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SUMMARY

A second-order accurate alternating-direction implicit (ADI) method has been used
to solve the two-dimensional incompressible Navier-Stokes equations for flow in a square
driven cavity. Calculations were made at a Reynolds number of 100 with equally spaced
15 X 15, 17 x 17, 33 x 33, and 57 x 57 grids and at a Reynolds number of 10 with a
15 x 15 grid. The ADI results agreed well with other solutions. Choosing a criterion
for convergence which was too strict was found to result in no steady-state solution being
reached. A study of the maximum allowable time step for a Reynolds number of 100
indicated that time steps many times larger than those used for most consistent explicit
methods could be used for the ADI method.

INTRODUCTION

A second-order accurate efficient implicit method is used to solve the two-
dimensional incompressible Navier-Stokes equations for flow in a square driven cavity.
(See paper no. 1 by Rubin and Harris for details of the driven cavity problem.) This
problem was previously solved by Mills (ref. 1) using an explicit method.

Alternating-direction implicit (ADI) methods were introduced by Peaceman and
Rachford (ref. 2) and take advantage of a splitting of the time step for multidimensional
problems to obtain an implicit method which requires only the inversion of a tridiagonal
matrix. The expected unconditional stability of the method allowed larger time steps
than explicit methods without the complexity of a full matrix reduction routine required
by one-step implicit methods.

SYMBOLS

K constant

AZ = Ax = Ay

N number of grid points in one direction
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R Reynolds number

At time step

u axial velocity component

v normal velocity component

x,y axial and normal coordinate, respectively

Ax,Ay spatial increments in x- and y-directions

£ vorticity

v kinematic viscosity

4> stream function

Superscripts:

n index of time step

* intermediate time level

Subscripts:

i,j index of grid point in x- and y-direction, respectively

t differentiation with respect to time

w value at wall

x,y differentiation with respect to x or y

METHOD OF SOLUTION

The nondimensional equations for viscous incompressible two-dimensional flow in
vorticity—stream-function form which describe the flow field under investigation are

^ = -U?x - V?y + y^ + Kyy (D
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v ty=£ (2)

and u = i/'y, v = -i//x, and v = 1/R.

Applied to the vorticity transport equation (eq. (1)), the Peaceman-Rachford (ref. 2)
alternating -direction implicit (ADI) method advances one time level in the following two
steps.

Step 1

At/2
Step 2

f ny

At/2 x y yy

The value £* has no physical meaning.

The method applied to the linear equation has a formal error of order

t o p 2!(At) ,(Ax) ,(Ay) . It is unconditionally stable and consistent. The full second-order
accuracy of the method can be deteriorated by the nonlinear terms which should be eval-
uated as u* and vn for step 1 and as u* and vn+1 for step 2. If the old values

un and vn are used, the formal error is o|At,(Ax) , (Ay) J. Briley (ref. 3) calculated

un and vn and, from the previous values un~^ and vn , linearly extrapolated for-
ward to u* and v*. This procedure is stable and appeared second-order accurate;
however, additional storage is required for i//n~l. Another procedure (refs. 4 and 5) is
to iterate on the entire time step, either to convergence or for a predictor -corrector
method. In either case the error is o|(At)2| and additional storage is required for
i//n . It is also possible to calculate «//* after step 1 and to use u* and v* in
step 2. Aziz and Heliums (ref. 5) examined these alternatives and found iteration on the
full two steps to be the most accurate. The iteration required to obtain full second-order
accuracy of the nonlinear terms may not be undesirable since some iteration is an
advantage in achieving accurate boundary values for £.

Although a linear Von Neumann analysis shows the ADI procedure to be uncondition-
ally stable, a survey of the literature indicates that the procedure may not be uncondition-
ally stable for flows with high Reynolds numbers because of the At time lag of £w- (See
ref. 6.) The degree of convergence for £w to obtain stability is problem dependent.
For large At, convergence may be prohibited by nonlinear effects. Also, the program -
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ing involved with complex boundaries effectively restricts the use of this method to rec-
tangular regions.

The tridiagonal nature of the matrix to be solved, although much simpler than that
in fully implicit one-step methods, requires diagonal dominance if error buildup is to be
avoided in the matrix inversion. This is equivalent to imposing a restriction on cell
Reynolds number.

In the present study, the ADI procedure was applied to the vorticity transport equa-
tion. Central differencing was used with equal mesh spacing and nonlinear terms were
lagged a full time step. After completing a full time step calculation on vorticity, the
stream-function equation was solved by a successive overrelaxation (SOR) routine and
the boundary conditions were updated. (The SOR routine was identical with the one used
in the previous paper by Hirsh (paper no. 4).) The vorticity was then calculated for a
new time step, rather than being iterated at each time level to achieve a solution which
was second-order accurate in time, since the interest in this study was in the steady-
state solution.

BOUNDARY CONDITIONS

The no-slip condition requires that both u and v (the normal and tangential
gradients of i^) are zero at the stationary walls whereas at .the moving wall u is unity.
These conditions are treated by taking a row of image points at a distance AZ = Ax = Ay
outside the boundaries. These values can be related to the interior points by taking
derivatives at the boundaries. Thus, the boundary conditions for £ are:

on the stationary walls,

f - ^interior

at the moving wall,

: + ^interior)

The boundary value of i// is zero on all boundaries. Initial conditions are zero every-
where except on the moving wall.
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RESULTS

These calculations were made at a Reynolds number of 100 for a square N x N
cavity for N = 15, 17, 33, and 57 and at a Reynolds number of 10 for N = 15. For
N = 17, the problem was also computed with the conservation form of the equations and
the values were found to be much more accurate, although the computer time to achieve
a converged solution was approximately 2 times longer. As shown in table I, the maxi-
mum value of the stream function increases with the number of grid points toward the
value 0.101 published by Burggraf (ref. 7). The vorticity ? at the midpoint of the mov-
ing wall is also shown. For N = 15, the solution was identical with the one published by
Mills (ref. 1) with a maximum stream function of 0.08742. Machine plots of the velocity
vectors and the streamlines of this flow field are shown in figure 1. The calculated
values of vorticity £ and stream function ^ for N = 57 are presented in table II.
In figure 2 the axial component of velocity u is depicted along a vertical line passing
through the vortex center, and the calculated values are shown in table HI for the three
cases, N = 15 and 57 in nondivergence form and N = 17 in divergence form. Attempts
to increase the accuracy of the nonconservation form by increasing the number of nodal
points resulted in solutions which did not converge because of a convergence criterion
which was too strict. The percentage difference between time levels n + 1 and n was
used to check convergence. For N = 15 and 17, solutions were achieved with the con-
vergence requirement set at 0.00005. For N = 33, this requirement was repeatedly
made less stringent and was set at 0.001 before a converged solution was reached. Solu-
tions for N = 57 did not require further weakening of this convergence criterion. This
study was made for a time step At = Ax, the Courant-Friedrichs-Lewy condition for
explicit methods. Decreasing the Reynolds number to 10 for N = 15 also forced the
convergence requirement to be set at 0.001 and the time step to be decreased. No
attempt was made to find the maximum allowable time step for this Reynolds number.
For a Reynolds number of 100, however, such a study was made with the nonconservation
form of the equations and the results are shown in figure 3. For N = 15, no solution
would converge for At greater than 7 Ax. An N of 17 required that At be lowered
to 5 Ax. Increasing N to 33 with At = 5 Ax resulted in the solution iterating in the
SOR routine until the time limit on the computer was reached. Lowering the time step to
3 Ax allowed the solution to converge. For N = 57, convergence in the SOR routine
required that At = Ax. Thus the maximum allowable time step appears to vary not only
as a function of Ax but also with the number of grid points used.
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CONCLUSIONS

An alternating-direction implicit (ADI) method has been used to solve the two-
dimensional incompressible Navier-Stokes equations for flow in a square driven cavity.
The following conclusions may be drawn:

(1) The ADI technique, although not unconditionally stable as a linear Von Neumann
analysis indicates, does allow time steps many times larger than most consistent expli-
cit methods.

(2) Choosing a criterion for convergence which is too strict may result in no
steady-state solution being reached.
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TABLE I.- RESULTS FOR R = 100

N '

15

17

a17

33

57

Vorticity at midpoint
of moving wall

8.9160

8.4646

7.3756

6.9919

6.6960

Maximum
stream function

-0.08742

-.09098

-.09867

-.10038

-.10128

Divergence form.
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TABLE HI. - RESULTS FOR VELOCITY COMPONENT u THROUGH POINT

OF MAXIMUM STREAM FUNCTION FOR R = 100

y

0

.0625

.0714

.1250

.1428

.1875

.2143

.2500

.2857

.3125

.3571

.3750

.4286

.4375

.5000

.5625

.5714

.6250

.6429

.6875

.7143

.7500

.7857

.8125

.8571

.8750

.9286

.9375

1.0000

u through point of maximum i// with —

15 x 15 grid,
nondivergence form

0

-2.612 x ID"2

-5.018 x 10-2

-7.583 x ID'2

-1.054X lO"1

-1.388X 10-1

-1.724 x 10-1

-1. 968X10- 1

-1.980X 10-1

-1.616 X 10-1

-7.891 x lO-2

5.022 x lO-2

2.445 x 10-1

5.470 x 10-1

1.0

57 x 57 grid,
nondivergence form

0

-3.556 x ID'2

-6.774 x 10-2

-1.019 x lO-1

-1.409 x 10-1

-1.834 x 10-1

-2.215 x 10-1

-2.404 x 10-1

-2.233 x 10-1

-1.606 x 10-1

t

-5.416 x lO-2

9.200 x ID"2

2.929 x 10-1

5.905 X 10-1

1.0
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(a) Velocity vectors.

(b) Streamlines.

Figure 1.- Machine plots of flow field. N = 15; R = 100.
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Figure 3- - Effect of number of nodal points 

(N * N) on time step. 




