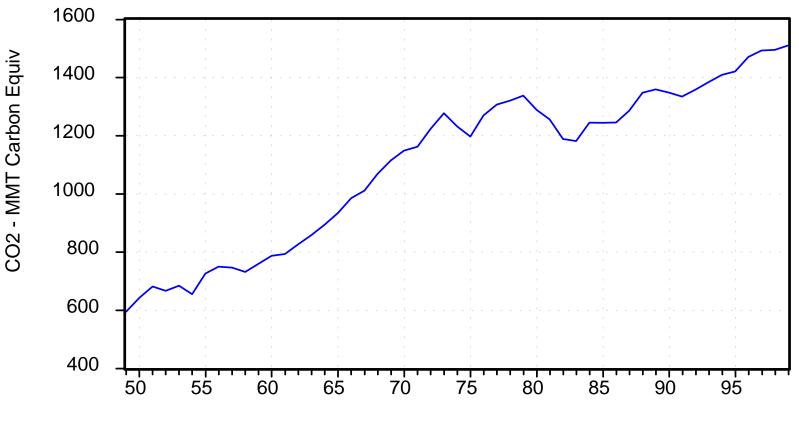
Decomposing Trends in U.S. Greenhouse Gas Emissions

Paul F. McArdle, Ph.D. U.S. Energy Information Administration Paul.McArdle@eia.doe.gov


presented to the 10th Annual Emission Inventory Conference: One Atmosphere, One Inventory, Many Challenges Denver, Colorado May 2, 2001

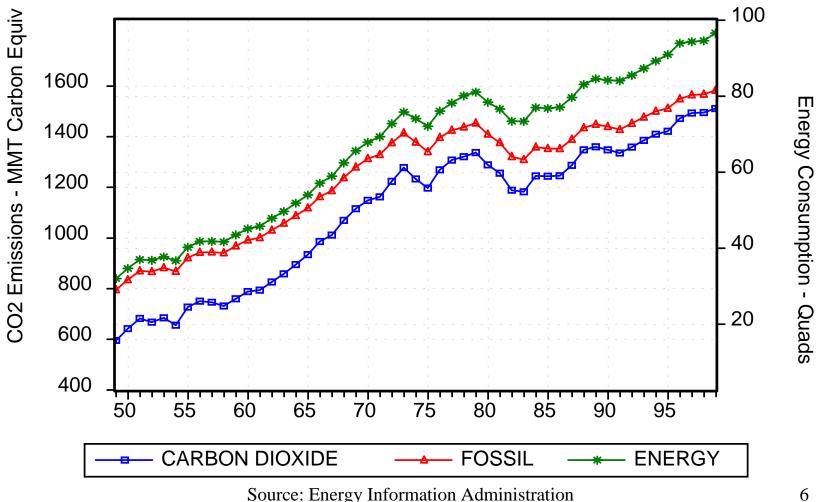
Purpose of Analysis

- Examine Trends in U.S. Carbon Dioxide (CO₂) Emissions (1949-99)
- Identify Breaks in Long-term Trend
- Highlight Factors that Produce Shortterm Deviations in Trend
 - Short-term Analysis, 1997-1999
 - Long-term Analysis, 1949-1999; 1967-99

U.S. Carbon Dioxide Emissions, 1949-99

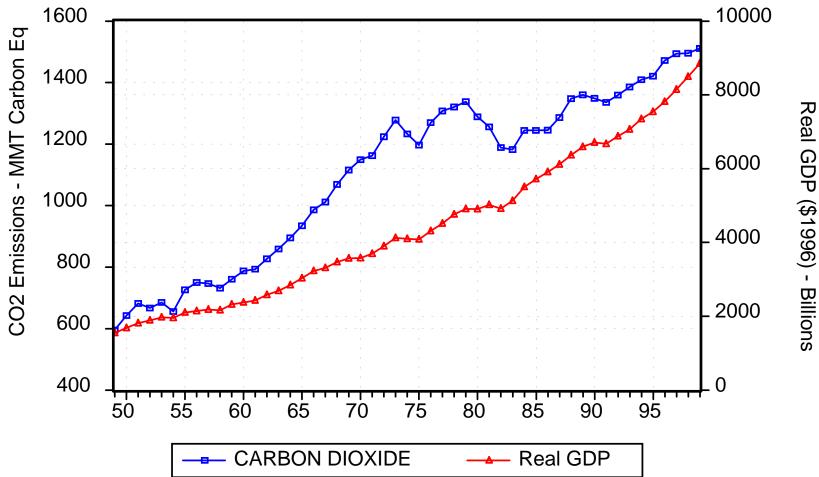
Year

Source: Energy Information Administration


U.S Carbon Dioxide Emissions Trend Growth 1949-99 and by Decade

Years	Compound Avg. from Endpoints	Log-linear Estimate
1949 - 99	1.9%	1.8%
1950 - 59	1.9%	1.8%
1960 – 69	3.9%	4.0%
1970 – 79	1.7%	1.5%
1980 – 89	0.6%	0.9%
1990 – 99	1.3%	1.5%

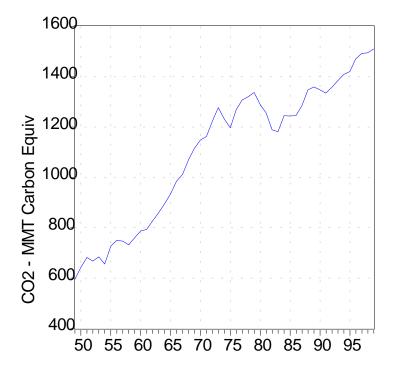
Factors Influencing Long-term Trend in U.S. CO2 Emissions


- Economic Growth
 - Population growth
 - Productivity growth
 - Income growth
- Energy Use
 - Energy Use As a Function of GDP Growth
 - Fossil-fuel Combustion Produces
 - 98% of Total U.S. CO₂ Emissions
 - 82% of Total U.S. GHG Emissions

U.S. CO₂ Emissions and Energy Use, 1949-99

6

U.S. CO₂ Emissions and GDP 1949-99


Source: Energy Information Administration

Percent of Variation	in CO2 Emissions
Explained by Energ	gy Consumption or
GDP, 194	9 - 1999
Functional Form	Adjusted R ²
CO2 = <i>f</i> (Fossil Use)	99.60%
CO2 = f(Energy Use)	99.57%
CO2 = f(Real GDP)	85.59%

Factors Creating Breaks in Longterm CO₂ Emission Trends

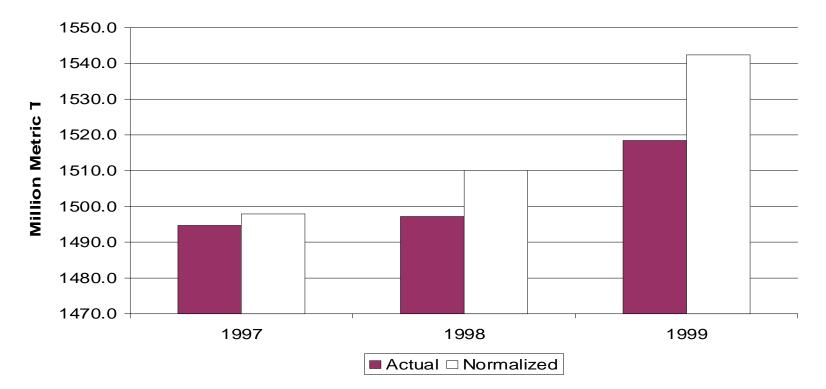
- Increased Energy Efficiency
 - More energy efficient technologies
 - Substitution from energy to other factors of production (capital, labor and/or materials)
- Decreased Energy Intensity
 - Increased share of less energy-intensive goods
- Increased use of less carbon-intensive fuels

Econometric Tests Indicate Trend Break in CO2 Emissions

- Chow test (1949-79; 1980-83; 1984-99)
- CUSUM (1949-89; 1990-99)
- CUSUM Squares (1949-61; 1962-84; 1985-99)
- Recursive Residuals (1949-79; 1980-86; 1987-99) 10

	rowth Rates in CO2 for Selected Periods
Time Period	Log-linear Growth Rate
1949 - 1979	2.8%
1980 - 1986	- 0.3%
1987 - 1999	1.3%

Factors that Can Produce Short-term Deviations in CO₂ Emissions Trends


- Weather
 - Heating Degree Days (HDD)
 - Cooling Degree Days (CDD)
- Non-fossil Fueled Power Generation
 - Nuclear Power
 - Hydroelectric Power
- Fossil fuel prices
- Production of Energy-intensive Products
- Other ? (e.g., High-tech goods computers, semiconductors, etc.)

Short-term Analysis of Deviations in CO₂ Trends

- Performed using EIA's Short-term Integrated Forecasting System (STIFS)
- Compared 1997-1999 CO₂ Emissions under:
 - Actual/Base Simulation (Using actual 1997-1999 variable values)
 - Normalized Simulation (Using normal/expected 1997-1999 variable values)
 - HDD; CDD; Nuclear Gen., Hydro Gen., Oil prices; Energy-intensive Industry Output

Short-term Simulation Results 1997 - 1999

U.S. Carbon Emissions

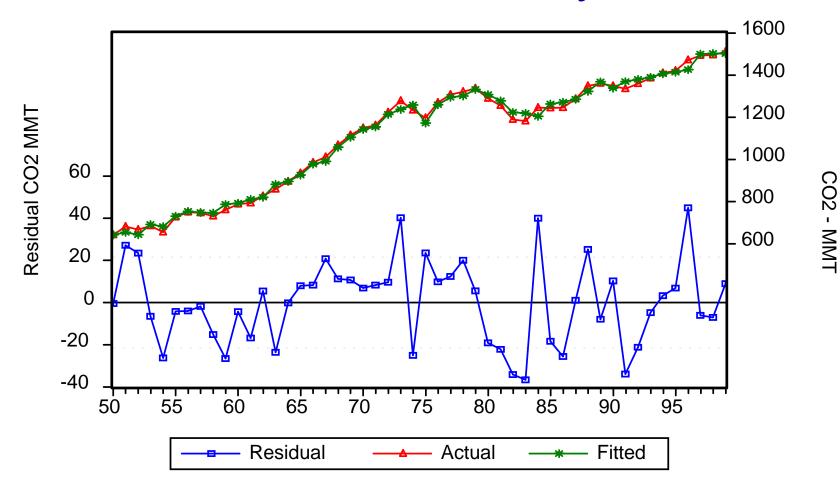
Short-term Simulation Results 1997 - 1999 (cont.) CO₂ Emissions Deviations From "Normalized" Trend (MMT Carbon Equiv.)

		(/	
Year	Total	Weather Total	HDD	CDD	Macro	Oil Price	Nuc/ Hydro
1997	-3.2	-3.7	0.0	-3.7	3.7	0.3	-3.5
1998	-12.9	-10.1	-20.0	9.9	3.3	0.8	-6.9
1999	-24.0	-11.3	-14.3	3.0	4.2	-0.3	-16.6
							15

Long-term Analysis of Deviations in CO₂ Emissions Trends

- Two periods examined:
 - 1949 1999 (EIA data available)
 - 1967 1999 (Hi-tech production data available)
- Purpose:
 - To identify likely factors that produce deviations in CO₂ emissions trends
 - To quantify impacts of those factors

Functional Form of Estimated Equations

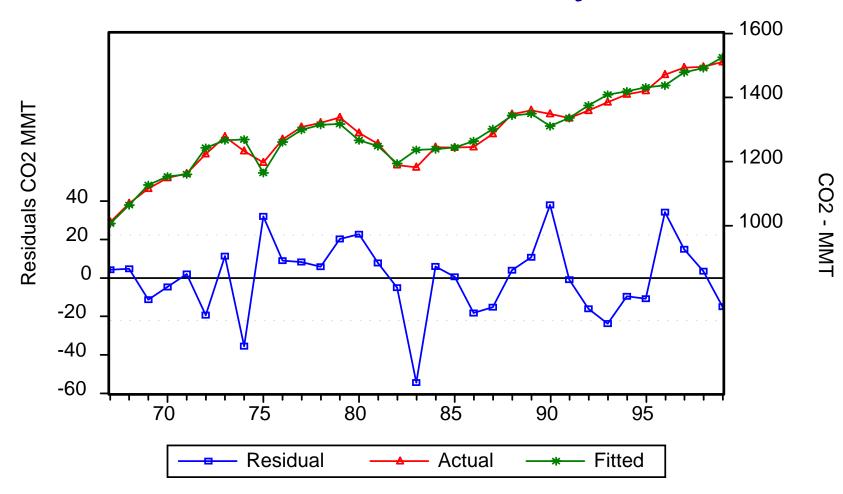

- 1949 1999:
 - CO₂ = a + (c1*time + c2*time²; detrending term) + f (HDD, CDD, Nuclear/Hydro Share of Total Generation, Energyintensive Industries' Share of Total GDP, Composite Real Fossil Fuel Production Prices)
- 1967 1999
 - Same as above except includes variable on High-tech Output Share of GDP

Long-term Analysis 1949-1999 Preliminary Results¹

Variable	Coefficient	Meaning
HDD	0.025	100 HDD Increase = 2.5 MMT Increase
CDD	-0.016	Incorrect Sign/ Not Significant
Nuclear/Hydro Share of Total Generation	-10.090	1% Share Increase = 10.1 MMT Decrease
Energy Intensive Industries Share of GDP	60.102	1% Share Increase = 60.1 MMT Increase
Real Composite Fossil Fuel Production Prices	-25.686	\$1/MMBtu Increase = 25.7 MMT Decrease

¹Note: Results are preliminary, apply on average only to the 1949-99 period, and are not necessarily applicable for forecasting purposes. 18

Long-term Analysis 1949-1999 Preliminary Results



Long-term Analysis 1967-1999 Preliminary Results¹

Variable	Coefficient	Meaning	
HDD	0.049	100 HDD Increase = 4.9 MMT Increase	
CDD	0.005	Correct Sign/ Not Significant	
Nuclear/Hydro Share of Total Generation	-7.485	1% Share Increase = 7.5 MMT Decrease	
Energy Intensive Industries Share of GDP	125.0	1% Share Increase = 125.0 MMT Increase	
Hi-Tech Share of GDP	11.755	Incorrect Sign ? / Significant	
Real Composite Fossil Fuel Production Prices	-29.646	\$1/MMBtu Increase = 29.6 MMT Decrease	
¹ Note: Results are preliminary, app	bly on average only t	o the 1967-99 period,	20

and are not necessarily applicable for forecasting purposes.

Long-term Analysis 1967-1999 Preliminary Results

Conclusions

- Econometric Tests Indicate 2 to 3 Longterm Trend Breaks in U.S. CO₂
 Emissions during the 1949-99 time frame:
 - 2.8% growth from 1949-79
 - -0.3% growth from 1980-86
 - 1.3% growth from 1987-99
- Short-term deviations from trend can occur in any given year

Conclusions (cont.)

- Short-term deviations driven by:
 - weather; nuclear/hydro generation, energyintensive industries, fossil fuel prices
- During 1997-99, short-term deviations reduced CO₂ emissions from "expected" levels
 - 1997 (3.2 MMT); 1998 (12.9 MMT); 1999 (24.0 MMT)
- Analysis of 1949-99 data also indicate presence of short-term deviations