may be able to identify
near-optimal sensor placements to dynamic formulations. Except for the zero-
sensor case for SNL-5, the static model’s predictions are reasonably close to both
the validated values, as well as the values of the optimal solutions for the dynamic
formulation. Figures 3 and 4 provide additional information about the difference
between the predict impact and the validation impact calculation (which considers
the performance of the static formulation’s solution within the dynamic model,
for an arbitrary set of attack times). Note that these figures rescale the densities
using a log-scale to enhance the contrast within these distributions, so in fact
these distributions are even more biased towards the dark regions of these figures
than the shading suggests.

Both Figure 3b and 4b indicate that sensors can be placed such that the pre-
dicted impact from the static formulation is close to the predicted impact from



SNL-4 Static Dynamic
Num Predicted Validated Optimal

Sensors Value Value Value
0 39.37 30.34 30.34

20 7.70 3.95 2.79
SNL-5 Static Dynamic
Num Predicted Validated Optimal
Sensors Value Value Value
0 308.11 529.56 528.06

100 8.57 7.97 6.57

Table 1: Optimal solutions for the static and dynamic sensor placement formula-
tions on the SNL-4 and SNL-5 datasets.

the dynamic formulation. Although there is considerable spread in these distribu-
tions, the variance is small because the distributions are strongly biased towards
the diagonal lines, where these predictions are equivalent. We can interpret these
results to suggest that sensors can be placed such that temporal impacts can be
largely ignored, because the sensors detect contaminant events sufficiently quickly.

The results in Figures 3a and 4a consider the case where there are no sensors,
and as we might expect these results are not as consistent. The predictions of the
static formulation in SNL-4 are close to the optimal value in the dynamic formu-
lation, which we believe is due to the fact that there are few flow changes in this
model. However, there as many as one quarter of all pipes within SNL-5 exhibit
flow changes within a 24 hour period. The static formulation fails to adequately
capture the impact of these flow changes, and thus its predictions are poor in this
case. However, even though the predicted value is qualitatively different from the
value in the dynamic formulation, the validated value of the static formulation’s
optimal solution is close to the value of the dynamic formulation’s optimal so-
lution. Thus this formulation may provide near-optimal solutions even when its
predictions are skewed by temporal effects.

4 Conclusions

The initial motivation for this work was the need to more carefully compare and
contrast the IP models developed by Berry et al. (2003; 2004; 2005) and Wat-
son et al. (2004) with other sensor placement formulations. Our discussion in
Section 2 highlights the fact that these IP formulations make the same type of
simplifying assumptions as previous work. Further, this comparison highlighted
the distinction between dynamic and static sensor placement formulations, which
was the focus of our experimental studies.

Our empirical comparisons consider a “best case” scenario for the compari-
son of static and dynamic sensor placement formulations, since the number-of-
junctions-contaminated metric does not depend on water quality values. Our
experiments confirm what we have seen in practice: that values of static sensor
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Figure 3: Analysis of the optimal solution for the static formulation on dataset
SNL-4 with (a) zero sensors and (b) 20 sensors. For each contaminant event,
these comparisons plot the predicted impact vs. a validated estimate of the true
impact.

placement formulations appear to be near-optimal in dynamic sensor placement
formulations. Our results clearly indicate that static formulations need to be ap-
plied with care, as temporal effects can play an important role in interpreting
their value. However, it should be noted that the SNL-5 may be an extreme case
for temporal effects: this model concerns the core water distribution network of
a municipality with many water sources (wells and tanks) spread throughout the
network. For water networks that are fed from a small number of localized sources
(e.g. river or reservoir), static formulations may be quite reliable.

Finally, we note that our discussion and empirical comparisons do not ad-
dress the more general question of whether the objectives considered in these IP
formulations are well suited for practical applications. As we noted in Watson
et al. (2004), many of the objectives of interest for sensor placement formulations
are competing formulations. Thus, we should not in general expect that any one
sensor placement objective would be strictly preferable to all others. However,
our results also indicate that near-optimal trade-offs of different objectives can be
achieved, so that many different objectives might be nearly optimal for a given
sensor placement.
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