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Abstract

This paper examines the relationship between productivity,
investment, and age for over 14,000 plants in the U.S.
manufacturing sector in the 1972-1988 period. Productivity
patterns vary significantly due to plant heterogeneity.
Productivity first increases and then decreases with respect to
plant age, and size and industry are systematically correlated
with productivity and productivity growth. However, there is
virtually no observable relationship between investment and
productivity or productivity growth. Overall, the results
indicate that plant heterogeneity and fixed effects are more
important determinants of observable productivity patterns than
sunk costs or capital reallocation. 
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I. Introduction

Substantial existing research attempts to unravel the

mystery through which technological innovation generates economic

progress.  Within this theoretical spectrum, vintage models are

one class of models which often share similar assumptions

regarding the dissemination of technology, and its impact on

growth.  The basic premise is that technology improves over time,

but a variety of barriers (eg., fixed or sunk costs) impede most

plants from immediately acquiring the newest vintage.   Most1

often, technological improvements are manifested in the form of

more productive machinery, a hypothesis which has been labeled

machine embodied technical change (Greenwood, Hercowitz, and

Huffman (1988)).  Implicitly, machine embodied technical change

suggests a strong correlation between high productivity and high

recent levels of investment (Baily, Hulten, Campbell (1992)). 

Beyond its hypothetical convenience, the idea that there is a

direct link between productivity and investment has been an

important element of economic thought, as well as a cornerstone



       The importance of plant heterogeneity in determining observed economic2

patterns has since been the focus of  a great deal of  theoretical research. Many
empirical examinations of the variation in economic variables with respect to
observable plant characteristics has supported these theories. For theoretical
models see Pakes and Ericson (1987, 1988), Lippman and Rummelt (1982) , Lambson
(1989), and Dixit (1989).  For empirical support, see Dunne, Roberts, and
Samuelson (1989) , Evans (1987),  Hall (1987) , Garen (1989), and Baily, Hulten,
and Campbell (1993) offer empirical support of the predictions. In related
empirical work, Davis and Haltiwanger (1992) investigate the empirical relevance
of passive learning models for job reallocation rates.  One facet of this is an
examination of  the implications of plant age for job reallocation patterns. 

2

of 20th century U.S. tax and fiscal policy (Cooley, Greenwood,

Yorukoglu(1994)).  

 However, as Solow succinctly stated  in 1962 "This (i.e. the

notion that new investment embodies new technology) is certainly

not literally true.  No one knows whether it is more or less true

than the exactly opposite assumption."  Almost forty years later, 

the concept of machine embodied technical change has not actually

been tested empirically.    The primary purpose of this paper is

therefore to test the premise of machine embodied technical

change, and concomitantly the widespread belief that investment

generates high productivity,  through a detailed analysis of the

relationships between productivity and investment. 

To do so, I discuss the implications of combining  plant

heterogeneity and fixed costs, in the context of a simple vintage

framework.  The discussion illustrates how machine embodied

technical change influences productivity and growth.  Further,

the plant level focus of the analysis highlights the influence of

plant heterogeneity on observed productivity patterns.   All of2

these relationships are then tested empirically using a plant



      To clarify, note the distinction between investment causing high3

productivity, and investment benefitting productive plants. The former is the
basis for the machine embodied technical change assumption, and has been the
impetus behind U.S. fiscal policy. It implies a strong correlation between high
productivity and high recent levels of investment, as well as a decline in
productivity with respect to investment age.

      Other methods of  technological dispersion such as endogenous innovation4

(Andolfatto and MacDonald(1993)) have also been postulated. 
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level data set that includes almost 14,000 plants.  

The major findings of this analysis refute the hypothesis of

machine embodied technical change.  In particular,  virtually no

correlation exists between high productivity and high recent

levels of investment.  However, the importance of size, industry,

and permanent plant characteristics suggest that systematic

differences among plants play an important role in determining

observed patterns.  Thus, new investment is only one small 

component of productivity - other,  plant specific influences

such as management or location,  play an even more important

role.  The results further suggest that the relationship between

investment and productivity is not causal.  Perhaps investment

really only "pays off" for plants which are already productive

due to other factors.3

The analysis also has broad implications for a second 

assumption concerning the dissemination of technology.  The logic

behind this hypothesis is that sunk costs provide new plants with

an advantage in acquiring the latest technology. Therefore, 

technological dispersion occurs through the birth of new plants

(see Campbell (1994)).   This notion, which is called plant4



4

embodied technical change, implies that across plants,

productivity decreases with respect to plant age. My empirical

results imply that, across plants, productivity initially 

increases, and later decreases, with respect to plant age.  This

is not inconsistent with the notions underlying plant embodied

technical change,  however, the overall results suggest that

plant idiosyncracies play a more important  role in determining

observed productivity patterns than sunk costs or capital

reallocation.

The structure of the paper is as follows. Section II

outlines the framework and the testable implications.  Section

III describes the data set used to conduct the analysis, and

provides the variable definitions.  Section IV presents the

results, and section V discusses the implications of the results

and concludes.

II. The Theoretical Background: 

As mentioned above, vintage models are a class of models

which often incorporate hypotheses and predictions regarding the

dissemination of technology. The common theme is that overall

growth is determined through the combination of technological

improvement and barriers to acquisition.  From the theoretical

framework, detailed predictions regarding  productivity

fluctuations (Campbell, (1994)), the balanced growth path (



     See  footnote 2.5

     Cooper, Haltiwanger, Power (1995) investigates the timing of lumpy6

investment episodes at the plant level, and also analyzes the aggregate
implications of these timing decisions.
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Cooley, Greenwood, Yorukoglu(1994 )), transitional dynamics

(Krusell 1992)), and the behavior of economic variables

(Greenwood, Hercowitz, and Krusell(1992)), have been derived. 

From a different perspective, models focusing on plant dynamics

(eg. Pakes and Ericson (1987,1988), Lambson (1989), Dixit(1989))

also contain significant predictions regarding technology and the

evolution of economic variables.  5

The implications of both of these types of models are highly

pertinent to the present study, and two specific studies are

particularly relevant. The first is the machine replacement model

of Cooper and Haltiwanger (1993), and the second is  Jovanovic 's

(1982) model.  The former is a vintage capital model which is

built around the investment decision. Investment is driven

primarily by the fixed costs which generate lumpy investment

behavior, and the resulting investment patterns can have

aggregate implications.  The key to the latter model is the6

selection among plants which results from their systematically

different cost structures (i.e. plant heterogeneity).  The

implications of these heterogenous cost structures include

declining failure rates with respect to size, as well as a

positive correlation between size and age. The present study



     The simple framework derived in Power (1994) combines features from both7

the Cooper Haltiwanger model and the Jovanovic model in order to highlight the
interaction of fixed costs and plant heterogeneity. It is presented in complete,
detailed, and explicit form in Power (1994). Its implications are also proven
formally in Power (1994). However it is not a structural model; that is, it is
not designed to describe the functional form of the relationship between
productivity and these plant heterogeneities. Rather, it is a broad system
designed to highlight the above mentioned factors.

6

relies heavily on many of these ideas developed in these models,

and in fact builds on elements within them. 

To better understand the implications of machine embodied

technical change,  it is useful to conceptualize plant

heterogeneity in the form of productivity differences, and also

to adopt a vintage framework.  These features are synthesized and

examined in a simple theoretical framework (Power (1994)). 

Because the focus of this analysis is the empirical test of

machine embodied technical change, this structure is not

explicitly detailed in the present  paper. However, in order to

illustrate the main points, its primary features are discussed

below.7

Suppose that plants can differ randomly on two levels -their 

permanent productivity feature 2  (e.g. managerial ability), andip

their time variant idiosyncratic productivity feature 2   (i.e.imt

outcome of investment).  Suppose further that each attribute is

randomly drawn from a distinct distribution,  but jointly they

determine each plants’ profits over time. Thus,  B  = f(2 ,2 ), it ip imt

where plants are indexed by i, time is index by t.  Prior to

entry, there is uncertainty as to the value of both the permanent



     In order to track the pattern of productivity across plants using age, it8

must be assumed that cohorts are not systematically different regarding the
relationship between productivity and age. This assumption was substantiated
empirically.

7

and the time variant characteristics, but the value of the

permanent component is revealed at the end of the first period

after the plant's birth.  Since this value is fixed, its impact

can be captured by tracking productivity patterns with respect to

plant age.  8

Now suppose that there are fixed costs associated with the

process of investment.  This implies that plant level investment

occurs in spurts, and the occurrence of these spurts can be

labeled investment spikes.  The outcome of these investment

spikes is random, and thus, after each investment spike,  each

plant gets a new realization of  2 , which can be denoted 2imt imt
*

The value of  2  is learned at the end of the period ofimt
*

investment, and its impact can be evaluated by tracking the

pattern of productivity with respect to the time elapsed since

the last investment spike. Thus, if this elapsed  time is called

the plant's investment age, then i =(t-s);  where i  ist t

investment age, t is the current time period, and s is the period

in which the last investment spike occurred.

To incorporate the notion of technological change, assume

that the mean µ of  the distribution from which 2 is drawn ist imt 

increasing over time at a constant rate (, which implies that

µ =(µ , (>1.  This essentially reflects the idea that  newt t-1  
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technology is embodied in new machinery, and therefore implicitly

incorporates the assumption of machine embodied technical change.

The actual value of 2  at time t also is influenced byimt

depreciation. That is, the value depends on whether the plant

invests in period t, and, if not, how long it has been since the

plant last invested. For example, if  2  is the current valueimt
0

of the plant's last draw from the  2  distribution, thenimt

2 =(D 2 ), where j is the last period in which plant i had anmit mij
0 j-1 0

investment spike, and the depreciation rate, D, is between 0 and

1.  

Overall,  each plant's decides to whether or not to invest

in a given period by comparing its total value from the current

period onward if it invests (V  ), with its total value if iti
I

does not invest (V ).  The total value of investing (noti
N 

investing) is determined by the current period utility from

investing (not investing), as well as by the entire future stream

implied by the decision to invest (not invest).  Thus, if c is

the operational cost  incurred during each period in which the

plant operates, k is the cost of investing, and  W  is thei
I

current utility from investing,  then EW = E(2 +2 -c-k), and Vi ip im i
I * I

=EW + $EV(D2 ).  Further,  if W  is the current utility fromi im i
I * N

not investing, then EW = E(2 +D2  -c), and  V  =EW +$EV(D 2 ). i ip im i i im
N 0 N N 2 0

Finally, note that it is the fixed cost k which generates lumpy

investment behavior,  and that the discount rate, $, must be

between 0 and 1.
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Framework Implications

The implications of this framework are the focus of the

empirical analysis.  The first is that the productivity of plants

which have recently invested is higher than that of plants which

invested long ago. This is intuitive, and arises because

depreciation lowers the productivity of machines over time, and

because improvements in technology and research and development

enhance the productivity of new machinery at rapid rates. Note

that this prediction derives directly from the assumption of

machine embodied technical change; that is,  since new machinery

embodies the newest technology,  on average,  high recent

investment is associated with higher productivity.  Thus, 

empirical tests of this prediction implicitly test the assumption

of machine embodied technical change.

The second is that  failure rates decline with respect to

plant age; in particular, old plants have a lower failure rate

than young or medium plants.  It is essentially uncertainty over

permanent attributes precipitates this failure.  Plants enter

with the belief that they will be able to make positive profits. 

Based on their 2   and  2  draws, however, some learn that thispi mit

is not possible. 

Finally, the mean levels of productivity across plants

increase with respect to plant age.  In this simple theoretical

context, the mean of productivity increases with respect to plant

age because of selection effects: over time, the less productive



     See Grabowski and Mueller (1972)9
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plants exit, causing the overall mean to rise.  Realistically,

other effects can cause an increase in  productivity with respect

to age. For example, learning causes productivity to increase

rapidly at young ages, and then more slowly over time. This

implies a concave pattern of productivity with respect to age. 

Life cycle models hypothesize that, in older plants,  managerial

discretion  inhibits profit maximization, and therefore the

relationship between productivity and age is actually humped

shaped.   9

Note, however, that, in its strictest form, plant embodied

technical change essentially implies a purely negative

correlation between productivity and age. The driving force

behind  this assumption is the existence of sunk costs:  existing

plants cannot acquire the latest technology with the same

relative ease as the new plants, because of their sunk costs. 

Thus, the newer plants are free to purchase the newest

technology, and therefore they have highest productivity.  The

empirical analysis attempts to simultaneously examine the

importance of sunk costs, learning, and selection, by examining

the pattern of productivity with respect to plant age.

III. The Data

The data set is a pooled cross-section time-series extract



     SIZE = (1/mnte){G (te ) }, where mnte=mean(te72,...te88), and te is10
i=72 i

i=88 2

annual number of workers. This average size measure was chosen to capture long
run size,and to avoid transitory fluctuations in size (Davis, Haltiwanger, Schuh
(1995)).
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from the Longitudinal Research Database (LRD). The LRD is a plant

level panel data set containing information on more than 750,000

U.S. manufacturing establishments for the years 1963, 1967, and

1969-1988. The extract utilized for the regression analysis

contains annual information on 13,936 large manufacturing plants

from 1980-1988.  In addition, information on these plants from

1972-1980 was used to construct some of the variables.

 Table 1 reports the number of plants and total number of

observations contributing to each industry.  The distribution of

plants in the data set across two digit industries in roughly

comparable with that of total manufacturing, and all twenty

industries are well represented. In total, there are 109,647

observations.  Table 2 reports number of plants and total number

of observations by plant size.  Plants are assigned to  size

classes based on their average, size weighted employment over the

entire sample period.    Although the data set excludes small10

plants, the 13,936 plants which are included comprise the

universe of the large manufacturing plants in the United States.

Thus, the distribution of plants across these five large size

classes is identical to their distribution for the total

manufacturing sector.  It should be noted that, although there is

a higher concentration of plants in the "smaller" size classes,



     In particular, from 1980-1988 969 plants are born, and 2,592 plants die. 11

However, 238 of the births have missing productivity in their birth year, and are
thus excluded from the regression analysis.

     Robustness checks were performed by running productivity age regressions12

on the subset of this data set which does not include the open ended age category
(that is, the data set which includes only those 7,365 large plants born after
1973, and which contains 16 precise age measures).  The patterns of productivity
with respect to plant age for this subset were similar to those found using the
open ended age category.  Further, a test regression was run including a separate
dummy variable for plant age 8, to see if there were significant productivity
differences for age 8 plants; specifically whether the inclusion of the open
ended age category was distorting the regression results.  The coefficient of the
age 8 dummy was insignificant, indicating that no strong bias exists.

12

all size classes are well represented.  Finally, Table 3 reports

the distribution of plants over time.  While most plants are in

existence for the entire sample period, the combination of entry

and exit results in a small overall decline in the number of

plants and number of observations over time.11

The Variable Definitions 

To construct exact plant age, data from 1972-1980 are used. 

Starting in 1980 and looking backward to 1972, plant age is thus

defined as the difference between the current year and the first

year the plant is ever recorded in the data set, until the plant

reaches age eight.  After this, the plant is always assigned age

eight.  Therefore, the possible plant age categories are age 0 to

age 7, and age 8+.   Table 4 reports the number of observations12

in each of the 9 age categories.  The majority of observations in

the data set are in the oldest category, although all ages have a

substantial number of observations. 

  Investment age measures vintage as defined by the time



     One could imagine an absolute definition of a lumpy investment, such as13

an x% change in total capital stock.  This type of definition focuses on
expansion, and might be more appropriate for analyzing the aggregate implications
of investments as a whole. The correspondence between relative lumpiness and
absolute lumpiness was tested, and it appears that many, but not most, absolute
spikes are also relative, and vice versa.  The absolute definition captures many
smooth expansions which are ignored by the relative definition, and the relative
definition captures many investments which are large relative to the plants other
investments, but not large in any absolute sense.    

13

(1)

elapsed since the occurrence of an extremely large investment.

Thus, the definition of investment age requires the definition of

an investment spike:   in order to determine a plant's investment

age, "lumpy" investment episodes must be identified, and then the

time between these episodes tracked.  

The concept of lumpy investment chosen for this analysis is

a relative one; that is, a plant's investment is considered lumpy

if it is large relative to that plant's other investments.   In13

particular, an investment spike is defined as an investment event

($) which is extremely large (") relative to each plant's own

normal investment ($ ).norm  

This definition has several merits.  First, it effectively

captures the intuitive notion of lumpy relative investment,

because it attempts to identify periodic, large bursts of



     Essentially, the structure assumes the existence of a plant level14

investment distribution which has a high concentration of investments of small
investments, but which has a long right hand tail, indicating the periodic
occurrence of unusually large investments.

     In order to gain some sense of the breadth of the definition, several15

investment spike characteristics, including number of spikes, percent of spike
observations, and total sample investment accounted for by spikes, are presented
for each of the definitions of  " in Table 7. For a much more complete analysis
and discussion of the characterisitics of investment spikes, robustness checks,
etc., see Power (1994). 
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investment.   Further, it is consistent with the notion that14

fixed costs generate lumpy investment.  Finally, it ensures that

relative investment spikes are lumpy in a general 

sense.  It does so by imposing a uniform definition of large

relative to the normal investment across plants; formally, " is

restricted to be the same for all plants.

Thus, the choice of  " must satisfy some concept of 

"large",  and in an attempt to satisfy this criteria,  "  is set

at 2.5.  Although intuitively, it seems reasonable to identify an

investment two and a half times as large;   it is also admittedly

ad hoc.  Therefore, all analyses were also conducted for  two

alternative specifications of  ":  " =1.75 and  "=3.25.   With15

one minor exception (to be noted later), all of the results are

very similar. Therefore, in the interest of simplicity and

clarity, only the  " =2.5 results are presented.

Throughout the analysis, the rate of investment in period t

- $  - is defined as the ratio of the plant's nominal new t 

machinery purchase (nm) in year t to its total nominal book value



     The nature of Census data is such that beginning of period assets do not16

exist in 1972, and book values are imputed in 1986, and 1988.  Therefore, in
order to utilize the most information possible, end of period assets, rather than
the traditional beginning period of assets, are utilized as the measure. 

     Although in principle this specification allows for a multi-year spike of17

any duration, approximately 90% of the multi-year spikes are three years or
under.

15

of capital (mae) at the end of period t.   $  - each plant's16
norm

normal investment - is defined as the median of its investments

over the entire sample.

However, some investment projects are large enough that they

might last more than one year, and thus a single annual

accounting period need not necessarily reflect the total

expenditures necessary to complete a project. Further, even a

"year long" project need not begin at the start of the accounting

year, nor end at  close of the accounting year, which implies

that a portion of the investment necessary to complete the

project could be distributed over two consecutive years. In these

instances, the true investment spike is obviously the total

investment recorded in all of these years.  In an attempt to

capture such events, adjacent years of relatively intense

investment activity are grouped into a single investment event. 

This grouping is labeled a multi-year spike, and is modeled using

the following specification.17



     Again, for a more complete discussion and analysis of the characteristics18

of investment spikes and multiyear investment spikes, as well as their
robustness, see Power (1994). 

16

(2)

Obviously, there are an infinite number of combinations

through which an investment project could be portioned out over

consecutive accounting years. The parameter  0  must attempt to

capture all of these combinations, without losing the notion that

the investment is intense or lumpy.  As in the case of ",  the

designation  must ultimately be somewhat ad hoc. Therefore, in

order to ensure robustness of the results, nine alternative

values of  0  were tested, and all provided quantitatively

similar results.  Again , in the interest of simplicity and18

clarity, only the results for the value 2.25 (i.e. 90% of  ") 

is presented.

Given this definition of an investment spike, investment age

is defined in the following manner. The analysis is initialized

in 1980, and the data from 1972-1980 are used to construct eight

precise investment age categories.  Starting in 1980 and looking

backward to 1972, investment age is equal to plant age for all

plants, until a plant has its first investment spike. 

Thereafter, investment age is defined as the difference between

the current year and the year of a plant's most recent investment



       The structure therefore implies that the variable is reset to zero19

during every period of major investment.

      Note the large number of observations in the investment age 8 is due to20

the open-ended nature of the category.

      See Baily, Hulten, Campbell(1992), Olley and Pakes (1990).21
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spike, until the plant reaches investment age eight.   After19

this, the plant is assigned age eight until it experiences

another investment spike.  Therefore, the possible investment age

categories are age 0 to age 7 and age 8+. Plants which never have

investment spikes have investment ages equal to their plant age

for the entire sample period.  The distribution of plants across

investment ages is reported in Table 5.  The distribution is

fairly consistent, with a slight downward trend, until age 8.   20

IV. The Empirical Analysis

 The purpose of the empirical analysis is to test the

hypotheses of machine embodied technical change, and more

generally to shed some light on the relationship between

productivity, investment, and age.  Following a common practice

of  productivity analysis, I estimate a logarithmic

specification.   However, to avoid imposing an arbitrary21

structure on the complex functional relationship between

productivity and investment,  a reduced form OLS specification is

employed.
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