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ABSTRACT

This paper examines the relationship between the use of advanced
technologies and productivity and productivity growth rates.  We use
data from the 1993 and 1988 Survey of Manufacturing Technology (SMT) to
examine the use of advanced (computer based) technologies at two
different points in time.  We are also able to combine the survey data
with the Longitudinal Research Database (LRD) to examine the
relationships between plant performance, plant characteristics, and the
use of advanced technologies. In addition, a subset of these plants were
surveyed in both years, enabling us to directly associate changes in
technology use with changes in plant productivity performance.

The main findings of the study are as follows.  First, diffusion
is not the same across the surveyed technologies.  Second, the adoption
process is not smooth: plants added and dropped technologies over the
six-year interval 1988-93.  In fact, the average plant showed a gross
change of roughly four technologies in achieving an average net increase
of less than one new technology.  In this regard, technology appears to
be an experience good: plants experiment with particular technologies
before deciding to add additional units or drop the technology entirely.

We find that establishments that use advanced technologies exhibit
higher productivity.  This relationship is observed in both 1988 and
1993 even after accounting for other important factors associated with
productivity: size, age, capital intensity, labor skill mix, and other
controls for plant characteristics such as industry and region.  In
addition, the relationship between productivity and advanced technology
use is observed both in the extent of technologies used and the
intensity of their use.  Finally, while there is some evidence that the
use of advanced technologies is positively related to improved
productivity performance, the data suggest that the dominant explanation
for the observed cross-section relationship is that good performers are
more likely to use advanced technologies than poorly performing
operations.
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I.  INTRODUCTION

In recent years there have been a number of studies examining the

relationship between the use of advanced technologies and plant

performance in U.S. manufacturing industries.  A persistent finding is

that the use of advanced technology is positively related to plant

performance measured along a number of dimensions:  sales growth, profit

margin, market share, productivity, employment growth, survival rate,

and wages (Alexander, 1994).  

While these studies have provided important new insights and

demonstrated that plants that use advanced technologies outperform those

that do not, researchers have been unable to distinguish the source of

the observed performance differences.  Do the positive correlations

reflect the independent effects of technology on performance, or do they

reflect the contributions of good managers who tend to adopt the best

practices?  In addition to being of academic interest, this distinction

is important because it affects the mix of policies that might be

pursued.  For example, if the dominant source of enhanced performance is

good management and a skilled workforce, policies to improve education

and training might be relatively more important than those that seek to

subsidize applied R&D.

In this study we exploit the 1988 and 1993 Survey of Manufacturing

Technology (SMT) and the Longitudinal Research Database (LRD) to study

several key questions relating to technology use and plant performance

over time.  First, we compare the 1988 and 1993 plant level labor
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productivity performance, measured by value added per employee.  We find

that, by and large, the 1993 survey data provide results on the

relationship between productivity and advanced technology use that are

similar to those found for the 1988 survey (Doms, et. al, 1994; Beede

and Young, 1996).  Technology use is positively associated with

productivity.

The second issue we examine is the extent to which advanced

technology use became more widespread over the 1988-93 period.  If the

benefits of technology use are as substantial as suggested by the

earlier studies, then one would expect that their use would increase

over time.  On the other hand, if the technologies are associated with

scale, or are applicable only in certain situations, then they may not

be widely adopted.  The positive relationship between size and

technology use shown in earlier work and observed in the 1993 survey

data raises the possibility of scale economies in the surveyed

technologies (Dunne and Schmitz, 1993).  We find modest increases in

technology use overall.  Some technologies, most notably those involved

in computer-aided design and engineering, showed substantial increases,

while others showed no increase in use, and some even experienced a

decline in use.  Thus, diffusion patterns were not the same across the

surveyed technologies. 

  Lastly, we examine the role that technology use plays in shifts of

resources from lower to higher productivity plants, using the subset of

plants covered in both SMT surveys.  While the results are suggestive,
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the small and somewhat nonrepresentative sample available for analysis

mandates caution in drawing conclusions. Our tentative conclusion is

that although there is  evidence that the use of technology leads to

improved productivity performance, it is the use of technology by good

performers that is the dominant feature of the data.

This paper is organized as follows.  In the second section we

describe the data from the SMT surveys and the LRD, and discuss measures

of the key variables.  The third section describes the patterns of

technology use found in 1993 and compares them to those in 1988 for the

population surveyed in each year.  Section IV provides analysis of the

relationship between technology use and productivity, beginning with

cross-section estimates that control for various plant characteristics. 

We then turn to the analysis of changes in labor productivity over the

period in Section V.  This section also presents corroborative evidence

based on estimates of the probability of plants increasing their

technology use over the period.  The final section offers some

conclusions and suggestions for future work.

II.  DATA, MEASURES, AND EMPIRICAL MODEL

A.  The Survey of Manufacturing Technology

The 1988 and 1993 Surveys of Manufacturing Technology are

stratified samples of plants with more than 20 employees in the five SIC

major industry groups 34-38: fabricated metal products, industrial

machinery and equipment, electronic and other electric equipment, and



1 Prevalence rate is defined as the percentage of the population
that has adopted a particular technology.
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instruments and related products.  In the 1988 SMT 10,526 plants were

surveyed, while in the 1993 survey, 8,336 plants were canvased. In both

years simple random sampling of plants was undertaken within strata

defined by the three-digit SIC classification of the plant and its size. 

Three size classes, based on total employment, were used in the sampling

process: 20-99, 100-499, and 500 or more workers.  Weights were assigned

to each sampled plant inversely proportional to the fraction of plants

sampled in its size-industry stratum.  Using these weights population

level estimates of establishment counts and prevalence can be developed

for each of the advanced technologies surveyed.1

Both SMTs surveyed 17 advanced technologies identified as

important by various scientific, trade, and government offices and

associations.  Table 1 gives a brief description of the technologies;

further details are available in the SMT report (1994).  The 17 surveyed

technologies are generally associated with the use of computers and

information technology to design, develop, and control manufacturing

production.  They can be grouped into 5 classes: design and engineering,

fabrication/machinery and assembly, automated material handling,

automated sensor-based inspection and/or testing, and communication and

control.

The two surveys provide measures of the use of each of 17 surveyed

technologies at two points in time.  They also provide for the
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possibility of direct measurement of technological change for a subset

of plants for which survey data are available in both years.

We use the number of technologies adopted, and groupings of these

basic counts, as measures of how extensively a plant uses advanced

technologies.  This is not a wholly satisfactory procedure for two

reasons.  First, it does not provide a measure of how intensively a

plant uses a particular technology.  It is possible for a respondent to

report that they use a technology even though the technology affects a

very small proportion of the plant's output.  This short coming is

partially addressed in the 1993 survey, which supplements the technology

use information with technology-specific counts of workstations or

pieces of equipment that are in place and a measure of when the

technology was first introduced.  Although we are unable to fully

examine them here, we do provide limited information on alternative

measures of intensity of use for a subset of technologies.

A second limitation is that simple counts do not take account

differences in combinations of technologies among plants.  Beede and

Young (1996) have shown that plants differ in the combinations of

technologies they employ and some of these combinations are

significantly associated with plant performance.  Related evidence on

the importance of combinations is given in a recent paper by Johnson,

et. al (1995).2 



saving).  In terms of the categories of technologies in the SMT,
fabrication/machinery and assembly and automated material handling are
labor-saving technologies and design and engineering, automated sensor-
based inspection and/or testing, and communication and control are
labor-enhancing technologies.  An implication of their discussion of the
two categories is that the labor enhancing technologies will tend to
have greater impacts on productivity growth. 
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While count measures are less than ideal, there are several

reasons why most of our analysis focuses on counts.  First, this allows

us to compare results from the 1993 SMT directly to earlier work for

which count data are the only data available.  Moreover, experiments

with a number of different measures of technology use find that simple

technology counts provide useful measures of how advanced a plant's

technology is (Dunne, 1994,  Dunne and Schmitz, 1994, and Doms, et. al,

1995).  In this regard, even though some of the combinations among

technologies show statistically significant relationships with

performance, technology combinations explain minor portions (less than 2

percent) of the observed variations in plant performance in the 1988 SMT

(Beede and Young, 1996).

The SMT surveys also provide several plant variables which are

used in the analysis.  In particular they provide qualitative

information on the type of manufacturing process at each plant

(fabrication, machining, and/or assembly).  We view the measures based

on this information as a proxy for how integrated is the plant's

production.  The SMT data also include the selling price of the

product(s) produced at each plant.  Doms, et. al (1995), using the 1988
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SMT, show that these price classes are positively correlated with

skilled labor in the plant.  However, we find a weaker statistical

relationship between these price variables and productivity in the 1993

data.

B.  The Longitudinal Research Database

The data for plant characteristics and performance come from the

LRD, which provides longitudinal information on inputs and outputs of

manufacturing plants derived from the quinquennial Census of

Manufacturers and the Annual Survey of Manufacturers (McGuckin and

Pascoe, 1988).  The estimates of productivity, capital stock, and labor

skill mix for surveyed plants were developed from the LRD’s information

for 1987 and 1992.  We use the census years 1987 and 1992, rather than

1988 and 1993, since data from only a subset of SMT manufacturing plants

are available in the LRD for non-census years.  Use of the census data

maximizes our sample of observations.

Labor productivity is defined as value added per employee;

similarly, capital intensity is measured by book value of total capital

per employee.  Labor skill mix is measured by the ratio of skilled

workers to total employment, where skilled workers are proxied by non-

production workers.  Plant size also is measured by total employment. 

Geographic location is in terms of the nine Census regions.  Table 2

lists all variable names and definitions used in the empirical models. 

Mean values are also reported for the 1988 and 1993 data, as well as the

1988/93 panel.  Value added and capital data are deflated with 4-digit
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SIC output and investment indices from the National Bureau of Economic

Research, Inc. (Bartlesmann and Gray, 1994).

C.  Sample

The samples used in particular analyses always consist of the

maximum observations for which all data are available after excluding

imputes, missing and extreme values.  The samples available were 6,917

plants from the 1988 SMT and 6,122 from the 1993 SMT.  These samples are

representative and accounted roughly for 17.6 percent (1988) and 14.0

percent (1993) of total establishments in the manufacturing universe and

50.1 percent (1988) and 41.3 percent (1993) of total employment.  

 There were 1,708 plants with complete data in the LRD and both

SMT surveys.  While we discuss differences between this panel subsample

and the full samples in more detail below, we note here that the

longitudinal sample is biased toward medium and large plants with higher

advanced technology use rates in both years.  The proportions of plants

in the panel subsample using the advanced technologies is higher in the

over 6 class of technology users and lower in the less than 6 category. 

As shown in Table 3 -- which provides a comparison of the proportion of

the sample in each technology class for the panel and full sample in

both 1988 and 1993 -- the bias pattern is similar in both years,

suggesting that the change measures may be reflective of the population. 

Moreover, as discussed below we are able to replicate the cross-section

estimates found for the full samples in each year with the data from the

panel subsample.
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D.  Empirical Model

The basic empirical model is a traditional fixed effects Cobb-

Douglas production function.

Log(Pit) = βo + β1[Log(Kit/Lit)] + β2TECHit + β3Xit + β4µιτ + ειτ,
for i = 1,...,N,
    t = 1,...T. (1)

The subscript ‘i’ refers to the plant; ‘t’ denotes the time

period, and the $s are coefficients to be estimated.  In the

discussion below, we drop the ‘t’ subscript for simplicity of

presentation.  P denotes productivity, measured as value added

(thousands) per employee, and K/L is capital intensity, measured

as the book value of capital (thousands) per employee.  X is a

vector of other control variables, including size, age, labor

skill mix, product price, manufacturing type, industry, and

region.  The µ is are unobserved, fixed plant effects, including

management quality, and ε is an error term. 

Our TECH variable measures advanced technology in use at the

plant and is an index to account for the quality variation in

capital.  It is well known that when estimating the underlying

characteristics of production, accounting correctly for

variations in the quality of capital is critical. We expect a

positive relationship between plant productivity and our

technology variable.  

In a similar fashion, the ratio of non-production workers to

total employment proxies for a quality index for labor.  Non-

production workers are often thought to be more highly skilled



3 Although there is significant within group heterogeneity between
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content of nonproduction workers is higher than that for production
workers.
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than production workers.3  Adoption and use of advanced

technologies, particularly computer based equipment, requires

skilled labor.  Thus, we would expect to find better productivity

performance at plants with more skilled labor 

Two econometric problems are of concern in estimating this

model.  First, the plant effects (µ) are unobserved.  Of greater

concern to us is the estimates of $2.  The TECH parameter

estimates are biased upward due to the likely positive

correlation between technology and the omitted plant effects (µ). 

In this case, the positive coefficient of $2 may be simply

picking up the fact that 'good' plants are likely to have

advanced technologies, not that technology use improves

productivity.  We cannot get consistent estimates of β2 unless we

find instruments that are correlated with the TECH variable, but

uncorrelated with µ and ε.

In order to eliminate this problem, we estimate the

production function model of equation (1), in first difference

form:

∆log(Pi) = γo + γ1[∆Log(Ki/Li)] + γ 2(∆TECHi) + γ3(∆Xi) + ∆εi, (2)

where γj = (βj,93 - βj,88)              for all j.

In principle, equation (2) eliminates the time invariant,
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unobserved plant effect (µ) as well as the time invariant

observed plant characteristics, such as size and age class, type

of manufacturing, region, and industry.

Unfortunately, a common problem when differenced data are

used to measure production relationships is that the effects of

errors in measurement of other variables are magnified.  This

will reduce our ability to identify γ2 because the signal

remaining in the )TECH measure may be overwhelmed by the

relatively large measurement errors in capital (Griliches, 1986;

Griliches and Mairesse, 1995); resulting in biased and

inconsistent parameter estimates.

Finally, we note that while our ultimate object is to

examine the direction of causality between productivity growth

and the use of advanced technology, this requires estimation of a

full structural model.  Full structural modeling is beyond the

scope of this paper for a variety of reasons, including data

constraints.  

With these factors in mind, we estimate equation (1) for two

cross-sections, 1988 and 1993, in section IV.  This allows us to

check the robustness and persistence of the relationship between

the use of the advanced technologies and the level of

productivity.  Using our panel of plants covered in both the 1988

and 1993 SMT, equation (2) estimation results are reported in

section V.  Before turning to this analysis, we discuss the

observed changes in technological use between 1988 and 1993.
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III.  DIFFUSION OF TECHNOLOGIES

In 1993, roughly 75 percent of all manufacturing plants

classified in SICs 34-38 used at least one of the 17 advanced

technologies.  This was a modest increase from the 68.4 percent 

found in 1988.  The number of plants using more than five

advanced technologies also increased, from 23.1 percent in 1988

to 29.1 percent in 1993.  Because use rates are much higher for

large then small plants, use rates are much greater if calculated

on a sized weighted basis.  

Table 4 shows the percentage of establishments in 1993 using

each of the 17 technologies by the five major SICs covered in the

survey. The prevalence rates of individual technologies varied

widely.  Very few of the technologies showed use rates over 50

percent and many, particularly lasers, robots, and automated

material sensors, had use rates less than 10 percent.  The most

prevalent technologies are computer aided design and numerically

controlled machine systems.  These technologies were identified

by Johnson, et. al (1995) as labor enhancing and they reported

that "labor-enhancing technologies enjoy the greatest adoption

rate."  Thus, our results are generally consistent with those for

Canada. 

In order to focus on differences in use rates between 1988

and 1993, Table 5 presents the use rates, by technology for 1988. 

Comparison of Tables 4 and 5 reveals significant increases in use

rates for some technologies.  What is striking about the data is

that use actually declines for a few of the technologies and is



4 For ease of presentation, we report only the parameter estimates
for the capital intensity, labor skill mix, and technology variables. 
The full set of parameter estimates is available from the authors.
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stagnant for others.  Computer design and engineering, consisting

of three individual technologies, showed the greatest increases. 

Moreover, the increases were observed in each major industry

group.  The only other technology that showed large percentage

increases in use rates was local area networks (LAN), most

notably for transfers of technical data. 

The data in these tables suggest that new entry is not a

primary vehicle for introducing advanced technologies.  Each

major industry group showed positive increases in the number of

establishments operating.  Industry 38, with by far the most

substantial increase in plants, showed little difference from

other industries in the change in use rates.  This is consistent

with Dunne (1994), who found young and old plants used advanced

technologies at similar frequencies, and also with Baily, et. al

(1991), who found that increases in productivity are associated

with shifts in market share to productive continuing plants, not

entry or exit.  

IV.  PRODUCTIVITY AND TECHNOLOGY USE

Table 6 shows regressions of numbers of technologies and a

variety of control variables on labor productivity for both 1988

and 1993.4  Although there are some differences, the coefficients

are remarkably similar in each year.  Of most interest, the
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coefficients on technology use remain strong, positive, and

increasing in number of technologies in both years.  These

coefficients are significant even after accounting for a wide

range of control measures including labor skill mix, capital

intensity, plant size and age, product price, region, and 4-digit

SIC industry effects.

The impact of various plant characteristics is as follows. 

Labor productivity increases with size, particularly for plants

with more than 500 employees.  Age has the opposite effect: 

younger plants are generally more productive, ceteris paribus.

The type of manufacturing coefficients (e.g., fabrication and/or

machining, assembly, all three, or none) are negative.  Since the

omitted category of this set of dummy variables is plants for

which none of the other three categories are relevant, the

interpretation of these variables is not clear.  Nonetheless,

since the coefficient for plants which engage in fabrication,

machining, and assembly work is the smallest of the set, these

findings suggest that more integrated operations are the least

productive.

A.  Intensity of Technology Use

These cross-section results provide strong evidence that

plants that use advanced technologies more extensively have

higher productivity performance.  In order to investigate the

effect of the depth or intensity of use, as contrasted with the

width or breath of use, Table 7 presents three regressions in

which measures of intensity of use in design and engineering,
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fabrication and machining, and communication and control are

added.  These three variables are based on questions new to the

1993 survey.  The data on how many workstations or pieces of

equipment in use at a plant provides information beyond simple

counts of technologies used.  We introduced this measure into the

regression on a per-employee basis to reflect intensity of use.

The intensity measures were not applicable for all 17

technologies surveyed.  However, they were available for the most

prevalent technologies -- design and engineering, fabrication and

machinery, and communications and control.  We report three

regressions involving these variables.  The first, estimated for

the entire sample, shows a significant positive coefficient for

computer assisted design and communication and control

technologies.  These results suggest that intensity of use is

perhaps an independent factor in explaining plant productivity. 

We also note that the extensiveness of use of advanced

technologies remains a significant factor in the productivity

equation even after intensity of use is introduced.

A small observed value for the intensity of use measure can

arise either because the plant did not use the technology at all

or used it sparingly.  A plant that did not use one of the

technologies for which we have an intensity measure could be

highly productive because it used one of the non-measured

categories of technology.  If this situation was widespread, then

it would tend to bias the coefficient on the intensity measure

towards zero.  By restricting the sample we can eliminate this
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possible downward bias.  Therefore, we estimated the model using

a restricted sample including only those plants that had no

technology or used the design and engineering or communication

and control technologies for which we had a intensity of use

measure.  As can be seen from columns two and three in Table 7,

the coefficients on technology intensity are positive and

significant, and about 19% higher in value, relative to the

estimates from the full sample (column one), suggesting the bias

from this source is moderate.

While these results show a significant and consistent

positive relationship between productivity and advanced

technology use, the source of the correlation cannot be deduced. 

All the positive characteristics, arguably including technology

use -- size, labor skill mix, capital intensity, etc. -- are

associated with good management and progressive firms.  It is

possible that these relationships are simply reflecting the fact

that efficient producers are most likely to use new technologies.

V.  PRODUCTIVITY GROWTH AND TECHNOLOGY USE

Our analysis of productivity growth is based on panel data

from the 1988 and 1993 SMT.  Table 8 displays mean labor

productivity for a transition matrix based on technology use in

1988 and 1993.  For example, the row\column combination 3-5\3-5

includes plants that used 3-5 advanced technologies in both

years.  For these plants, productivity increased from 60.4 in

1988 to 66.2 in 1993.  In order to protect confidentiality, we
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omit certain off diagonal elements off diagonal elements for

transitions up and down.  None of the conclusions drawn are

contradicted by the suppressed data. 

For all technology cells, real labor productivity increased

over the 1988-93 time period, with the exception of the 1-2/0

cell, where productivity declined from 62.8 to 58.7, and the 3-

5/1-2 technology cell, which remained virtually static at $66 of

value added per employee.  Generally speaking, within a 1993

technology use class, productivity increases with more extensive

technology use in 1988 (moving down a column).

Table 9 displays the mean labor productivity in both 1988

and 1993 for the entire sample of plants in the 1988 survey and

the 1993 survey, respectively.  This table is directly comparable

to the row and column sample means in Table 8.  A comparison of

these means suggests that the results shown in Table 8 for the

panel subsample are quite similar to those found for the cross-

section samples.  The levels and the change are similar, with two

notable exceptions.  Productivity is 18 points higher for plants

in the 1993 sample with no advanced technology in place than for

the panel subset: 48.7 and 66.5, respectively.  Conversely, the

1993 performance of plants using 13-17 of the surveyed

technologies is just under 100 for both the 1988 and 1993 sample,

but somewhat lower for the panel subset,  78.2 (1988) and 90.1

(1993).

Although comparisons such as these are not conclusive, we

believe they support use of the smaller nonrepresentative sample
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for the growth in productivity analysis.  This is particularly

true when these comparisons are viewed in the context of the

distribution of the panel across the technologies that was

presented earlier in Table 3.  Recall that while the distribution

of the subsample was not the same as the distribution of the

representative sample in either year, the differences were

similar in each year.

The results of this exercise do not provide any evidence

that technology use per se leads, at least immediately, to

increased productivity.  Tables 8-9 clearly reflect the results

of the cross-section regressions presented earlier:  greater

numbers of technologies are associated with higher productivity. 

However, in Table 8, the cells showing the greatest growth rate

in productivity were not necessarily associated with more

extensive use of technology.  The rate of growth in productivity

was highest for the 0/0 (21.1%), 6-12/3-5 (19.4%), and 1-2/3-5

(16.9%) cells.  On average, productivity grew by 13.6% for plants

moving down a technology use class, 11.4% for plants remaining in

the same technology class, and 11.2% for plants moving up a

technology class.  Based on these data we tentatively conclude

that the positive association of technology use and productivity

is reflective of a correlation of our measure of technology with

an omitted variable(s) such as the quality of management or

capital.

A.  Productivity Growth Regressions

Although Table 8 indicates that changes in the number of



5 Net change is measured as the change in the number of
technologies reported in 1993 minus the number reported in the 1988 SMT. 
Gross change is defined as the absolute value of a change in the use of
technologies.  Therefore, adding a technology counts as one, as does
dropping a technology.  A gross change of four means that between 1988
and 1993 four technologies were added, or dropped, or a combination of
adds and drops.
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technologies in use by a plant effects productivity, there are

reasons to examine the relationship further.  First, the table

does not provide controls for many of the factors which differ

across plants, such as changes in the capital intensity and

change in labor force skill mix.

Second, the table measures changes by shifts across

technology classes.  While these classes are meaningful in the

cross-section regressions, they may be too crude and aggregate

for use in analysis of productivity growth.  Table 8 implicitly

measures net change in number of technologies.5  The average net

change in technologies in use was 1.7 for plants with none of the

17 advanced technologies in 1988.  For plants with 6 or more

technologies the average net change between 1988 and 1993 was

negative, indicating a drop in the number of technologies being

used.

This aspect of the adoption process, adding and dropping

technologies, needs to be considered.  In fact, the gross change

in the number of technologies in use ranged from 1.7 for the no

technology class (1988) to 5.3 for plants using 13 or more

technologies in 1988.  Therefore, we further investigate the

relationship between productivity growth and technology use by
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estimating the first differenced model given in equation (2). 

The model relates change in (the log of) productivity to changes

in the capital intensity, skill mix, and extent of technology

use.

To measure change in technology use, we developed measures

of both net and gross change.  Most plants not only added, but

also dropped, one or more of the 17 surveyed technologies.  While

one third of the sample showed a decline in the extent of their

technology use, the average net change was positive, from 4.0

technologies to 4.7.  Nevertheless, there was considerable

churning -- the average plant showed a gross change of about 4

technologies.  The net change measure hides considerable shifting

in the actual technological mix reported in the two years.

The high degree of churning, or turnover, in technologies

used makes it likely that our technological class variables, as a

measure of the extensiveness of technology use, are subject to

measurement error.  In the context of a dependent variable like

change in log productivity, which has relatively small variation,

finding any relationship is difficult.  We don't, however, want

to belabor the point.  As we discuss below, this churning appears

reflective of real forces.  In particular, the high rate of

turnover in gross technology use may, in addition to measurement

error, be associated with experimentation and acceptance or

rejection of particular technologies.

The results of applying the panel data to this model of

productivity growth are given in Table 10.  Columns 1-3 differ
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only in the measure of the change of the extent of technology use

variable.  The first column includes net change in the number of

technologies used, while column two includes gross change.  The

results in the third column replace the change in the number of

technologies with a set of class dummies for whether the plant

moved up, down, or remained in the same technology class (0, 1-2,

3-5, 6-12, or 13-17) over the 1988-93 period.

It is apparent that this model, regardless of which measure

we use for change in technology use, explains essentially none of

the observed variation in productivity growth.  We believe our

lack of explanatory power is due to three factors.  First, the

errors in variable measurement, as discussed in Section II.

A second possibility is that better performers are moving to

newer or better technologies not covered in the survey.  Most of

the surveyed technologies have been available since the early

1980s, some for considerably longer.  However, we do not think

the surveyed technologies are obsolete because the survey

responses suggest that plants not using the technologies planned

to adopt them.  Nonetheless, if coverage of new technologies is

incomplete, some plants may be switching to out-of-scope

technologies and we may well be missing information on the

“cutting edge” technologies which are making the difference in

plant performance.

A third difficulty, we call a plant-specific “persistence

effect”.  We know that the variance in productivity across

establishments at any given point in time is quite high.  We also



6 Bailey, et. al (1992) examine the dynamics of plant level
productivity for 23 four-digit manufacturing industries.  They found,
among other things, that there is significant persistence across time in
plant level productivity.  Dwyer (1995) found that, for the textile
industry, plant “fixed effects” erode over time, with a half life of 10
to 20 years.
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know that there is a persistence factor in individual plant’s

productivity:  the plant’s position within the productivity

distribution tends to remain somewhat stable, but with a

degradation or regression to the mean over time.6  Our model, as

specified in equation (2), assumed this persistence factor was

constant.  To adjust for the degradation of the persistence

factor, we reestimate equation (2), modifying the “fixed” plant

effects (µ) as follows:

∆µi = ρi, where ρi = f(initial statei). (3)

The persistence effect, represented by ρi, is a function of

the plant’s initial state.  The function, f, is unknown, as is

the exact specification of the initial state.  We, therefore, use

a linear function of the extensiveness of the plant’s set of

technologies in 1988 and the quality of the plant prior to

technology changes as instruments for ρ.  The later is proxied by

a set of class dummy variables for the industry specific quintile

of the 1988 labor productivity distribution the plant was in.  In

this way, we attempt to minimize transitory factors in the

observed productivity measure that do not reflect the permanent

or long-run quality of the plant. 

When we include the initial conditions, the positive



7 We also estimate the model with gross change, expecting it to
capture adjustment costs in adding and dropping technologies.  However,
the estimated relationship is statistically insignificant, perhaps
because of omitted, non-survey technology information.
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relationship between capital intensity and productivity growth

becomes statistically significant.  However, the change in labor

skill mix remains insignificant.  The net change in the number of

technologies has a positive and  significant relationship to

productivity growth.7  This suggests that the observed

correlation between productivity and the extent of technology use

is not just a matter of good plants adopting new technologies.

In general, all the measures of initial conditions gave

results consistent with the hypothesis that a significant

fraction of a plant's productivity growth is associated with its

status at the beginning of the period. The coefficients on the

plant quality variables (initial productivity quintile) are

negative, suggesting regression to the mean characterizes the

productivity distribution.  That is, plants with high observed

productivity in a period are likely to show lower growth in

productivity and vice versa.  The plant's initial number of

technologies are positively related to change in productivity,

although insignificant for plants with less than 6 technologies. 

This suggests that experience may be a factor in determining the

impact of technology on improved plant performance, which we

examine further below.

B.  Experience in Using Technology

As mentioned above, the regression results suggest that



8 The data exhibits the phenomena known as “telescoping,” or
respondent error in recalling the date of adoption.
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experience may be a factor in determining the impact of

technology on changes in plant performance.   A comparison of the

net and gross change in the number of technologies shows almost

four changes in technologies used for every net increase.  While

we know that some of this is noise in the data, the rather

substantial observed turnover suggests that advanced technologies

may be something of an experience good.  Plants adopt a

technology and then through experience decide whether or not to

continue to use it.  The 1993 survey includes a set of questions

designed to indicate how long a plant has used each technology. 

The answers are subject to recall bias and comparisons to

responses in the 1988 survey indicate inconsistencies in some of

the answers.8  Thus we rely on our panel data for measurement of

technology adoption after 1988.  However, the experience measure

that can be derived is of such potential interest that we include

some discussion of it here.  

Experience with an appropriate technology should, through

learning by doing, lead to lower costs and increased

productivity. However, our measure of experience, the portion of

technologies used more than five years, is not significant in

regressions of productivity levels or productivity growth.  This

may be due to the substantial noise in the survey data.  Table 11

shows the average percentage of plant technologies used more than

five years for the transition matrix of number of technologies in
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use in 1988 and 1993.  The table excludes certain off-diagonal

elements to ensure confidentiality.  These omitted cells do not

effect any conclusions drawn.

From Table 11, it is readily observed that the percentage of

technologies used for more than five years is higher the greater

the number of technologies that the plant uses.  For plants with

13 or more technologies in 1993, 71 percent of the technologies

had been in place for more than 5 years.  In contrast, for those

plants with 3-5 technologies in 1993, only 53 percent of the

technologies were in use over 5 years.  This relationship is

evident not just in the sample means.  Each column of the Table

11 shows that the experience of plants within the same 1993 use

class is higher the greater number of technologies in use in

1988.  In other words, those plants with the largest technology

use had the greatest experience.

As expected, the trend in the relationship across the rows

is in the opposite direction.  That is, for any level of

technology in 1988, the experience ratios decline with greater

1993 level of technology use.  For example, for plants with 6-12

technologies in use in 1988, the percentages are 78 percent, 70

percent, and 64 percent, respectively.  Similarly, for plants

with 3-5 technologies in 1988, the percentage of the plants with

more than 5 years experience in 1993 is 63 percent, 60 percent,

and 46 percent, for plants moving down, remaining the same, and

moving up in the technology use distribution, respectively. 

Looking at the diagonal of the table, it is also readily observed



9 Recall that it is possible that best performers are moving to
newer technologies not covered in the survey.
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that for those plants that did not change their technology group,

the greater the number of technologies in place, the higher the

portion of plants with extensive experience using the

technologies.

These observations are consistent with substantial

experimentation and adjustments in the process of arriving at a

technological configuration that is optimal for the plant.9  Is

there support for this view?  To find out we estimated an ordered

probit with three possible outcomes for a plant's change in

technology use between 1988 and 1993.  Table 12 shows the

estimated probabilities of moving to a higher technology use

class, dropping down to a lower technology use class, or

remaining in the same class, conditional on the plant’s initial

(1988) technology use class. The values in the table are based on

evaluation of the ordered probit at the sample mean values.

The probability of a plant decreasing the number of

technologies it uses and dropping down a technology class is 92

percent, if the plant used 13 or more of the surveyed

technologies in 1988.  Since a plant can't increase its extent of

technology use if it is already in the top use class, or decrease

its technology use if its is in the lowest use class, these

estimates are censored.  Even so, there is only an 8 percent

chance that a plant with 13-17 technologies in 1988 would still

be in that class in 1993.  Plants using 6-12 technologies in 1988
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had a 53 percent chance of dropping to a lower class by 1993.  In

contrast, plants with two or fewer technologies had nearly a 60

percent chance of increasing the number of technologies they use,

such that they moving to a higher technology use class.  These

results are not unexpected.

To summarize, plants with more extensive advanced technology

use have greater probabilities of dropping in technology class,

while those using few advanced technologies are more likely to

increase.  What is surprising is that in only one category -- 3-5

technologies in use in 1988 -- was the probability of remaining

in the same class greater than the probability of changing

classes.  The typical plant had a relatively high probability of

changing its category of technology use.  Thus, even though these

classes of technology use are quite wide, they do not completely

hide the extensive turnover suggested by the comparison of the

net and gross change in the actual number of technologies used.

VI.  CONCLUSIONS

Before drawing together the main results of this study, we

emphasize the importance of technology surveys like the SMT for

understanding the role of technology in the evolution of

industries and, consequently, in the performance of plants. 

There are two aspects of the SMT that are worth highlighting. 

First, the new SMT survey is a direct follow-up to the 1988

survey of advanced technology use.  The similarity in design

between the two surveys provided a unique opportunity to examine
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the use and planned use of advanced (computer based) technologies

at two different points in time.  Data sets like this are rather

scarce. 

Second, the data complement the basic plant level data

collected in the regular censuses and annual surveys, which

provide measures of plant performance and other plant

characteristics.  Moreover, for a subset of the surveyed SMT

plants, we have the information on both technology use and plant

performance available in both years. This allows us to directly

associate changes in technology use with changes in plant

productivity performance, controlling for other plant

characteristics.  While the small and somewhat nonrepresentative

sample available for this part of the analysis mandates caution

in drawing conclusions, we believe that several important

findings emerge.

The main findings of the study are as follows.  First, the

diffusion rates across the surveyed technologies differ

substantially.  Second, the adoption process is not smooth: 

plants add and drop technologies over the six year interval 1988-

93.  In fact, the average plant showed a gross change in

technology use of roughly four in achieving an average net

increase of 0.5 new technologies.  In this regard, technology

appears to be an experience good:  plants experiment with

particular technologies before deciding to add additional units

or drop the technology.  Future work needs to examine ways to

identify how much of this churning is real and how much is noise. 
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At the least, these findings indicate that the pace of

technological progress at the plant level involves more than

simply adding technologies in a uniform way.  

Our third finding is that establishments using advanced

technologies exhibit high productivity.  Fourth, this

relationship is observed in both 1988 and 1993 even after

accounting for other important factors associated with

productivity:  size, age, capital intensity, labor skill mix, and

other controls for plant characteristics such as industry and

region.  Fifth, the relationship between productivity and

advanced technology use is observed both in the extent of

technologies used and the intensity of their use.  Finally, while

there is some evidence that the use of advanced technologies is

positively related to improved productivity performance, the data

suggest that the dominant explanation for the observed cross-

section relationship is that good performers are more likely to

use advanced technologies than poorly performing operations.
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Table 1

Description of Technologies

Technology Description

Computer aided design Use of computers for drawing and designing parts or products for
analysis and testing of designed parts and products.

CAD controlled machines Use of CAD output for controlling machines used to manufacture
the part or product.

Digital CAD Use of digital representation of CAD output for controlling
machines used to manufacture the part or product.

Flexible manufacturing     
  systems/cell

Two or more machines with automated material handling
capabilities controlled by computers or programmable
controllers, capable of single path acceptance of raw materials
and delivery of finished product.

Numerically controlled     
  machines/computer        
  controlled machines

NC machines are controlled by numerical commands punched on
paper or plastic mylar tape, where CNC machines are controlled
through an internal computer.

Materials working lasers Laser technology used for welding, cutting, treating, scribing,
and marking.

Pick/place robots A simple robot with 1-3E of freedom, which transfers items from
place to place.

Other robots A reprogrammable, multi functioned manipulator designed to move
materials, parts, tools, or specialized devices through variable
programmed motions.

Automatic storage/    
retrieval systems

Computer-controlled equipment providing for the automatic
handling and storage of materials, parts, and finished products.

Automatic guided vehicle   
 systems

Vehicles equipped with automatic guidance devices programmed to
follow a path that interfaces with work stations for automated
or manual loading of materials, parts, tools, or products.

Technical data network Use of LAN technology to exchange technical data within design
and engineering departments.

Factory network Use of LAN technology to exchange information between different
points on the factory floor.

Intercompany computer    
network

Intercompany computer network linking plant to subcontractors,
suppliers, and/or customers.

Programmable controllers A solid state industrial control device that has programmable
memory for storage of instructions, which performs functions
equivalent to a relay panel or wired solid state logic control
system.

Computers used on factory  
  loor

Excludes computers used solely for data acquisitions or
monitoring.  Includes computers that may be dedicated to
control, but which are capable of being reprogrammed for other
functions.

Automated sensors used on  
 inputs

Automated equipment used to perform tests and inspections on in-
coming or in-process materials

Automated sensors used on  
  final product

Automated equipment used to perform tests and inspections on
final products.

Source:  Manufacturing Technology, 1988.
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Table 2

Definition of Variables and Summary Statistics

          1988/93
Variable 1988 1993 Panel

Discrete Variables
Tech0:  No Technologies .180 .113 .102
Tech1:  1 - 2 Technologies .248 .208 .184
Tech2:  3 - 5 Technologies .276 .305 .253
Tech3:  6 - 12 Technologies .270 .345 .410
Tech4:  13 - 17 Technologies .026 .029 .051
NoChange:  Same Technology Class  .483
        in 1988 & 1993
MoveUp:  Higher Technology Class  .318
         in 1993 Than 1988
MoveDown:  Lower Technology Class .199
         in 1993 Than 1988

Assembly:  Assembly .187 .185
Fab/Mach:  Fabrication & Machining .135 .121
Fab/Mach/Assemb:  Fabrication, .625 .636
       Machining & Assembly
None:  None of the above .054 .052

Size1:  21 - 99 Employees .427 .427     
Size2:  100 - 249 Employees .269 .267
Size3:  250 - 499 Employees .130 .134
Size4:  499 - 999 Employees .103 .106
Size5:  1,000+ Employees .072 .066
  
Age1:  < 5 Years .099 .090
Age2:  5-15 Years .304 .308
Age3:  16-29 Years .309 .299    
Age4:  30 + Years .287 .303

Price1:  < $5 .143 .139
Price2:  $5-$100 .264 .262
Price3:  $101-$1,000 .217 .211
Price4:  $1,001-2,000 .055 .052
Price5:  $2,001-10,000 .122 .112
Price6:  $10,000 + .198 .212

MU = Multi-Unit Firm .618 .599

LPQuintile1:  1988 Labor Productivity .140
         in Lowest Quintile
LPQuintile2  1988 Labor Productivity .188
         in Second Quintile
LPQuintile3:  1988 Labor Productivity .195
         in Third Quintile
LPQuintile4:  1988 Labor Productivity .220
         in Fourth Quintile
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                                                  1988/93
Variable                            1988      1993      Panel

LPQuintile5:  1988 Labor Productivity .257
         in Highest Quintile

Continuous Variables
LnLP:  Log(Value Added/Labor) 3.881 3.990
∆lnLP:  LnLP93 - LnLP88 .100

LnKL:  Log(Capital/Labor) 3.186 3.389
∆LnKL:  LnKL93 - LnKL88 .301

LnSkill:  Log(NonProduction   -1.313 -1.268
       Workers/Labor)
∆LnSkill:  LnSkill93 - LnSkill88 .033

NTech:  Number of Technologies 3.984 4.726
       in Use
∆Net:  Net Change in Number of .486
       Technologies, 1993-1988
∆Gross:  Gross Change in Number 4.162
       of Technologies, 1993-1988 

1 Deflated with NBER four-digit SIC price index, 1987=1.00.
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Table 3

Sample Distribution by Number
of Technologies Used, 1988 & 1993

Number of
Technologies

1988 1993

Panel SMT Panel SMT

  0 0.10 0.18 0.10 0.11

  1 - 2 0.18 0.25 0.14 0.21

  3 - 5 0.25 0.28 0.25 0.31

  6 - 12 0.41 0.27 0.46 0.34

 13 - 17 0.05 0.03 0.06 0.03

Total 100.00 100.00 100.00 100.00

N 1,732  6,917  1,732  6,122  
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Table 4

Percent of Establishments Using
Computer-Based Machines by Two-Digit Industry, 1993

  Two-Digit Industry*
Technology 34 35 36 37 38 All

Design & Engineering
  Computer Aided Design 46.5 64.1 64.2 53.9 65.5 58.8
  CAD Controlled Machines 19.3 34.8 21.5 25.5 18.5 25.6
  Digital CAD 7.0 11.6 16.1 9.6 16.1 11.3

Fabrication/Machining Systems
  Flexible Manufacturing Systems 9.5 11.8 17.0 15.5 14.2 12.7
  NC/CNC Machines 40.4 61.9 34.5 44.1 35.1 46.9
  Lasers 3.4 4.3 7.8 5.4 6.3 5.0
  Pick Place Robots 6.6 5.4 15.2 10.1 11.7 8.6
  Other Robots 3.8 3.6 5.3 11.7 3.8 4.8

Automated Material Handling
  Automatic Storage/Retrieval 1.2 2.3 3.8 3.8 4.8 2.6
  Guided Vehicle Systems   0.3 1.1 1.7 2.2 1.5 1.1

Automated Sensor Based Inspection
  Materials Sensors 8.1 8.1 11.8 15.6 11.7 9.9
  Output Sensors 9.6 10.6 17.5 16.1 14.7 12.5

Communication & Control
 LAN for Technical Data 20.1 29.4 37.1 28.0 40.7 29.3
 Factory LAN 14.5 21.0 30.5 23.9 30.0 22.1
 Intercompany Computer Network 16.7 15.4 21.9 23.4 15.3 17.9
 Programmable Controllers 30.2 29.0 30.7 30.7 29.8 30.4
 Computers Used on Factory Floor 20.2 28.1 33.2 26.8 29.0 26.9

Number of Establishments 13,190  14,231   7,472   4,110   3,988  42,991

Source: “Manufacturing Technology: Prevalence and Plans for Use, 1993,” Current
Industrial Reports.  Bureau of the Census, Economics and Statistics Administration,
U.S. Department of Commerce.

* Industry 34 -- Fabricated Metal Products, Except Machinery & Transportation
Equipment
  Industry 35 -- Industrial & Commercial Machinery & Computer Equipment
  Industry 36 -- Electronic & Other Electrical Equipment & Components, Except
Computer
  Industry 37 -- Transportation Equipment
  Industry 38 -- Measuring, Analyzing, & Controlling Instruments
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Table 5

Percent of Establishments Using
Computer-Based Machines by Two-Digit Industry, 1988

  Two-Digit Industry*
Technology 34 35 36 37 38 All

Design & Engineering
   Computer Aided Design 26.8 43.2 48.5 39.9 48.9 39.0
   CAD Controlled Machines 13.1 21.6 16.0 16.6 14.6 16.9
   Digital CAD 6.5 11.0 12.8 10.0 12.5 9.9

Fabrication/Machining Systems
   Flexible Manufacturing Systems 9.0 11.0 11.9 12.6 10.8 10.7
   NC/CNC Machines 32.2 56.7 34.9 37.3 33.6 41.4
   Lasers 2.9 3.6 7.5 6.0 4.3 4.3
   Pick Place Robots 5.7 5.8 13.1 10.4 8.6 7.7
   Other Robots 4.4 5.2 6.9 10.5 4.4 5.7

Automated Material Handling
   Automatic Storage/Retrieval 1.0 3.6 4.9 4.7 4.2 3.2
   Guided Vehicle Systems   0.8 1.7 1.8 3.3 1.3 1.5

Automated Sensor Based Inspection
   Materials Sensors 6.7 8.5 16.2 12.7 12.2 10.0
   Output Sensors 8.3 9.9 22.2 14.4 15.4 12.5

Communication & Control
   LAN for Technical Data 13.4 18.5 24.9 22.0 25.8 18.9
   Factory LAN 11.6 16.3 21.1 18.7 21.3 16.2
   Intercompany Computer Network 14.9 12.4 16.2 21.7 13.8 14.8
   Programmable Controllers 26.8 33.9 38.0 32.0 32.7 32.1
   Computers Used on Factory Floor 21.1 28.1 34.5 27.4 32.3 27.3

Number of Establishments  12,746  13,176   7,293   3,425  2,916  39,556

Source: “Manufacturing Technology, 1988,” Current Industrial Reports.  Bureau of the
Census, Economics and Statistics Administration, U.S. Department of Commerce.

* Industry 34 -- Fabricated Metal Products, Except Machinery & Transportation
Equipment
  Industry 35 -- Industrial & Commercial Machinery & Computer Equipment
  Industry 36 -- Electronic & Other Electrical Equipment & Components, Except
Computer
  Industry 37 -- Transportation Equipment
  Industry 38 -- Measuring, Analyzing, & Controlling Instruments
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Table 6

Labor Productivity Regressions1

Variable 1988 1988 1993 1993

Intercept 3.777*
(0.076)

3.749*
(0.077)

4.039*
(0.083)

4.010*
(0.084)

LnKL 0.158*
(0.008)

0.160*
(0.008)

0.143*
(0.008)

0.144*
(0.008)

LnSkill 0.070*
(0.012)

0.069*
(0.012)

0.079*
(0.012)

0.079*
(0.012)

NTech 0.015*
(0.002)

0.015*
(0.003)

Tech1 0.058*
(0.020)

0.047H 
(0.026)

Tech2 0.094*
(0.021)

0.090*
(0.026)

Tech3 0.127*
(0.024)

0.118*
(0.029)

Tech4 0.215*
(0.048)

0.231*
(0.052)

N 6,843 6,843  6,062 6,062

R2 .232 .232 .264 .263

Numbers in parentheses are standard errors.  Definition of variables given in
Table 1.
1 All regressions include dummy variables for size, age, type of    
manufacturing, mean product price, single/multi-unit firm,         region, and
four-digit SIC industry.
* Significant at the 95% level.
H  Significant at the 90% level.
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Table 7

Labor Productivity Regressions, 19931

Variable 1993

Intercept 4.001*
(0.084)

3.978*
(0.103)

3.773*
(0.102)

LnKL 0.144*
(0.008)

0.142*
(0.008)

0.163*
(0.010)

LnSkill 0.078*
(0.012)

0.073*
(0.014)

0.061*
(0.016)

Tech1 0.039
(0.026)

0.051*
(0.029)

0.047
(0.042)

Tech2 0.077*
(0.026)

0.095*
(0.027)

0.084*
(0.031)

Tech3 0.098*
(0.029)

0.108*
(0.030)

0.112*
(0.033)

Tech4 0.200*
(0.052)

0.210*
(0.053)

0.204*
(0.059)

Design &
 Engine. Int.

0.153H 
(0.080)

0.182*
(0.081)

Fabricating &
 Machining Int.

-0.002
(0.002)

Comm. &
 Control Int.

0.119*
(0.045)

0.142*
(0.048)

N 6,062 5,163 3,757

R2 .265 .267 .295

Numbers in parentheses are standard errors.  Definition of    variables given
in Table 1.
1 All regressions include dummy variables for size, age, type of    
manufacturing, mean product price, single/multi-unit firm,       region, and
four-digit SIC industry.
* Significant at the 95% level.
H Significant at the 90% level.
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Table 8

Average Labor Productivity,
By Technology Use, 1988 & 1993 Panel

Technology Technology Use, 1993

Use, 1988 0 1-2 3-5 6-12 13-17 Sample Mean

1988 1993 1988 1993 1988 1993 1988 1993 1988 1993 1988 1993

  0

  1 - 2

  3 - 5

  6 - 12

 13 - 17

43.6

62.8

52.8

58.7

42.2

50.2

66.5

49.8

54.9

65.9

53.3

60.4

57.1

62.3

66.2

68.2

64.3

72.2

77.3

69.5

80.0

84.7

75.6

82.9

87.9

92.1

44.3

53.2

62.8

70.2

80.8

52.0

58.0

68.4

78.9

87.6

Sample Mean 57.7 66.5 54.3 57.4 56.8 64.7 68.5 75.2 78.2 90.1 63.1 70.1
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Table 9

Average Labor Productivity 

By Technology Use, 1988 and 1993 Samples

                                 Technology Use

0 1-2 3-5 6-12 13-17 Sample Mean

1988 1993 1988 1993 1988 1993 1988 1993 1988 1993 1988 1993

1988 Sample 44.0 49.0 52.5 57.1 59.3 64.9 68.3 78.6 77.8 99.0 57.8 65.1

1993 Sample 46.2 48.7 54.5 56.2 56.5 61.7 66.4 72.0 81.2 98.4 59.2 63.9
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Table 10

Change in Labor Productivity Regressions,

Variable 1988/93 Panel

 Intercept 0.091*
(0.015)

0.082*
(0.027)

0.080*
(0.020)

0.712*
(0.052)

  ∆LnKL 0.025
(0.020)

0.025
(0.020)

0.026
(0.020)

0.030H
(0.017)

  ∆LnSkill 0.031
(0.029)

0.031
(0.029)

0.030
(0.029)

0.019
(0.026)

  ∆NTech
  (Net)

0.002
(0.004)

0.007H

(0.004)

  ∆NTech
  (Gross)

0.002
(0.005)

  MoveUp 0.026
(0.030)

  MoveDown 0.020
(0.035)

Initial Conditions:
  Tech1,88

 
0.009

(0.047)

  Tech2,88 0.065
(0.045)

  Tech3,88 0.149*
(0.043)

  Tech4,88 0.200*
(0.068)

   LPQuintile2,88 -0.560*
(0.049)

   LPQuintile3,88 -0.678*
(0.047)

   LPQuintile4,88 -0.837*
(0.047)

   LPQuintile5,88 -0.926*
(0.045)

N    1,708    1,708     ,708     1,708

R2  .002 .002 .002 .219

Numbers in parentheses are standard errors.  Definitions of variables are given
in Table 1.
* Significant at the 95% level.
H Significant at the 90% level.
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Table 11

Average Percentage of 1993 Technologies
In Use More Than Five Years, 

By Technology Use, 1988 & 1993 Panel

Technology
Use,1988

Technology Use, 1993 Sample
 Mean

0 1-2 3-5 6-12 13-17

    0 0.00 0.00 0.00

  1 - 2 0.00 0.55 0.31 0.33

  3 - 5 0.63 0.60 0.46 0.50

  6 - 12 0.78 0.70 0.64 0.68

 13 - 17 0.96 0.92 0.87

Sample Mean 0.00 0.46 0.52 0.60 0.71 0.51
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Table 12

Probability of Changing Technologies Use Class,
Conditioned on 1988 Technology Use Class

Technology Use
Class, 1988

Move Up a
Technology Class

Move Down a
Technology Class

Stay in Same
Technology Class

   0 0.00 0.19

0.59 0.02

  3 - 5 0.30 0.59

  6 - 12 0.53 0.44

0.00 0.92
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