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Abstract

Recurrent outbreaks of the avian H5N1 influenza virus in Asia represent a constant global pandemic threat. We characterize and

evaluate hypothetical public health measures during the 1918 influenza pandemic in the Canton of Geneva, Switzerland. The

transmission rate, the recovery rate, the diagnostic rate, the relative infectiousness of asymptomatic cases, and the proportion of clinical

cases are estimated through least-squares fitting of the model to epidemic curve data of the cumulative number of hospital notifications.

The latent period and the case fatality proportion are taken from published literature. We determine the variance and identifiability of

model parameters via a simulation study. Our epidemic model agrees well with the observed epidemic data. We estimate the basic

reproductive number for the spring wave R̂1 ¼ 1:49 (95% CI: 1:45–1:53) and the reproductive number for the fall wave R̂2 ¼ 3:75 (95%

CI: 3:57–3:93). In addition, we estimate the clinical reporting for these two waves to be 59:7% (95% CI: 55:7–63:7) and 83% (95% CI:

79–87). We surmise that the lower reporting in the first wave can be explained by a lack of initial awareness of the epidemic and the

relative higher severity of the symptoms experienced during the fall wave. We found that effective isolation measures in hospital clinics at

best would only ensure control with probability 0:87 while reducing the transmission rate by 476:5% guarantees stopping an epidemic.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Recurrent outbreaks of avian influenza (H5N1) in Asia
threaten the human population with the next influenza
pandemic as infections have been observed in humans with
probable limited human-to-human transmission. Should
the new virus subtype get fully adapted for human-to-
human transmission, an influenza pandemic could arise
(Snacken, 2002; Enserink, 2005) with devastating economic
consequences (Meltzer et al., 1999). Therefore, enhancing
our understanding of the transmissibility, mechanisms, and
key factors under which the influenza virus propagates
among populations is critical to devise effective and
economic interventions strategies.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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The etiological agent of influenza is an RNA virus
(orthomyxoviridae family) (Webster et al., 1992) that
causes acute upper respiratory tract infection with symp-
toms including high fever, myalgia, severe malaise, non-
productive cough, and sore throats. The duration of the
latent period for influenza is about 1.9 days (Mills et al.,
2004) followed by an infectious period of about 4 days
(Reeve et al., 1980; Moritz et al., 1980). Influenza is
transmitted by direct contact (e.g. hand shaking, sweat,
etc.), aerosol, and droplets.
Individuals exposed to the influenza virus gain protec-

tion or cross-protection. Hence, the influenza virus under-
goes continuous evolution in order for annual epidemics to
occur. Such changes in the virus composition are known as
drifts or shifts. Drifts are the consequence of single-point
mutations in the virus antigenic structure while shifts are
major gene reassortments which have the potential of
generating pandemics (Webster et al., 1992).

www.elsevier.com/locate/yjtbi
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The 1918 influenza pandemic known as the ‘‘Spanish
flu’’ caused by the influenza virus A(H1/N1) has been the
worst in recent history with estimated worldwide mortality
ranging from 20 to 100 million deaths (Cunha, 2004). The
worldwide 1918 influenza pandemic spread in three waves
starting from Midwestern United States in the spring of
1918 (Patterson and Pyle, 1991; Johnson and Mueller,
2002). The deadly second wave began in late August
probably in France while the third wave is generally
considered as part of normal more scattered winter
outbreaks similar to those observed after the 1889/90
pandemic (Patterson and Pyle, 1991). Subsequent flu
pandemics are attributed to flu A(H2N2) in 1957 (Asian
flu) and A(H3N2) in 1968 (Hong Kong flu).

Underreporting due to the disruptions in the public
health system during the 1918/9 pandemic complicate the
estimation of attack and death rates in many regions
(Patterson and Pyle, 1991), e.g. influenza deaths were not
recorded in Russia and the data from developing countries
suffers from significant underreporting (Patterson and
Pyle, 1991). Nevertheless, in some countries mandatory
notifications of flu cases by health care practitioners were
implemented during the pandemic. Switzerland provides
one of the best databases for the analysis of the 1918/9
influenza pandemic because mandatory notification of flu
cases was implemented at the federal level from the
beginning of the pandemic (Ammon, 2002). However,
there was underreporting from mild cases and cases who
were refused admission in overcrowded hospital clinics. In
addition, there is good demographic information of the
Swiss population at the time of the pandemic.

In this paper, we investigate the 1918/9 influenza pandemic
in the Canton of Geneva located in the south western corner
of Switzerland and surrounded in its majority by France. We
model the transmission dynamics of the spring and fall waves
of influenza using an epidemic model that accounts for the
known underreporting. Some of the model parameters are
estimated via least-squares fitting and the resulting parameter
estimates are corroborated via a simulation study. From our
fitted model, we estimate the basic reproductive number of
the spring and the reproductive number of the fall wave to be
1:49 (95% CI: 1:45–1:53) and 3:75 (95% CI: 3:57–3:93),
respectively. In addition, we estimate the clinical reporting
for these two waves to be 59:7% (95% CI: 55:7–63:7) and
83% (95% CI: 79–87). We surmise that both the lack of
initial awareness of the epidemic and the relative higher
severity of the symptoms experienced during the fall wave
contributed to the lower reporting rate in the first wave. We
found that effective isolation measures in hospital clinics at
best would only ensure control with probability 0:87 while
reducing the transmission rate by 476:5% guarantees
stopping an epidemic.

2. The 1918 flu pandemic in Geneva, Switzerland

The 1918/9 influenza pandemic affected more than 50%
of the population in Geneva, Switzerland (Ammon, 2002).
The first wave occurred in July 1918 (‘‘spring wave’’), the
second deadliest wave in October–November 1918 (‘‘fall
wave’’), and the third wave was observed at the end of 1918
(‘‘winter wave’’). The symptoms presented during the
second wave were more severe than for the first wave.
Moreover, it seems that individuals infected with the flu
were subsequently protected to secondary waves of
infection. The mortality rate was highest in the age group
21–40 years and higher in males (Ammon, 2001).
Control measures were implemented (Fig. 1) but there’s

no evidence of their effectiveness because disruptions in the
sanitary, medical, private and public sectors were common.
Moreover, the social climate was that of insecurity and
there were doubts among the population about the
effectiveness of the control measures that included school
and church closures, prohibition of public events and visits
to hospitals, mandatory spraying of disinfectants on the
streets, and authorization of burials within 48 h of death.
Statistics from hospitals were published daily through-

out the epidemic. However, mild cases that did not warrant
medical attention were unlikely to be diagnosed in
hospitals. Hence, this is an important factor to account
for when modeling the transmission dynamics of influenza.
A thorough review of the 1918/9 pandemic influenza in
Geneva, Switzerland is given by Ammon (2001).

3. Materials and methods

3.1. Epidemic model

We model the first two waves of the 1918 influenza
pandemic in Geneva, Switzerland (Fig. 2) separately using
a compartmental epidemic model. The model (Fig. 3) for
the transmission dynamics of pandemic influenza classifies
individuals as susceptible ðSiÞ, exposed ðEiÞ, clinically ill
and infectious ðI iÞ, asymptomatic and partially infectious
ðAiÞ, hospitalized and reported ðJiÞ, recovered ðRiÞ, and
death ðDiÞ where i ¼ 1; 2 indices the spring and fall waves,
respectively. We assume that the birth and natural death
rates have common rate m and that the population is
completely susceptible to the first wave of infection.
Individuals that recover during the spring wave are
assumed protected to the fall wave (Mills et al., 2004),
and the numbers of susceptible, recovered, and dead
individuals at the end of the first wave are set to be the
corresponding initial conditions to model the second
influenza wave. The initial numbers of exposed and
infectious individuals for the spring and fall waves were
estimated through least-squares fitting (see parameter
estimation section). Susceptible individuals in contact with
the virus progress to the latent class at the rate
biðI iðtÞ þ JiðtÞ þ qiAiðtÞÞ=NiðtÞ, where bi is the transmission
rate for wave i, and 0oqio1 is a reduction factor in the
transmissibility of the asymptomatic class ðAiÞ. Since there
is no evidence of the effectiveness of interventions, and
disruptions in the sanitary and medical sectors were
common (Ammon, 2001), hospitalized individuals ðJiÞ are
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Fig. 1. An article of the Geneva newspaper La Feuille (no longer active) issued on 02=04=1919 stating statistics of the influenza pandemic and an

announcement on the interdiction to organize dancing due to an increase in flu cases after the Christmas and New year celebrations.
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assumed infectious. Hence, the total population size at time
t for wave i is given by NiðtÞ ¼ SiðtÞ þ EiðtÞ þ I iðtÞ þ AiðtÞþ

JiðtÞ þ RiðtÞ. We assumed homogeneous mixing between
individuals and, therefore, the fraction ðI iðtÞ þ JiðtÞ þ

qiAiðtÞÞ=NiðtÞ is the probability that a random contact
would be with an infectious individual. A proportion
0orio1 of latent individuals progress to the clinically
infectious class ðI iÞ at the rate ki while the rest ð1� riÞ

progress to the asymptomatic partially infectious class ðAiÞ

at the same rate ki. Asymptomatic cases progress to the
recovered class at the rate g1i

. Clinically infectious
individuals (class I i) are hospitalized (reported) at the rate
ai or recover without being diagnosed (e.g. mild infections,
hospital refusals (Ammon, 2001)) at the rate g1i
. Hospita-

lized individuals (reported) recover at the rate g2i
¼

1=ð1=g1i
� 1=aiÞ or die at rate di. The mortality rates were

adjusted according to the case fatality proportion (CFP)
such that di ¼ ½CFP=ð1� CFPÞ�ðmþ g2i

Þ (see Fig. 3).
The transmission process (for each influenza wave) can

be modeled using the following system of nonlinear
differential equations:

_SiðtÞ ¼ mNiðtÞ � biSiðtÞðI iðtÞ þ JiðtÞ þ qiAiðtÞÞ=NiðtÞ � mSiðtÞ,

_EiðtÞ ¼ biSiðtÞðI iðtÞ þ JiðtÞ þ qiAiðtÞÞ=NiðtÞ � ðki þ mÞEiðtÞ,
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Fig. 2. Daily number of hospital notifications of influenza cases during the 1918/9 influenza pandemic in the Canton of Geneva, Switzerland.
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Fig. 3. Flow chart of the state progression of individuals among the different epidemiological classes as modeled by Eq. (1).
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_AiðtÞ ¼ kið1� riÞEi � ðg1i
þ mÞAiðtÞ,

_I iðtÞ ¼ kiriEiðtÞ � ðai þ g1i
þ mÞI iðtÞ,

_JiðtÞ ¼ aiI iðtÞ � ðg2i
þ di þ mÞJiðtÞ,

_RiðtÞ ¼ g1i
ðAiðtÞ þ I iðtÞÞ þ g2i

JiðtÞ � mRiðtÞ,

_DiðtÞ ¼ diJiðtÞ,

_CiðtÞ ¼ aiI iðtÞ, (1)

where the index i ¼ 1; 2 denotes the first (‘‘spring’’) and
second (‘‘fall’’) waves of infection, respectively. The dot
denotes the time derivatives. The cumulative number of
hospital notifications, our observed data, is given by CðtÞ.

3.2. The reproductive number

The number of secondary cases generated by a primary
infectious case, known as the basic reproductive number
R0 (Anderson and May, 1991; Brauer and Castillo-Chavez,
2000), is a measure of the power of an infectious disease to
attack a completely susceptible population. Applying the
next-generation method (Diekmann and Heesterbeek,
2000) to our model equations shows that the reproductive
number is

Ri ¼
biki

ki þ m
ri

1

g1i
þ ai þ m

þ
ai

ðg1i
þ ai þ mÞðg2i

þ di þ mÞ

 !(

þð1� riÞ
qi

g1i
þ m

 !)
, ð2Þ

where i ¼ 1; 2 is used to distinguish the reproductive
numbers for the first and second influenza waves of
infection, respectively. Notice that R1 is a basic reproduc-
tive number because the population is assumed completely
susceptible at the beginning of the epidemic. Also, it can be
seen from the above expression that the reproductive
number is the sum of the contributions to infection from
the different types of infectious individuals namely:
infectious but not hospitalized, infectious and hospitalized,
and those asymptomatic (partially infectious).
Since the birth and natural death rate m and the latent period
ð1=kiÞ are known (see Section 3.5), g2i

¼ 1=ð1=g1i
� 1=aiÞ,
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and di ¼ ½CFP=ð1� CFPÞ�ðmþ g2i
Þ, we can conclude that

Ri is a function of fbi; g1i
; ai; qi; and rig. Estimates of Ri

are obtained from data by substituting the parameter
estimates b̂i; ĝ1i

; âi, q̂i, and r̂i into Eq. (2). The variance of
the estimated reproductive number Ri was obtained from a
simulation study (see Parameter estimation).

Reproductive numbers can be used to estimate the
magnitude of changes needed to bring an epidemic under
control. Because Ri is a linear function of bi, the
transmission rate per person, if bi is reduced, then Ri will
also be reduced the same amount. For example, if Ri ¼ 4
and if bi is reduced by a factor of 4, then Ri would be
reduced to 1. The average transmission rate is a product of
the average infectiousness of an infected individual, the
susceptibility of the population to infection, and the
number of contacts an infected individual has per day.
These factors can be reduced by infected people taking
precautions to prevent infecting others, susceptible people
taking precautions (improved hygiene or vaccinations) to
prevent becoming infected, or reducing the number of
contacts an infected person has by rapid isolation.

3.3. Clinical reporting

We estimate from our model the extent of reporting of
clinical cases (or clinical reporting). This is an important
quantity since it also quantifies the extent of under-
reporting. Individuals with mild symptoms are unlikely to
have sought medical attention, and as a result, would not
have been tabulated as flu victims. While these cases are
not directly observed, we can estimate the fraction of mild
cases from our model. This fraction would include as well
individuals that recovered without being properly diag-
nosed (and hence reported). While misdiagnosis may be
common for annual epidemics of influenza due to the
limited reliability of clinical diagnosis (non-specific symp-
toms), clinical diagnosis for the case of pandemic influenza
should have been more reliable because of the severity of
symptoms particularly during the second wave (Ammon,
2001). The fraction of severe cases that required medical
attention is:

Oi ¼
ai

ai þ g1i
þ m

. (3)

Similarly an estimate of the amount of clinical under-
notification is given by

Ui ¼
g1i

ai þ g1i
þ m

. (4)

An estimate of the variance of this quantities was obtained
via a simulation study as explained in the parameter
estimation section.

3.4. Demographic and epidemic data

The Canton of Geneva is located in the south western
corner of Switzerland and covers an area of 282 km2. The
population size of the Canton of Geneva in 1917 was
174 673 which is about 42% of today’s population (Dubois,
2005) while the life expectancy was about 60 years
(m̂ ¼ 1=60 years�1 ¼ 1=ð60 � 365Þdays�1) (Robine and Pac-
caud, 2005). Daily epidemic data for the Canton of Geneva
was obtained from the mandatory notifications registry in
Switzerland (Ammon, 2002) during the period July
1918–February 1919 (Fig. 2). The morbidity of the spanish
flu in Geneva was 21754 cases (12:45% of total population)
with an overall case fatality proportion of 4:2% (Ammon,
2002). Nevertheless, the second influenza wave is well
documented to have been much deadlier than the first wave
(Ammon, 2002). Because the estimate of the case fatality
proportion from Geneva was derived from both waves and
was similar to that found by Gani et al. (2005), we chose to
use the independent estimates obtained for the first ð0:7%Þ
and second ð3:25%Þ waves as reported by Gani et al.
(2005).

3.5. Parameter estimation

In our model, we fix the birth and natural death rates to
m̂ ¼ 1=ð60 � 365Þdays�1, and the latent period was fixed to
1=k̂1 ¼ 1=k̂2 ¼ 1:9 days (Mills et al., 2004). The transmis-
sion rate bi, the recovery rate gi, the diagnostic rate ai, the
relative infectiousness of asymptomatic cases qi, the
proportion of clinical cases ri, and the initial numbers
of exposed Eið0Þ and infectious I ið0Þ individuals
were estimated through least-squares fitting of Cðt;HiÞ in
Model (1) (Hi is the vector of fitting parameters for wave i)
to the cumulative number of influenza cases over time
yt (where t denotes time in days) (Fig. 2). The advantage
of using the cumulative over the daily number of new
cases is that the former somewhat smoothes out known
reporting delays on weekends and national holidays. To
ensure that the global minimum of this nonlinear regression
model is achieved, we repeated the optimization 10 times
starting at randomly drawn parameter values from appro-
priate parameter ranges (0obio50, 0ogio1, 0oaio2,
0oqio1, 0orio1, 0oEið0Þo300, 0oI ið0Þo 300). For the
least-squares fitting procedure, we used the Levenberg–
Marquardt method with line-search implemented in MA-
TLAB (The Mathworks, Inc.) in the built-in routine
lsqcurvefit which is part of the optimization toolbox.
The resulting parameter estimates are listed in Table 1, and
the best model fit to the data is shown in Fig. 4.
The standard deviation of the parameters was obtained

from a simulation study using the parametric bootstrap
(Efron and Tibshirani, 1986) as follows: The best fit of the
cumulative number of reported cases Cðt; ĤiÞ to the data
was perturbed by simulating alternate realizations. To the
best-fit curve Cðt; ĤiÞ was added a simulated error structure
computed using the increment in the ‘‘true’’ Cðt; ĤiÞ from
day j to day j þ 1 as the Poisson mean for the number of
new case notifications observed in the j to j þ 1 interval.
The parameter estimation procedure (described above) was
then applied for each of the 1000 simulated realizations.
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Table 1

Parameter definitions and baseline estimates for the spring and fall waves of the 1918/9 influenza pandemic in Geneva, Switzerland (Fig. 4)

Parameter Definition Source Spring wave Fall wave

Estimate S.D. Estimate S.D.

b Transmission rate ðdays�1Þ LS 8.00 0.13 5.75 0.24

g1 Recovery rate ðdays�1Þ LS 0.34 0.01 0.45 0.04

a Diagnostic rate ðdays�1Þ LS 0.51 0.04 2.14 0.11

q Relative infectiousness of the asymptomatic

class

LS 0.003 0.004 0.014 0.01

r Proportion of clinical infections ð½0; 1�Þ LS 0.10 0.01 0.36 0.02

g2 Recovery rate for hospitalized class ðdays�1Þ — 1.10 0.26 0.58 0.07

d Mortality rate ðdays�1Þ Gani et al. (2005) 0.01 0.002 0.02 0.002

k Rate of progression to infectious ðdays�1Þ Mills et al. (2004) 0.53 — 0.53 —

m Birth and natural death rate ðdays�1Þ Robine and Paccaud (2005) 1=ð60 � 365Þ — 1=ð60 � 365Þ —

Eð0Þ Initial number of exposed individuals LS 207 7 9 11

Ið0Þ Initial number of infectious individuals LS 132 4 34 4

Parameters bi , gi, ai, qi , ri , and the initial numbers of exposed and infectious individuals were estimated through least-squares (LS) fitting of the model to

the cumulative number of hospital notifications. Parameters ki, and m were fixed to baseline estimates obtained from published literature while the

mortality rates ðdiÞ were estimated from the case fatality proportions as explained in the text. The recovery rate of hospitalized cases g2i
¼ 1=ð1=g1i

� 1=aiÞ.

The standard deviation of the model parameter estimates were obtained from our simulation study using the parametric bootstrap that consisted of 1000

realizations as explained in the parameter estimation section.
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Fig. 4. The best-fit solution obtained by fitting Cðt;HÞ (solid line) in model (1) to the cumulative number of hospital notifications of the spring and fall

waves of the 1918 influenza pandemic in Geneva, Switzerland.
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This error structure captures the higher variability in the
cumulative number of cases observed on the middle course
of the epidemic and the smaller variability observed at its
beginning and end.

This simulation study allowed us to explore the
identifiability of model parameters. Lack of identifiability
can be recognized when large perturbations in the model
parameters generate small changes in the model output
(Pillonetto et al., 2003). A sensitivity analysis can detect
non-identifiability of model parameters. Our results in-
dicate that our parameter estimates are stable to perturba-
tions around the model output.
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3.6. Modeling intervention strategies

Suppose that hypothetical intervention strategies were
prepared and put in place during the ‘‘herald’’ spring wave
so that their effects can be quantified on the coming more
severe fall wave.

We model the effects of two types of intervention
strategies. The first type of strategies have the objective of
reducing the probability of transmission per contact
(Pourbohloul et al., 2005) through prophylaxis of high-
risk groups using antiviral drugs, use of protective devises
(e.g. face masks), increase hand washing, and vaccination
albeit it is unlikely that enough vaccines would be available
in time for an influenza pandemic as the annual vaccine
production for inter-epidemic periods currently takes at
least 6 months (Webby and Webster, 2003). The second
type of strategies are put in place to reduce nosocomial
transmission during the pandemic through the implemen-
tation of effective isolation strategies in hospital wards.

The first type of interventions reduced the probability of
transmission per contact by a factor 0opo1, e.g. a 50%
reduction in the probability of transmission per contact
would be modeled as p ¼ 1=2. Similarly, the effects of
isolation of infectious individuals reduces the transmissi-
bility of hospitalized individuals by a factor 0o‘o1 as in
Chowell et al. (2003, 2004). We quantify the single and
combined impact of these intervention strategies on the
reproductive number of the second (fall) wave. The
reproductive number Rc for the second wave that accounts
for the above mentioned control strategies is given by

Rc ¼
b2pk2

k2 þ m

� r2
1

g12 þ a2 þ m
þ

‘a2
ðg12 þ a2 þ mÞðg22 þ d2 þ mÞ

 !(

þð1� r2Þ
q2

g12 þ m

 !)
. ð5Þ

That is, Rcðp ¼ 0; ‘ ¼ 0Þ ¼ R2.

4. Results

Our fitted model for the influenza notifications during
the first two waves of the 1918 influenza pandemic in
Geneva, Switzerland agrees well with the observed
epidemic data (coefficient of determination of 0:99 (Neter
and Wasserman, 1974), Fig. 4).

We estimated epidemiological parameters via least-
squares fitting of the model to the cumulative number of
hospital notifications (Table 1). We estimated the standard
deviations of the parameters via a simulation study using
the parametric bootstrap (Fig. 5) and then obtained
estimates of the reproductive numbers and clinical report-
ing (Table 2).

Using our expression of the reproductive number (2), the
reproductive number for the fall wave R̂2 ¼ 3:75 (95% CI:
3:57–3:93) is significantly larger than that of the spring
wave R̂1 ¼ 1:49 (95% CI: 1:45–1:53). This can be explained
by the significantly higher estimate of the proportion of
clinically ill cases during the second wave r̂2 ¼ 0:36 (95%
CI: 0:32–0:40) compared to our estimate of the first wave
r̂1 ¼ 0:10 (95% CI: 0:08–0:12) albeit our estimate of the
transmission rate for the spring wave b̂1 ¼ 8 (95% CI:
7:74–8:26) was slightly higher than our estimate for the fall
wave b̂2 ¼ 5:75 (95% CI: 5:27–6:23). We also found that if
we reduce the contact rate for hospitalized cases by 25%,
the reproductive number for the fall wave is reduced from
3:75 to 3, or slightly less than 25%. If the contact rate for
hospitalized cases is reduced by 75%, the reproductive
number for the fall wave is further reduced to 1:6.
Using a simple expression for the proportion of reported

clinical cases (3), we estimated a clinical reporting rate of
59:7% (95% CI: 55:7–63:7) for the first wave and 83%
(95% CI: 79–87) for the second wave. The higher clinical
reporting during the second wave also reflects the
corresponding higher diagnostic rate (Table 1). The
distribution of the reproductive numbers and clinical
reporting for the first and second waves are displayed in
Fig. 6.
The model estimates for the recovery rate for the spring

wave ^g11 ¼ 0:34 (95% CI: 0:32–0:36) and fall wave ^g12 ¼
0:45 (95% CI: 0:37–0:53) are very similar. The diagnostic
rate during the fall wave â2 ¼ 2:14 (95% CI: 1:92–2:36) is
significantly larger than that of the spring wave â1 ¼ 0:51
(0:43–0:59) even though the variance of the estimate for the
fall wave is significantly larger. In agreement with empirical
data, our estimate of the mortality rate for the second wave
d̂2 ¼ 0:02 (95% CI: 0:016–0:024) is larger than our estimate
for the spring wave d̂1 ¼ 0:008 (95% CI: 0:004–0:012).
Our model predicts that the relative infectiousness of

asymptomatic individuals qi is quite small. Moreover, the
distribution of qi obtained from our simulation study is
skewed to the right compared to the almost symmetric
distributions of the rest of the parameter estimates (Fig. 5).
To support our estimates of the parameters bi, g1i

, ai, qi,
and ri obtained through least-squares fitting, we evaluated
the identifiability of the estimated model parameters by
simulating 1000 alternate realizations of the epidemic
curve. Our simulation study results (Fig. 5) confirm the
stability of our parameter estimates to perturbations
around the model output.
We assessed the effects of two types of interventions on

the reproductive number of the fall wave by reducing the
transmission rate (via parameter p) or the transmissibility
of hospitalized individuals through effective isolation
measures (via parameter ‘). Our predictions for the
effectiveness of interventions depend on the fitted para-
meter values. This implies that the uncertainty in these
estimates translates into an uncertainty for our predictions,
which we can quantify via a simulation study using
the parametric bootstrap. Our results indicate that control
can be achieved with certainty (probability 1) when the
reduction in the transmission rate is 476:5%. On the other
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Table 2

Population parameters and estimated reproductive numbers and reporting rates for the spring and fall waves of the 1918/9 influenza pandemic in Geneva,

Switzerland

Flu wave Case fatality rate ð%Þ R S.D. R Reporting ð%Þ S.D. Reporting ð%Þ

Spring 0.7 (Gani et al., 2005) 1.49 0.02 59.7 2.0

Fall 3.25 (Gani et al., 2005) 3.75 0.09 83.0 2.0

Estimates of the standard deviation (S.D.) for Ri and clinical reporting were obtained from our simulation study consisting of 1000 replicates (see Fig. 6).
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Next, parameters were estimated (see parameter estimation). Results are shown for 1000 simulated realizations.
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hand, a reduction in the transmissibility of hospitalized
individuals cannot guarantee control (or R̂co1)
with certainty. Our model predicts that effective isola-
tion measures alone at its best (‘ close to 0) would
only guarantee control with probability 0:87. These
observations can be readily seen in Fig. 7 showing
the estimate of the reproductive number for the second
wave subject to interventions R̂c and the probability of
R̂co1 as a function of each type of interventions alone.
When both types of interventions are implemented
simultaneously, achieving control is more feasible as can
be seen in Fig. 8.

5. Discussion

In the context of influenza, mathematical models have
been used to study different demographic and epidemio-
logical mechanisms that characterize influenza dynamics
such as annual periodicity (e.g. Castillo-Chavez et al., 1989;
Boni et al., 2004; Nuño et al., 2005), describe and predict its
spread (Elvebaek et al., 1976; Spicer and Lawrence, 1984;
Rvachev and Longini, 1985; Flahault et al., 1988; Viboud
et al., 2003; Hyman and Laforce, 2003), and evaluate
different control strategies that could aid in the elaboration
of preparedness plans against pandemics or bioterrorist
attacks (Longini et al., 2005, 2004; Gani et al., 2005;
Ferguson et al., 2005).
We have used a compartmental epidemic model with

homogeneous mixing to describe the transmission dy-
namics during the spring and fall waves of infection of the
1918 influenza pandemic in the Canton of Geneva,
Switzerland. The homogeneous mixing assumption implies
that each individual has the same probability of contacting
any of the other individuals in the population. In reality
each individual interacts with a smaller group of indivi-
duals (Keeling and Grenfell, 2000). Thus, this assumption
could bias our estimate of the transmission rate.
Our model retains the minimal complexity necessary to

estimate model parameters and address specific public
health questions. More detailed heterogeneity of the
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population (i.e. susceptibility, infectiousness, and mortality
according to age) would increase the model complexity and
require more data to estimate the additional parameters.

Our model considers the possibility of limited transmis-
sion from subclinical cases, and the role of underreporting
due to clinical cases that recover without being properly
diagnosed in hospital clinics. For each wave, the transmis-
sion rate, the recovery rate, the diagnostic rate, the relative
infectiousness of asymptomatic cases, and the proportion
of clinical cases were estimated using least squares and the
variance of the estimates were calculated from a simulation
study. Estimates of the reproductive numbers and clinical
reporting rates were obtained using expressions derived
from the model structure. Even with the simplifying
assumptions on mixing and population heterogeneity, our
model was able to describe well the influenza waves of the
Spanish flu epidemic in Geneva, Switzerland (Fig. 4) and
supplied with reasonable parameter estimates.

Our models predicts a reduction in the transmission rate
during the second wave (Table 1) which can be explained as
the result of behavior changes in the population (see Del
Valle et al., 2005) reducing the contact rate, reduced
susceptibility of the general population (e.g. through
increase hygienic practices, use of face masks), and sick
individuals taking precautions to avoid infecting others.

Our estimate of the basic reproductive number for the
first wave is similar to the baseline basic reproductive
number of 1:39 reported by Gani et al. (2005) assuming a
clinical attack rate of 25% and a serologic attack rate
of 50%. Our estimate of the reproductive number for
the second wave was significantly larger than that of the
first wave and is above previous estimates for SARS
(Chowell et al., 2003, 2004; Lipsitch et al., 2003; Riley
et al., 2003). This is in agreement with the high severity
of symptoms characteristic of the second wave (Ammon,
2001). This can be attributed partially from our Ri formula
by the higher proportion of clinical cases estimated during
the second wave (Table 1). These estimates can be
compared with other estimates of the reproductive number
obtained using mortality data (Mills et al., 2004; Gani
et al., 2005). Mills et al. (2004) estimated the reproductive
number to be in the range 2–3 using mortality data of the
1918 flu pandemic in the United States. Gani et al. (2005)
estimated a reproductive number of 2 for the first wave and
1:55 for the second wave of the 1918 flu pandemic in UK.
A sensitivity analysis on the natural birth and death rate

m and the flu-specific mortality rates di showed that our
estimates of Ri are not significantly affected to small
variations in these parameters. Furthermore, the general
risk of death is known to vary with age, as did morbidity
and mortality from the Spanish flu (Ammon, 2002). While
the age-specific general mortality pattern is highest for
infants and elderly, the age-specific influenza mortality was
highest in the age group between 20 and 49 years (Ammon,
2002). A previous study based on an SEIR model
concluded that estimates of the reproductive number were
not affected due to age-specific transmission rates and case-
fatality proportions (Mills et al., 2004). Differences in
morbidity and mortality rates need to be incorporated in
age-structured models that address questions regarding
age-specific groups such as targeted control interventions
(Longini et al., 2004).
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Our model predicts that 40% of the clinical cases were
not reported in hospitals during the first wave. This
underreporting was reduced to 18% during the second
wave. This can be explained by the high severity of
symptoms and deadly complications experienced during
the second wave of infection (Ammon, 2001) and the
increasing awareness among the population about the
ongoing epidemic.

We found that containment is possible through either the
implementation of effective isolation strategies in hospital
settings or reductions in the transmission rate. While
‘‘perfect’’ isolation of hospitalized cases only assures R̂co1
with probability 0:87, reductions 476:5% in the transmis-
sion rate of the general population can guarantee control.
When both types of interventions are combined, their effect
is nonlinear with the threshold condition for control R̂co1
(Fig. 8), which facilitates control.

There is evidence of early herald waves of influenza in
1916 prior to the 1918/9 pandemic characterized by high
mortality in the young (Oxford et al., 2001). The first wave
of infection for the situation in Geneva, Switzerland seems
to resemble the dynamics of annual outbreaks of influenza
as indicated by its small basic reproductive number
(Table 2). Today, the identification of these ‘‘early’’
outbreaks could give us more time to prepare for the
coming pandemic by increasing the stockpiles of antivirals
and possibly the preparation of new vaccines. This high-
lights the importance of maintaining global virological
surveillance for influenza viruses to obtain information
about future pandemic viruses that could aid in the
elaboration of new vaccines (Kida et al., 2001). Rapid
identification of emerging viruses can extend the time
available from the appearance of the ‘‘early’’ herald waves
to the actual pandemic waves. This is increasingly
important and challenging because of our expanding
highly interconnected worldwide transportation networks.
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