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Abstract. Quantum d o g  computing is based upon similarity between 
mathematical  formalism  of  a  quantum  phenomenon  and  phenomena to be 
analyzed. In this paper, the  mathematical  formalism of quantum  resonance 
combined with tensor  product  decomposability  of u n i t a r y  evolutions is mapped 
onto a class  of  NP-complete  combinatorial  problems. 

1. Introduction 

The  competition  between  digital  and  analog  computes, i.e.., between  computations 
and simulations.  has  a  long  history.  During  the last fifty  years  the  theory of 
computation  has  been  based  implicitly  upon  classical  physics as idealized in  the 
deterministic  Turing  machine  model.  However,  despite  the  many  successes of digital 
computers,  the  existence of so called hard  problems has revealed  limitations on their 
capabilities,  since the  computational  time  for solving  such  problems  grows 
exponentially  with the size  of the  problem. 

It was well  understood  that one possible way to fight the ‘‘curse” of the 
combinatorial  explosion is to enrich  digital  computers with analog  devices. In 
contradistinction to a  digital  computer,  which performs operations  on  numbers 
symbolizing  an  underlying  physical  process,  an  analog  computer processes 
information by exploiting  physical  phenomena  directly. It is this  problem solving  via 
direct  simulation  that  allows  an  analog  approach  to  reduce  the  complexity of the 
computations  significantly.  This  idea  was  stressed by Feynman [ 11 who demonstrated 
that  the  problem of exponential  complexity in terms of calculated  probabilities  can be 
reduced to a  problem of  polynomial  complexity in terms of  simulated  probabilities. 
Conceptually,  a  similar approach  can  be  applied to the  whole class of NP-complete 
problems.  But is it possible, in  general, to find  a  new  mathematical  formulation for 
any  intractable  problem in such  a way  that it becomes tractable? Some  experts  in 
computational  complexity  believe  that, in the  spirit of the  Godel  theorem, there 
always  exist  computational  problems  such  that  every  mathematical  formulation that 
captures  the essence of the  problem is intractable [2] . At this step,  we  cannot  prove 
or disprove  this  statement . 
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There  are  remarkably  few  (actually  three)  papers in which  quantum  analog 
computing is discussed. The first one [3] introduces a hypothetical  quantum device (a 
slot machine)  for  solving  a  traveling  salesman  problem. As shown  by the author, 
such a  device, although  intellectually  appealing,  requires an exponentially  large 
number of measurements to get the right  answer.  The  second  paper (4) discusses the 
capacity of a hypothetical  quantum  perception. In the third paper [5], a  concept of 
quantum recurrent networks  combining  quantum  conventional  networks  with classical 
feedback loops was introduced  and discussed. 

In this  paper  an  attempt  is  made to exploit  combinatorial  properties of tensor 
product  decomposability  of  unitary  evolution of many-particle  quantum  systems  for 
simulating  solutions to NP-complete  problems,  while  the  reinforcement and selection 
of a desired  solution is executed by  quantum  resonance. 

2. Quantum Resonance. 

Consider a quantum system  characterized by a  discrete  spectrum of energy 
eigenstates  subject to a small  perturbing  interaction,  and  let  the  perturbation be 
switched  on at zero  time.  The  Hamiltonian  of  the  system  can be presented as a sum 
of the  time-independent  and oscillating  components: 

H = H ,  + E , H , J ~ ( ~ )  sinwr dw E,<< I ( 1 )  

where H ,  and H ,  are  constant  Hermitian  matrices, o is the frequency of 
perturbations,  and €(a)) is  the  spectral  density. 

proportional to the  product [6] : 

(u 

The  probability of a transition  from  state k to 4 in the first approximation is 

Here q j  are the  eigenstates of H,, : 

where Ei are  the  energy eigenvalues, 

and h is  the  Planck  constant. 

P4 occurs  when a = a# : 
The  resonance, i.e., a time-proportional  growth of the  transition  probability, 

2 



3. Combinatorial  Problems 

Combinatorial problems are among the hardest in the theory of 
computations. They include a special class of so called NP-complete problems that 
are considered to be intractable by most theoretical computer scientists. A typical 
representative of this class is a famous traveling-salesman problem (TSP) of 
determining the shortest closed tour that connects a given set of n points in the plane. 
As for any of NP-complete prbblem, here the algorithm for solution is very simple: 
enumerate all the tours, compute their lengths, and select the shortest one. However, 
the number of tours is proportional to n! and this leads to exponential growth of 
computational time as a function of the dimensionality n of the problem, and 
therefore, to computational intractability. 

It should be noticed that, in contradistinction to continuous optimization 
problems where the knowledge about the length of a trajectory is transferred to the 
neighboring trajectories through the gradient, here  the gradient does not exist, and 
there is no alternative to a simple enumeration of tours. 

The  class of NP-complete problems has a very interesting property: if any 
single problem (including its worse case) can be solved in polynomial time, then 
every NP-complete problem can be solved in polynomial time as well. But despite 
that, there is no progress so far in removing a curse of combinatorial explosion: it 
turns out  that if one manages to achieve a polynomial time  of computation, then the 
space or energy grow exponentially, i.e., the effect of combinatorial explosion 
stubbornly reappears. That is why  the intractability of NP-complete problems is 
being observed as a fundamental principle of theory  of computations which plays the 
same role as the second law of thermodynamics in physics. 

At the same time, one has to recognize that  the  theory  of computational 
complexity is an attribute of a digital approach to computations, which means that the 
monster of NP-completeness is a creature of the Turing machine. As an alternative, 
one can turn to an analog device that replaces digital computations by physical 
simulations. Indeed, assume that one found such a physical phenomenon whose 

* mathematical description is equivalent to that of a particular NP-complete problem. 
Then, incorporating this phenomenon into an appropriate analog device one can 
simulate the corresponding NP-complete problem. In this connection it is interesting 
to  note that, at first sight, NP-complete problems are fundamentally different from 
natural phenomena: they look like man-made puzzles  and  their  formal mathematical 
framework is mapped  into decision problems with yedno solutions. However, one 
should recall that  physical laws can also be stated in a “man-made” form: The least 
time (Fermat), the least action (in modifications of Hamilton, Lagrange, or Jacobi), 
and  the least constraints (Gauss). 

In this paper we will describe how  to  map a combinatorial decision problem 
into the physical phenomenon of quantum resonance on a conceptual level, without 
going into details of actual implementations. 
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Let us turn to the property (5) which can  be  mapped  into  several 
computational  problems, and, for  the  purpose of  illustration,  choose  the following 
one:  given n different  items to be distributed  over n places;  the  cost of an p* item 

put in a y* place  is A:); in general,  the  costs  can be positive or negative, and there 
are  no  restrictions  to  how  many  different  items  can be put at the  same  place.  Find 
yedno answer to the following  question:  is  there  at  least  one total cost  whose 
absolute  value  falls  into an arbitrarily given  interval. 

This  problem  is  typical  for  optimal  design.  Since  the  cost of a particular 
distribution is expressed by  the  sum 

classically  one  has  to  compute all the n" sums (8) in  order to find  is  there  at least one 
E,  such  that 

where a, and u2 are  arbitrarily  prescribed  positive  numbers. 

Since costs A p )  can  be  positive or negative,  the  absolute  value in Eq. (7) 
represents a global  constraint,  and  therefore  our  problem  belongs to the class of so 
called  constraint  satisfaction  problems  that  are  the  hardest  among  other  optimization 
problems.  The  constraint (7) prevents  one  from  decomposing the solution  into 
smaller-size  subproblems.  As  shown by  Andre  Stechert  this  problem  can be 
mapped into the  partition  problem ['I , and therefore, it is  NP-complete. 

Now  we will demonstrate  how  this  problem  can  be  solved by the  quantum 
device  described  above in one  computational  step. 

First, let  us  represent the unitary matrix I/, corresponding  to  the  time-independent 
Hamiltonian 

1/, = p o '  (8) 

u, = I / ,  @U,@...@U" (9) 

as a tensor  product of n diagonal  unitary  matrices of the size n X n : 

where 

I/, = 
... 

Then  the  unitary matrix I/, in (9) will be also  diagonal  and 
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while E is expressed by Eq. (6). 

Hence,  if  one  select A t )  in (8) as the costs  of  a p" item  put in a y* place, 

then  the eigenstates E j  of the Hamiltonian H ,  will represent costs of all N = n" 
possible  distributions (8). 

Now we  have  to choose the  perturbation of the Hamiltonian, ( s e e  Eq. (1)) 
For that  purpose  assume that initially  the  quantum  device  is in a certain base state k, 
whose  energy Ek does not belbng to the interval (7). i.e., 

I E k l < u i *  Or l E k I > %  (12) 

and select H ,  and go) as follows: 

H ,  = P (13) 

where 

... 

P -  -[.;. ... . j  
... 

and 

Here.  for  the sake of  concreteness, the  initial  state Ek was selected  such that: 

I E k  - + I E k  -4 (16) 

Suppose  that  the  given  interval a,,  a2 contains  at  least  one  total cost IE91 from 

the set (6). i.e., lE91 satisfies the inequality (7). Then,  according  to  Eqs. (5) and (14). 

the  resonance  transition  from the initial state E,  to  the  state E,  (or other  states 
satisfying (7)) will occur  with  the  probability  one.  Indeed, in the  presence of a 
resonance,  the  probability  for  non-resonance  transitions  are  vanishingly  small  if 
6, << 1 (see 4. (I)).  



However,  if  the  given  interval a,   ,a2  does  not  contain any costs I€,,/ from 
the  set (6), then  according to Eqs. (5) and (14). there will be  no  resonance  transitions 
at all, and  therefore, with the probability  one  the  quantum device will stay in the 
initial  state. 

Thus, in one  computational  step,  the  problem is solved in a  deterministic 
way. As follows from Eq. (5). the  time  required  for  probability of the  resonance 
transition  from  the  state k to q to become close to one  has  the  order: 

f 

4. Conclusion 

Thus, it has  been  demonstrated  how a “man-made”  problems of exponential 
computational  complexity  which  is  hard to handle by algorithmic  methods  are  solved 
by exploiting a strongly  pronounced  physical  phenomena:  quantum  resonance. 

The  main  advantage of the  proposed  approach is in exponential  speedup  of 
solutions  to  NP-complete  combinatorial  problems. Two fundamental  physical 
phenomena  contribute to it: quantum resonance and tensor-product  decomposability 
of the  underlying unitary matrix. 

Quantum  resonance allows one to represent al l  the possible  solutions to the 
problem as a  set  of  competing  dynamical  processes:  energy  exchanges  between  pairs 
of  quantum eigenstates. The  mathematical  formalism of quantum resonance  provides 
a storage  for  these  processes:  the  transition matrix f k q  (see Eq. (2)) where  each 
process  is  labeled  through  the  corresponding  transition  probability. 

Tensor-product  decomposability  is  a  fundamental  property  of  the 
Schrodinger  equation  for  multi-particle  systems.  Due to its effect, the  number of 
stored  solutions, i.e.. the  number of  transitions f‘ is exponentially  larger  than  the 
number of the  input  parameters ( s e e  Eq. (6)) and  that is what  directly  contributes into 
exponential  speedup  and  capacity. 

In order to make  these  two  physical  phenomena work together,  one  has to 
choose the  Hamiltonian of the  quantum  system  such  that  the  optimal solution is the 
winner in the  competition with other  solutions, i.e., that i t s  transition  probability is the 
largest.  This is achieved by selecting the  oscillating part of  the  Hamiltonian in the 
form of (14). 

It should  be  emphasized that the  solution  of  one  NP-complete  problem  opens 
up a way to solve  every  NP-complete  problem in polynomial  time. 
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