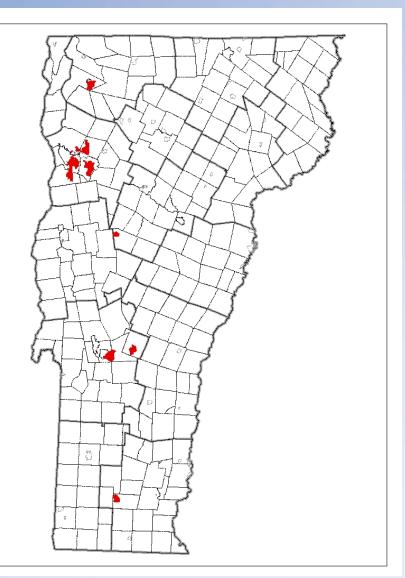


Water Quality Management and Permitting on a Watershed Scale *A Vermont Perspective*

Mary Borg, Esq Pete LaFlamme Vermont Department of Environmental Conservation


Presentation Will Cover Four Major Topics:

- Watershed TMDLs Innovative New Concepts
- New Science behind Watershed Permitting
- Watershed Permitting to Implement TMDLs
- Future Challenges Management of all NPS

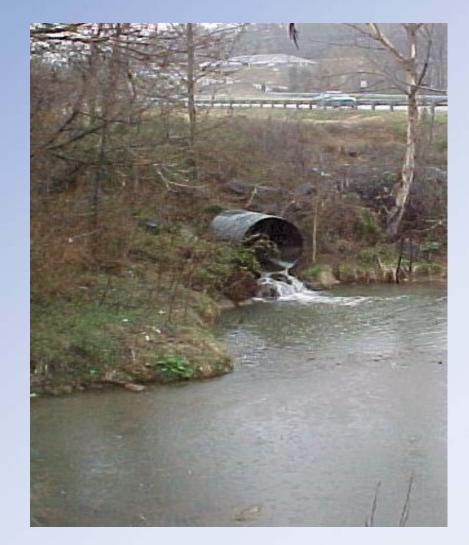
Background Information...

- VT has issued "NPDESlike" permits for runoff from impervious surfaces for ~ 27 years
- VT has 17 303(d) listed "urban" streams principally Impaired by stormwater runoff
- Vermont is an NPDES delegated State
- In VT, stormwater management is now a 50/50 mix of science and law

Problem Overview...

 Vermont's Water Quality impairments are measured through analysis of aquatic biota populations

Stream Geomorphic Destabilization



Problem Overview...

 No known mathematical relationships exist between stormwater BMP improvements and instream biotic responses

Problem Overview... Retrofit BMPs can be logistically difficult to install, and extremely expensive as a result

Direct Use of Sediment in TMDLs is Problematic

- Washoff loads or instream sources??
 - Washoff estimates difficult:
 - Land use, topography, climate
 - Data suggests high variability
 - Sediment dynamics
 - Instream estimates difficult:
 - Bank and bed erosion
 - Complex modeling/data intensive

Hydrology is more predictable and inclusive

- Well established methods for measurement and modeling, and a history of use
- Hydrological modeling is less data intensive
- Hydrology has a direct influence on sediment generation and transport factors

Initial Challenges in Developing Watershed Remediation Plans

- No actual gage data to provide hydrologic statistics on the stormwater impaired streams
- No sub-watershed level mapping for accurately assessing stormwater contributors
- Old and potentially inaccurate measurements of contributing impervious surfaces
- No actual measurements on stream geomorphic conditions

Watershed Remediation Protocol

- Phase Process TMDLs with hydrologic targets, then watershed permits to implement necessary retrofits
- Targets will be met through stormwater retrofit and remediation projects in the watershed
- Sequence of changes expected in streams flow response to precip, sga stability, biota
- Ongoing collection of background monitoring data to measure progress towards targets

Concepts in Hydrological TMDL Development

- Sediment/Water Imbalance is the problem
- Use of Attainment Watersheds as surrogate targets
- Targets Established as % Changes in FDC
- Use of modeling to simulate both Attainment watersheds and Impaired watersheds
- Target Setting through Watershed Comparisons of appropriate Independent Variables
- Define baseline environmental condition through data gathering
- Use Adaptive Management to refine process

Development of the underlying basis for hydrological TMDLs

- Calibration of the base watershed hydrology model on nearby and currently gaged small watersheds
- Development of predictive watershed hydrological models for both attainment and impaired watersheds
- Establishment of synthetic flow duration curves for analysis of hydrological differences
- Development of a statistical model for matching attainment and impaired watersheds
- Development of low flow enhancements to the existing P8 modeling

VERMONT

	Status	Q 0.3% (cfs/mi ²)	Q 95% (cfs/mi ²)	
Potash Brook	Impaired	12.2374	0.1964	
LaPlatte River	Attainment	11.5221	0.2132	
Little Otter Creek	Attainment	9.0217	0.2249	
Attainment strea	ams mean flow	10.2719	0.2190	
Difference betw mean attainmen		1.9655	0.0226	

Development of Baseline Implementation & Opportunity Analysis Data

Stormwater Implementation of continuous flow and precipitation monitoring for each of the impaired and attainment streams

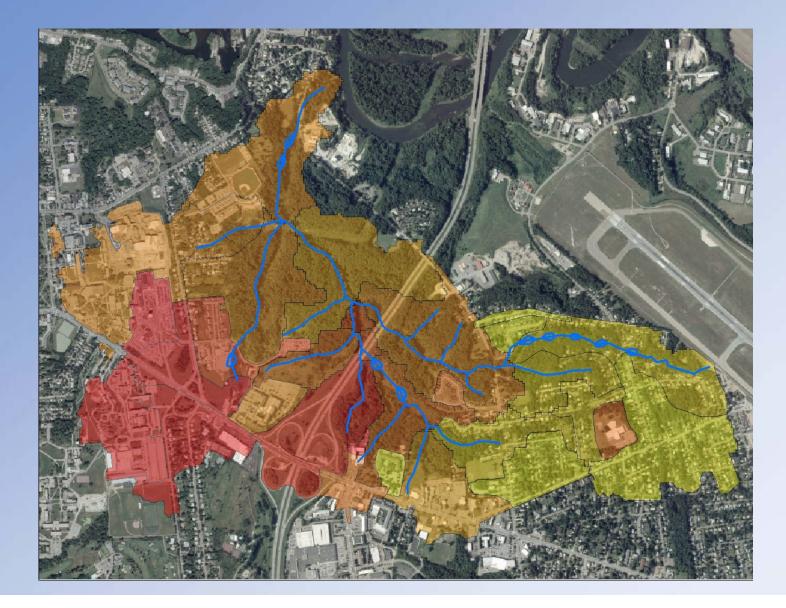
Production of GIS compatible databases:

- Sub-Watershed Mapping for all discharge points
- QuickBird Satellite Imagery for Land Use/Land Cover Determinations
- Phase I and II Stream Geomorphic Assessments for each Stormwater Impaired Stream
- Updated property ownership databases
- Existing BMP upgrade opportunity analysis
- 24 Months ~ \$1,200,000

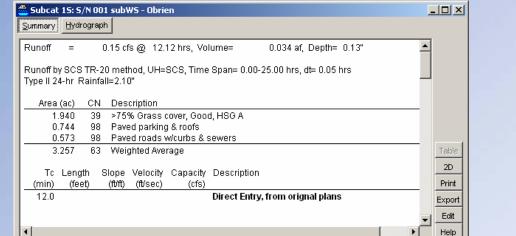
W. T. C. P. C. S.	and the second second		A America	001814754					08/91
DATE_	TIME_	ASSDBY	CAM_PIC	SITE_ID	SENDWSHD	BANK	FLOW	MATERIAL	41000
4/7/2005	02:55:36pm	CBT	a 021		01814T5B	Head	Trickle	Metal	
4/7/2005	03:01:52pm	CBT						PVC/Plastic	5
4/7/2005	03:06:25pm	CBT	a 023	CP-032	01814T5B	Head	Trickle	Concrete	
					001814T5C				
	代表情報			1999 1 / Star 4	001814T5B			T	
					001814158				SIN 2
C.SET			(A)		1778 1011		1		V- NK
	L. CR STA		MAL T		0	AND AL		A ALL AND A ALL AND A ALL AND A	A local
Subwatershed Box	andary SW Infrastructure (8) Combined Service	wr & Stormundar] Town Boundary	Vermont	Department of Environmental Conservati	ion			
Stormwater Outfalls (GP Closed Pipe Open Channel	Stormwater Catchbasin/Inle Flow Path		Surface Water Watershed Boundary	Stor	mwater Impaired Waterbody Mapping		Nourse: Background CCMPO DOGs (2004) Vetershed Bacebar simplicat Tay Power Environmental Associates (2005) (2005): Contrast sectored analy Hochel Midd Star (2006) (2005): Startes sectored analy Hochel Midd Start (2006) (2006): Startes sectored analy Hochel Midd Start (2006) (2007): Startes sectored the Vetershell Hochel Midd Start (2007): Demonstrat reflection data oblicities from VCGI (2007): Demonstrat reflection data oblicated from VCGI	PIONEER ENVIRONMENT CONSULTING SK 48 Green St., Sse. 2. P.O. Box 3 Phone: 80:477-1389 email: pioneerel	AL ASSOCIATES, LLC.
	Swale/Ditch				6 150 200 400 500 Feet				



Original



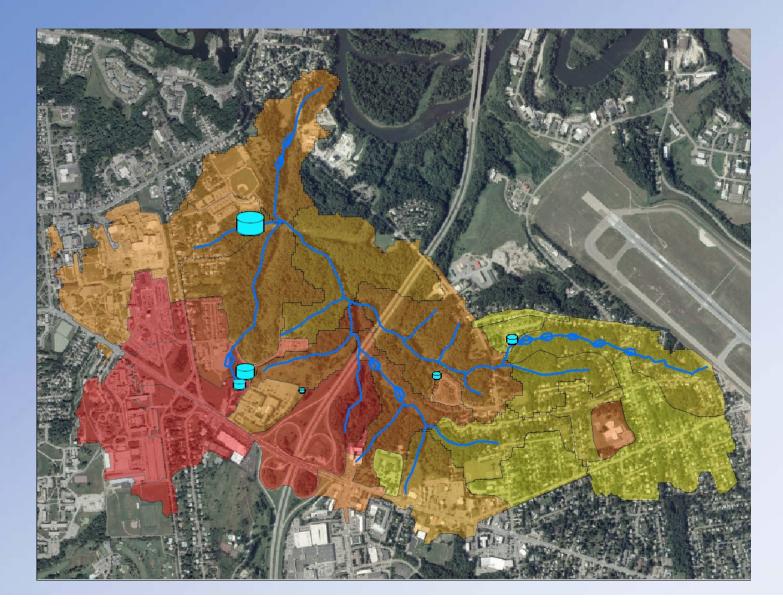
Pervious Curve Number

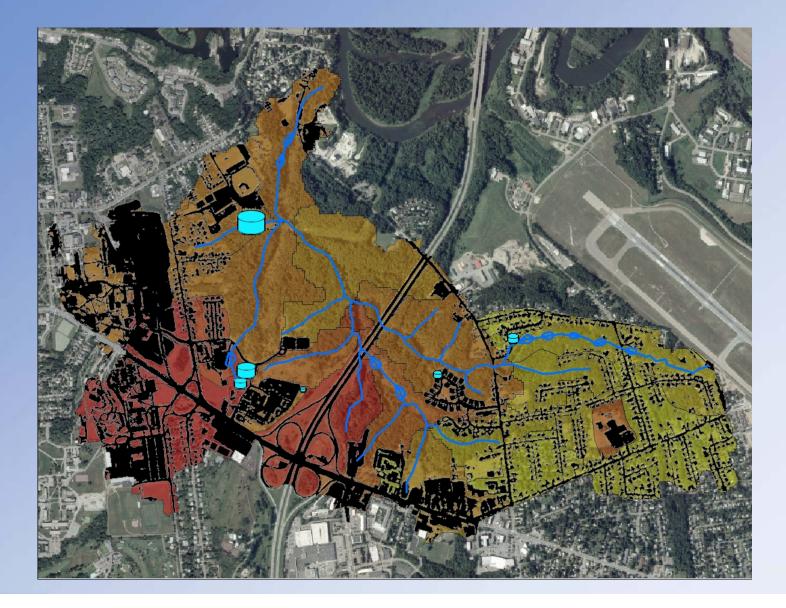


Stormwater Pond Data

- Collected data for all permitted and existing stormwater detention structures
- Field checked all information
- Conducted limited Engineering Feasibility Analysis (EFA) - including HydroCad modeling
- Pond routing data included in P8 model

Pond Information


- Size & Volume
- Outlet Structure
- Detention Time
- Maintenance Issues



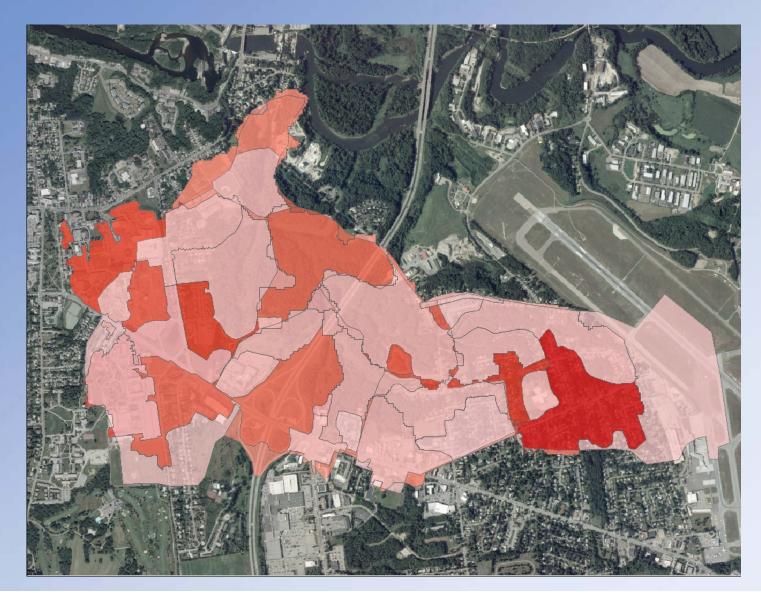
Impervious Mapping Results

Quickbird

Three Phases of VT SGA:

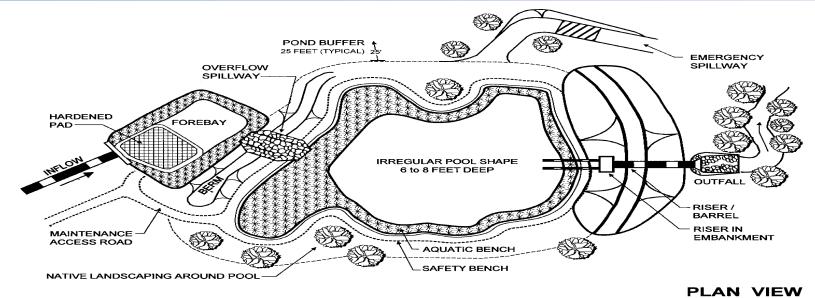
Phase I – GIS data gathering and SGAT (ArcView ext.)

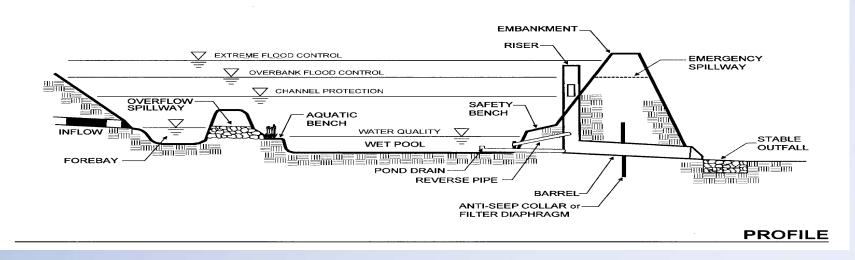
Phase II – Rapid Stream Assessment (incl. RGA & RHA)


Phase III – Detailed Reach Survey for Restoration Purposes

SAWS

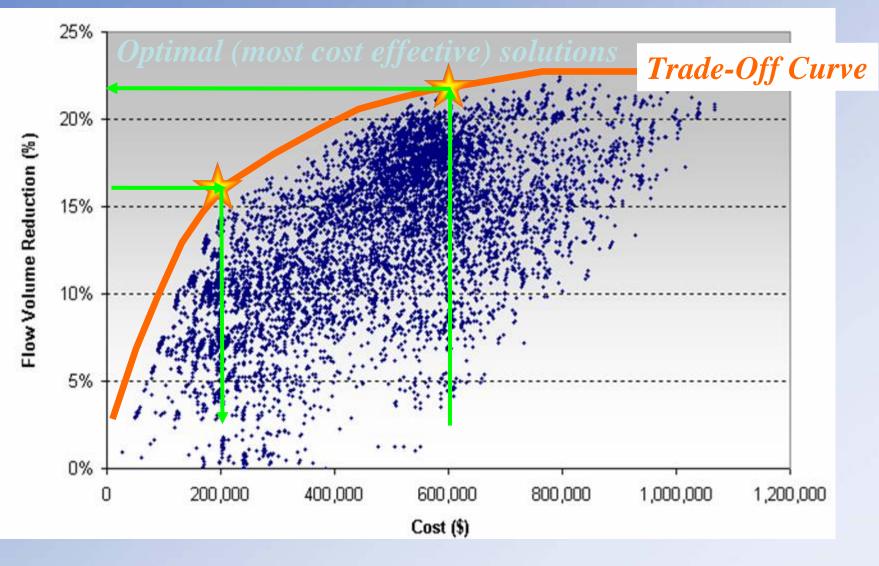
Spatial Analysis of Watershed Sensitivity




WaRP Protocol

- Stormwater remediation projects will be expensive!
- Target selection will be guided by goal of most cost-effective solution on a watershed basis
- SAWS process to isolate areas of greatest yield
- Integration of data layer analysis necessary for SAWS through use of the BMP Optimization Tool
- Development of BMP designs with presumptive performance expectations

VERMC



BMP Optimization Tool

- Find optimum BMP placement and selection strategies based on pre-selected potential sites and applicable BMP types
- What is optimum? Minimize cost and/or maximize pollutant load reduction from runoff using various BMP alternatives.
- How does one measure optimum?
 - Evaluation Criteria (using continuous simulation):
 - Minimum long-term flows and pollutant loads
 - Best-fit multi-storm curve with pre-developed condition

Optimization Solutions

Take-away Messages...

- Importance of involving a 'team' development approach for development of Stormwater TMDLs and Permits
- Evaluation of impacts from altered hydrology on stream geomorphology – endogenous sediment production may be dwarfing wash-off loadings
- Use presumptive effluent criteria for BMPs that are built to prescriptive design standards – TMDL "building blocks"
- Learn to live with uncertainty! scientific, legal and programmatic

VERMO

Mary Borg, Esq.

Vermont Department of Environmental Conservation

Approaches to TMDL Implementation

- NPDES Stormwater Permits
- State Stormwater Permits
- Individual Permits
- Watershed-wide General Permits

- What is watershed permitting?
 - Developing permits for multiple sources within a defined geographic watershed area

Approaches to Watershed Permitting

- Issue individual permits with synchronized expiration/reissuance dates
- Watershed general permit Common Sources (e.g. POTWs)
- Watershed general permit Collective Sources (all or subcategory of sources)
- Watershed-based individual permit multiple permittees

Watershed Permitting

Advantages:

- Considers watershed goals/holistic solution
- Considers impact of multiple pollutant sources and stressors
- TMDL target can be quantified across identified discharges
- Synchronized permit conditions
- Consideration of cost efficiencies
- Not a bar to individual NPDES permits for construction, industrial, or other typical point source discharges
- Administrative efficiencies
- Allows watershed wide monitoring efforts

Watershed Improvement Permits

- Pre TMDL Approach: Issued Watershed Improvement Permits (WIPs) in 2003
 - General permits
 - Identified "Significant Contributors" that in total contributed 50% of sediment loading to streams
 - Anticipated use of "adaptive management" approach:
 - Issue general permit
 - Implement stormwater controls
 - Monitor Stream
 - Amend WIP to Add Additional Contributors to Met
 VWQS
- Environmental Groups Sue, WIPS overturned

Issue watershed-wide general permit

- •What will a watershed general permit look like?
- Federal NPDES permit or state?

Watershed Permitting

What will a watershed permit look like?

- General Permit
- Will target all sources of impervious surface runoff necessary to reach TMDL target
- BMPs, not numeric effluent limitations
- BMPs may be structural or non-structural
- Iterative, adaptive management approach
- First round suite of BMPs
- Monitoring
- Second round of BMPs . . .
- Vermont may include "non-point sources" in a state law section

State TMDL Implementation Tools

- Vermont stormwater law = complete "tool box" for TMDL implementation:
- watershed-wide general permits and individual permits
- any size impervious surfaces to implement TMDL
- discharge need not be collected or channelized; tied to creation of impervious surfaces
- identify permittees through BMP tool
- adaptive management approach recognized

Watershed Permitting

Existing NPDES Tools for TMDL Permitting

- Construction Permits
- Multi-Sector Permit
- MS4 Permit

Advantages to These Permits

- They already exist; already understood
- EPA's CGP and Multi-sector general permits specifically cite "residual designation" authority

Watershed Permitting

Disadvantages to Use of these 3 Permits

- They attack problem on a piecemeal basis
- Hard to coordinate expiration dates vary, conditions of permits vary
- Not designed to permit long-term operational stormwater systems and BMPs
- Do not cover universe of discharges e.g. large subdivisions, shopping malls; areas outside of MS4s, construction projects less than 1 acre

Residual Designation Authority

- Residual Designation Authority The perfect tool for stormwater TMDLs and watershed permitting?
 - 40 CFR 122.26(a)(1) and (9) provide 4 major categories of stormwater discharges that require a NPDES permit:
 - Discharges that had been permitted prior to February 4, 1987
 - Large and Small Construction Discharges
 - Large and Small MS4 discharges
 - Industrial Stormwater Discharges

Residual Designation Authority

- Two additional categories of discharges that may be "residually designated" (40 CFR 122.26(a)(9)) :
 - Stormwater discharges that are determined by the permitting agency to be causing or contributing to a water quality standards violation or are a significant contributor of pollutants.
 - Stormwater discharges that the permitting authority determines require stormwater controls based on wasteload allocations that are part of TMDLs that address the pollutants of concern.

Residual Designation Authority

- Under "residual designation authority" a state may on a case-by-case basis after balancing certain factors designate a stormwater discharge as requiring a NPDES permit because it contributes to a violation of a water quality standard or is a significant contributor of pollutants.
- Factors to balance (40 CFR 122.26(a)(1)(5)):
 - Location of discharge
 - Size of Discharge
 - Quantity and Nature of Pollutants
 - Other relevant factors

Residual Designation

- Environmental Defense Center, Inc. v. EPA, 344 F.3d 832 (Ninth Cir. 2003) – only federal lawsuit to date that deals with residual designation authority
- Case involved challenge to Phase II Rules
- Industry petitioners argued that EPA acted improperly in retaining authority to designate future sources of stormwater pollution for Phase II regulation
- Supported designation of discharges that do not "fall neatly into a discrete, predetermine category

Point vs. Non-Point Sources

- Point vs. Nonpoint Discharges A Potential Limitation to Residual Designation?
- The NPDES permit program only regulates "point sources"
- "Point source is defined in Section 502(14) of the federal Clean Water Act:

"any discernible, confined and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, or vessel or other floating craft, from which pollutants are or may be discharged."

Stormwater runoff traditionally considered non-point. Must be collected or channeled in some way to be a point source.

Non-point Source – a term of the past... an anachronism

Point Sources

- Courts have broadly interpreted "point source"
 - Ditches, gullies, rills
 - Formed by natural erosion and gravity
 - Pollutants originate somewhere else but flow through a point source
- Determining what is a point source can take a lot of work
- Vermont "work-around" Stormwater rule provides that a permit is required for any discharge from an impervious surface if necessary to meet TMDL targets

Central Legal Issues :

- Point versus Non-Point
 - This may limit permitting of discharges essential to success of TMDL – e.g. shopping centers, large residential subdivisions
- Lack of clarity on residual designation
 - When and how can it really be used
 - What constitutes "cause and contribute"?

Watershed Permitting for "Nonpoint Sources"

- "Non-point source" an anachronism
- Watershed permitting for all "non-point" sources:
 - Impervious surface runoff
 - Agricultural discharges
 - Silvicultural discharges
 - Disturbed land discharges (e.g. construction, other)
 - Backroads
 - Developed lands (golf courses, ski trails)
- Evaluate watershed on a holistic basis to identify and rank contributing sources to water quality impairment
- Issue permits for predominant contributing sources within watershed
- Best "bang for the buck" and best for environment