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22 February 2002

from: Dennis Couzin

to: ASTM-Flash

re: 2, 3, many Blondel-Reys
This note probes Blondel & Rey's 1911 work, as portrayed in Douglas' 1957 paper
.  The men's names are merely labels for the equations which are the proper objects of this study.  
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FIGURE 1

A pulse of light is given by its intensity function I(t). 

For any two times t1, t2 during the pulse we can define a quotient Q:
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(1)


a is a time constant.

If I(t) is a rectangle pulse of intensity I starting at t1 and ending at t2 then Q gives the Blondel-Rey effective intensity (Ie) of the pulse as in equation (2)
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(2)

Blondel & Rey wanted Q to give the effective intensity of a general pulse.  All that is needed is to specify t1 and t2.

Obviously t1 and t2 can't just be the pulse's starting and ending times because the general pulse could start very slow or drag on.  Using earliest or latest times enlarges the denominator, reducing Q, independent of the flash visibility. 

According to Douglas, Blondel & Rey wanted t1 and t2 chosen so as to maximize Q.  Why did they want this?  Did they think of Q as measuring some effect of I(t) between t1 and t2, and think of visual detection as a maximizing scan over all these effects?  I find this idea nutty.  A neural process can scan through a time range, but it can't conduct a two dimensional scan over time ( time space.  Nevertheless it is called a principle here, in the hope that someone will explain why it isn't absurd.

MaxScan principle: Effective intensity of flash I(t) is the maximum, over all t1,t2 pairs, of the value of some operation applied to I(t) between limits t1 and t2.  

An example of an operation is Blondel & Rey's Q(I,t1,t2).

Formally:
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(3)

Despite its odd origin, equation (3) is mathematically impeccable.  It works for every flash I(t), regardless of complexity.  Equation (3) gives no hint which t1 and t2 maximize Q.  Try'em all; there must be a maximum.  According to the MaxScan principle, it shouldn't matter whether more than one t1,t2 pair produces this maximum.

Blondel-Rey Equation

Blondel & Rey's famous equation does give a hint how to find t1 and t​2:
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  t1,t2 such that I(t1) = I(t2) = Ie   (4)

Equation (4) says to choose t1 and t2 so that the resulting Q is equal to both I(t1) and I(t2).

Douglas more or less proves that Blondel & Rey's equation (4) achieves their desideratum (3) for simple flashes.  He is unclear whether Blondel & Rey knew this.  Blondel & Rey might have arrived at (4) intuitively, independently of (3).  I can't see their intuitions behind (4).  They might have found (4) by fiddling with examples of (3). 

Equation (4), the "Blondel-Rey equation", has twisted minds for 90 years.  Here is a proof that the equation has a solution.

Existence proof

Try out two different Ie for the left hand side of equation (4), always choosing t1 and t2 as far apart as possible, with I(t1) = I(t2) = Ie.  

First try 0 for Ie.  t1 is at the beginning of the flash and t2 at the end.  This makes the right hand side of equation (4) positive, that is, greater than the left hand side.

Next try Imax for Ie.  For a flash that reaches Imax at a single peak, I(t1) = I(t2) = Imax forces t1 = t2, which makes the right hand side of equation (4) equal 0, that is, less than the left hand side.  For a flash that reaches Imax at more than one t, the right hand side numerator is equal or less than (t2-t1)Imax, while the denominator is greater than (t2-t1).  Therefore the right hand side is less than Imax, that is, less than the left hand side.

With this method of choosing t1 and t2, the right hand side of equation (4) is a continuous function of Ie.  Therefore our finding that Ie = 0 makes the right hand side greater than Ie, and Ie = Imax makes the right hand side less than Ie, proves that some value of Ie between 0 and Imax makes the right hand side equal to Ie, i.e., solves the equation.  QED

It can also be proved that solution to the Blondel-Rey equation is unique.

Uniqueness proof

Equation (4) can be rewritten:
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 t1, t2 such that I(t1) =I(t2) =Ie  (5)

Suppose the Ie in (5) is the larger of two solutions.  The smaller Ie makes the left hand side of (5) smaller.  For a single peaked flash, smaller Ie requires t1 and t2 to be farther apart.  This makes the right hand side of (5) larger.  Equation (5) then fails.  QED

Equation (4) has a unique solution and equation (3) has a unique solution.  This is where Douglas starts his proof that the equations have the same solution.  His proof misses one of three cases, but it is basically correct for the flash with a single peak.  Here is a more rigorous proof that (4) is equivalent to (3), which allows extension to multi-peaked flashes:

Maximality proof

Suppose t1 and t2 solve equation (3), and t1 ( t2.  It must first be shown that I(t) is sloping upwards at t1 and downwards at t2.  This is easy for a single peaked flash. 

Suppose t1 and t2 are on the same slope.  Suppose I(t) is sloping upwards at times t1 and t2.  I(t) is still sloping upwards at slightly later times t1+( and t2+(.  The two later times produce a larger numerator in the Q quotient, while leaving the denominator unchanged, so the new Q exceeds Qmax.

Similarly if I(t) is sloping downward at times t1 and t2.

It is less easy shown for a multi-peaked flash, so that part of the proof is postponed.  See Straddling proof, below.

Now suppose I(t1) ( I(t2).  

Case I, Qmax ( I(t1).  Try a slightly later initial time t1+( where I(t1)(I(t1+()( Qmax.  This decreases the numerator of the Q quotient by less than ((Qmax while decreasing the denominator by (, so the new quotient exceeds Qmax. 

Case II, Qmax ( I(t1).  Try a slightly earlier initial time t1-( where Qmax ( I(t1-().  This increases the numerator of the Q quotient by more than ((Qmax, while increasing the denominator by (, so the quotient exceeds Qmax.  

Case III, Qmax = I(t1).  If I(t1) ( I(t2), try a slightly earlier final time t2-( where 
Qmax = I(t1) ( I(t2-()( I(t2).  This decreases the numerator of the Q quotient by less than ((Qmax while decreasing the denominator by (, so the new quotient exceeds Qmax.  

Therefore Qmax = I(t1) = I(t2) as in equation (4). QED

Thus FIGURE 1 with I(t1) ( I(t2) can't show a solution to equation (3).  Solutions must look like FIGURE 2, which also illustrates equation (4).  
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FIGURE 2

Did Blondel & Rey countenance multi-peaked flashes?  When these flashes are perceived as single, the concept of effective intensity must apply, and Blondel & Rey's MaxScan principle should apply.  Then their equation (3) gives the value of Ie.

FIGURE 3 shows how t1 and t2 might be chosen to solve equation (3).  Equation (3) never fails, but is difficult to apply because all t1,t2 pairs must be considered.  Can the Blondel-Rey equation (4) be applied to a multi-peak flash?  In the proof above, the first (Existence) part works for a multi-peak flash.  Equation (4) will have a
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FIGURE 3
solution for any flash.  It is the second (Uniqueness) part which explicitly requires that the flash have one peak.  Equation (4) can have multiple solutions for multi-peak flashes.  FIGURE 4 shows an example where there are three solutions.  The lowest solution (t1,t2) encompasses just the first pulse.  The middle solution (t3,t4) encompasses both pulses.  The highest solution (t5,t6) encompasses just the second pulse.  
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FIGURE 4
For multi-peak flashes, maximality means that the highest solution of equation (4) equals the solution of equation (3).  For the third (Maximality) part of the proof to apply to a multi-peak flash, it remains to be proved that for t1,t2 solving equation (3), I(t) slopes upwards at t1 and downwards at t2.  That is, t1 and t2 straddle one or more peaks.   For example, solutions to equation (3) cannot look like FIGURE 5.
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FIGURE 5

Straddling proof

Suppose the solution of equation (3), Qmax, is achieved using t1 ( t2.  

Can I(t) have downward slope at t1?

Case I: I(t1) ( Qmax.  Reduce t1 slightly to t1-( so I(t1-() ( Qmax.  The numerator of the Q quotient increases by more than ((Qmax.  The denominator increases by (.  So the new quotient exceeds Qmax.

Case II: I(t1) ( Qmax.  Increase t1 slightly to t1+( so still I(t1+() ( Qmax.  The numerator of the Q quotient decreases by less than ((Qmax.  The denominator decreases by (.  So the new quotient exceeds Qmax.

Can I(t) have upward slope at t2?

A mirror image argument to the last shows it can't.  QED

With Straddling proved, the Maximality proof now handles the multi-peak case.  The solution to equation (3) also satisfies equation (4).  The maximal solution to equation (4) is the solution to equation (3).  Equation (4) allows fairly practical numerical solution.  Different heights are tried as Ie solutions.  For each height, the intersections with I(t) give several t's.  Q is calculated for all t1 ( t2 pairs for which I(t) is rising at t1 and falling at t2.  The convergence to I(t1) = I(t2) = Ie is less simple than with single peaked flashes.  If there are N peaks the search can proceed through as many as N((N+1)/2 paths.

Blondel-Rey-Douglas

Douglas (1957) proposes an alternative equation (6) to the Blondel-Rey equation (4) specifically for use with multi-peaked flashes.
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t1, t2 such that I(t1) = I(t2) = Ie,D

(6)

Instead of Blondel-Rey's Ie, this equation yields a new effective intensity called here Ie,D.  Douglas didn't write his equation as (6) is written.  He wrote a sum of separate integrals in the numerator and included a diagram showing how the integration skipped the times between t1 and t2 where I(t) fell below Ie,D
.  The term in big parentheses in the numerator of equation (6) becomes 1 for all t where I(t) ( Ie,D and becomes 0 for all t where I(t) ( Ie,D.  The signum function is defined:





sign(x) = -1 for x ( 0





sign(0) = 0





sign(x) = +1 for x ( 0.

The definition at 0 is incidental.  Equation (6) is a practical equivalent to the equation Douglas wrote.

Douglas gave incomplete rules for application of equation (6).  I believe he meant it to apply when gaps between pulses were between 10 ms and 100 ms, but he wrote that it should be applied when gaps are less than 10 ms.  I do not understand Douglas' thinking which led to equation (6). 

We cannot regard Douglas' quotient as a new quotient Q' replacing the Q quotient of Blondel-Rey.  We cannot write a straightforward maximization equation standing to equation (6) as equation (3) stands to equation (4).  Ie figures implicitly in both sides of equation (4), since the choice of t1 and t2 depends on Ie.  In equation (3), t1 and t2 are free, and are chosen to maximize Q.  However, Ie figures explicitly in both sides of equation (6). Choosing a pair t1,t2 is not enough to allow calculation of Douglas' quotient.

Equation (6) is so sick that it can lack a solution. 
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FIGURE 6

FIGURE 6 shows an example where there is no Ie,D.  The time axis is in seconds.  

I(t) = 1 cd from t = 0 to t=0.05.  

I(t) = 0.25 cd from t = 0.05 to t = 0.25.

I(t) = 1 cd from t= 0.25 to t = 0.30.

Time constant a = 0.2 sec.  

The only possible solutions can be with 

interval A: t1 = 0, t2 = 0.05

interval B: t1 = 0, t2 = 0.3

interval C: t1 = 0.25, t2 = 0.3

Interval A doesn't work because the initial pulses can muster only Ie,D = 
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 cd, but Ie,D must equal at least 0.25 cd in order to have I(0.05) = Ie,D.

Similarly interval C doesn't work.

For interval B, equation (6) says to exclude from the integral the time where I(t) falls below Ie,D.  If the whole time interval is included, then:

Ie,D = 
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 = 0.3 cd

But this means the 0.25 cd time in the center must be excluded.  When this is excluded: 

Ie,D = 
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But this means the 0.25 cd time in the center must be included.

Contradiction!  Equation (6) has no solution for the simple flash of FIGURE 6.  

The trouble with equation (6) is in its mathematical form.  The contradictory example of FIGURE 6 does not rely on the perfectly square flash shape.  Also, similar examples can be constructed for shorter times, as required by Douglas.   

Douglas' modification of the Blondel-Rey equation is intuitively mysterious and mathematically incoherent.  It was not a serious contribution to the science of flashing lights, and it will be omitted from the next version of my flashcalculator spreadsheet. 

Blondel & Rey's equation (3), or equivalently the maximum solution to their equation (4), will be included in the next version of the spreadsheet.  






� Charles A. Douglas, Computation of the Effective Intensity Of Flashing Lights, Illumination Engineering, December 1957, pp. 641-646.


� Douglas, p. 641: "An equation of this form was originally suggested by Blondel and Rey [1911], but has rarely been used."


� Douglas, p. 644 equation (12), p. 645 Figure 5. 
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