

Side 4 Parallel Computing Approaches

- We focus on distributed memory systems. – Two common approaches:
- Master–slave
 - A "master" processor is a global synchronization point, hands out work to the slaves.
- Data decomposition + "Owner computes":
 - The data is distributed among the processors.
 - The owner performs all computation on its data.
 - Data distribution defines work assignment.
 - Data dependencies among data items owned by different processors incur communication.

Side 15 Two Types of Models/Algorithms

Geometric

- Computations are tied to a geometric domain.
- Coordinates for data items are available.
- Geometric locality is loosely correlated to data dependencies.
- Combinatorial (topological)
 - No geometry .
 - Connectivity among data items is known.
 - Represent as graph or hypergraph.

- Disadvantages:
 - No explicit control of communication costs.
 - Can generate disconnected subdomains.
 - Often lower quality partitions than RCB.
 - Geometric coordinates needed.

Advantages:

- Communication volume reduced 30-38% on average over graph partitioning (Catalyurek & Aykanat).
 - 5-15% reduction for mesh-based applications.
- More accurate communication model than graph partitioning.
 - Better representation of highly connected and/or non-homogeneous systems.
- Greater applicability than graph model.
 - Can represent rectangular systems and non-symmetric dependencies.

Disadvantages:

- More expensive than graph partitioning.

- Some data items may have more work than others.
- · Solution: Specify work (load) using weights.
 - By default, all data items have unit weights.
 - Objective is to balance sum of weights.
- Geometric methods:
 - Add a weight for each point.
- Graph/hypergraph methods:
 - One weight per vertex.
 - Can also weight edges with communication size.

Zoltan Que	side 6 ry Functions
General Query Functions	
ZOLTAN_NUM_OBJ_FN	Number of items on processor
ZOLTAN_OBJ_LIST_FN	List of item IDs and weights.
Geometric Query Functions	
ZOLTAN_NUM_GEOM_FN	Dimensionality of domain.
ZOLTAN_GEOM_FN	Coordinates of items.
Hypergraph Query Functions	
ZOLTAN_HG_SIZE_CS_FN	Number of hyperedge pins.
ZOLTAN_HG_CS_FN	List of hyperedge pins.
ZOLTAN_HG_SIZE_EDGE_WTS_FN	Number of hyperedge weights.
ZOLTAN_HG_EDGE_WTS_FN	List of hyperedge weights.
Graph Query Functions	
ZOLTAN_NUM_EDGE_FN	Number of graph edges.
ZOLTAN_EDGE_LIST_FN	List of graph edges.

For geometric partitioning (RCB, RIB, HSFC), use	Slide 62 Sandia National Laboratori

General Query Functions		
ZOLTAN_NUM_OBJ_FN	Number of items on processor	
ZOLTAN_OBJ_LIST_FN	List of item IDs and weights.	
Geometric Query Functions		
ZOLTAN_NUM_GEOM_FN	Dimensionality of domain.	
ZOLTAN_GEOM_FN	Coordinates of items.	
Hypergraph Query Functions		
ZOLTAN_HG_SIZE_CS_FN	Number of hyperedge pins.	
ZOLTAN_HG_CS_FN	List of hyperedge pins.	
ZOLTAN_HG_SIZE_EDGE_WTS_FN	Number of hyperedge weights.	
ZOLTAN_HG_EDGE_WTS_FN	List of hyperedge weights.	
Graph Query Functions		
ZOLTAN_NUM_EDGE_FN	Number of graph edges.	
ZOLTAN_EDGE_LIST_FN	List of graph edges.	

General Query Functions		
ZOLTAN_NUM_OBJ_FN	Number of items on processor	
ZOLTAN_OBJ_LIST_FN	List of item IDs and weights.	
Geometric Query Functions		
ZOLTAN_NUM_GEOM_FN	Dimensionality of domain.	
ZOLTAN_GEOM_FN	Coordinates of items.	
Hypergraph Query Functions		
ZOLTAN_HG_SIZE_CS_FN	Number of hyperedge pins.	
ZOLTAN_HG_CS_FN	List of hyperedge pins.	
ZOLTAN_HG_SIZE_EDGE_WTS_FN	Number of hyperedge weights.	
ZOLTAN_HG_EDGE_WTS_FN	List of hyperedge weights.	
Graph Query Functions		
ZOLTAN_NUM_EDGE_FN	Number of graph edges.	
ZOLTAN_EDGE_LIST_FN	List of graph edges.	

Or can use g to build hy	stide 63 spergraph.	
General Query Functions		
ZOLTAN_NUM_OBJ_FN	Number of items on processor	
ZOLTAN_OBJ_LIST_FN	List of item IDs and weights.	
Geometric Query Functions		
ZOLTAN_NUM_GEOM_FN	Dimensionality of domain.	
ZOLTAN_GEOM_FN	Coordinates of items.	
Hypergraph Query Functions		
ZOLTAN_HG_SIZE_CS_FN	Number of hyperedge pins.	
ZOLTAN_HG_CS_FN	List of hyperedge pins.	
ZOLTAN_HG_SIZE_EDGE_WTS_FN	Number of hyperedge weights.	
ZOLTAN_HG_EDGE_WTS_FN	List of hyperedge weights.	
Graph Query Functions		
ZOLTAN_NUM_EDGE_FN	Number of graph edges.	
ZOLTAN_EDGE_LIST_FN	List of graph edges.	

Slide 68

Sandia National Laboratori

	Config file	Slide Sanc Natic Labo
DEFS	=	
RANLIB	= ranlib	
AR	= ar r	
сс	= mpicc -Wall	
CPPC	= mpic++	
INCLUDE_PATH	=	
DBG_FLAGS	= -g	
OPT_FLAGS	= -0	
CFLAGS	= \$(DBG_FLAGS)	
F90	= mpif90	
LOCAL_F90	= f90	
F90CFLAGS	= -DFMANGLE=UNDERSCORE -DNO_MPI2	
FFLAGS	=	
SPPR_HEAD	= spprinc.most	
F90_MODULE_PREFIX	= -I	
FARG	= farg_typical	
MPI_LIB	=	
MPI_LIBPATH	=	
PARMETIS_LIBPATH	= -L/Users/kddevin/code/ParMETIS3_1	
PARMETIS_INCPATH	= -I/Users/kddevin/code/ParMETIS3_1	
#PATOH_LIBPATH	= -L/Users/kddevin/code/PaToH	
#PATOH INCPATH	= -I/Users/kddevin/code/PaToH	

Example zoltanSimple.c: ZOLTAN_OBJ_LIST_FN	Slide 77 Sandia National Laboratories
<pre>void exGetObjectList(void *userDefinedData,</pre>	
<pre>/* ZOLTAN_OBJ_LIST_FN callback function. ** Returns list of objects owned by this processor. ** lids[i] = local index of object in array. */ int i;</pre>	
<pre>for (i=0; i<numpoints; gids[i]="GlobalIds[i];" i++)="" lids[i]="i;" pre="" {="" }<=""></numpoints;></pre>	
*err = 0;	
return; }	

- Distributed Data Directories
- Tools closely related to graph partitioning:
 - Graph coloring
 - Matrix ordering
 - These tools use the same query functions as graph partitioners.
- All functionality described in Zoltan User's Guide.
 - http://www.cs.sandia.gov/Zoltan/ug_html/ug.html

- Graph built using same application interface and code as graph partitioners.
- Generic coloring interface; easy to add new coloring algorithms.
- Implemented algorithms due to Bozdag, Catalyurek, Gebremedhin, Manne, Boman, 2005.

- Produce fill-reducing ordering for sparse matrix factorization.
- Graph built using same application interface and code as graph partitioners.
- Generic ordering interface; easy to add new ordering algorithms.
- Specific interface to ordering methods in ParMETIS (Karypis, et al., U. Minnesota).

