
"Sound" in superfluid liquids
B. N. Esel'son, M. I. Kaganov, E. Ya. Rudavskii, and I. A. Serbin

Physico-technical Institute of Low Temperatures, Ukrainian Academy of Sciences

Institute of Physical Problems, USSR Academy of Sciences

Usp. Fiz. Nauk 112, 591-636 (April 1974)

The existence of two sounds of different natures in the superfluid liquid is one of the best known

and most thoroughly investigated properties of helium. An enormous mass of experimental and

theoretical material on wave processes in helium has accumulated during the years that have passed

since the discovery of second sound. Interest in these problems has especially increased in the last

decade, first, because of the discovery of third and fourth sound (oscillations that propagate when

the normal component of the liquid is clamped), and second, because of the possibility of

investigating ultrashort sound waves by neutron and photon scattering. In this article the fundamental

theoretical concepts and experimental results concerning the propagation of sound waves of the

several types in superfluid liquid (in He4 and He3-He4 solutions) are reviewed. Much attention is

given to quantitative, as well as qualitative, comparison of the experimental results with theory. The

bibliography has been made as complete as possible. The following topics are not discussed, although

they touch directly upon the subject under review: the propagation of sound near the lambda point,

the passage of waves across liquid-liquid and liquid-vapor interfaces, and the propagation of

large-amplitude sound waves.
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INTRODUCTION

Thanks to its unique properties, which have naturally
aroused great interest, liquid helium is now one of the
most thoroughly investigated substances in nature.

Although the superfluidity of He4, discovered by P.
L. Kapitza C l ] , was explained in principle by L. D.
Landau more than 30 years ago , helium continues to
be very intensively studied and new properties of the
quantum liquid, such as quantized vortices, the motion
of electric charges in helium, etc., are continually being
recognized.

A notable feature of the study of helium and its prop-
erties, which characterizes the level of our understand-
ing of the processes taking place within it, is that the
theory describing some phenomenon or other is con-
firmed, as a rule, by complete quantitative agreement
with experiment. Every deviation from this rule means
either that the theory requires further development or
that the experimental errors are appreciable. Especially
precise measurements, detailed development of the
theory, and careful comparison of the various experi-
ments are therefore required.

The existence of two sounds (first and second) in the
superfluid liquid is one of the best known anomalies of
helium. The attention of investigators was naturally at-
tracted to the study of wave propagation in quantum
liquids. An enormous mass of experimental and theo-
retical material on wave processes in helium has ac-
cumulated during the years that have passed since the
discovery of second sound. Interest in these problems
has especially increased in the last decade, first, be-

cause of the discovery of so called third sound and fourth
sound, and second, because of the possibility of inves-
tigating ultrashort sound waves by neutron and photon
scattering.

In this article we shall attempt to present the funda-
mental theoretical concepts and experimental results
concerning the propagation of sound waves of the sev-
eral types in superfluid liquids (in He4 and He3-He4

solutions)1'.

We feel that it would be useful to mention the sort of
questions that have been excluded from the review be-
cause of space limitations. These include the propagation
of sound near the λ point2' (this is a special topic
which would require a detailed review of the properties
of helium near the second-order phase transition point
and an exposition of current ideas concerning phase
transitions) and the passage of waves across liquid-
liquid, liquid-vapor, and liquid-solid interfaces.

1. HYDRODYNAMIC EQUATIONS AND ACOUS-
TIC MODES

When the mean free path of the excitations is much
shorter than the wavelength of the sound (Ι « λ) the wave
processes are described by the hydrodynamic equations
for a superfluid liquid, which express the conservation
of the jnass and momentum of the liquid, the increase in
entropy, and the possibility of superfluid motion : 2 ' 8 3

In the linear approximation in small deviations from
the equilibrium values, these equations can be written
in the form

215 Sov. Phys.-Usp., Vol. 17, No. 2, September-October 1974 Copyright © 1975 American Institute of Physics 215



-57- Ιζι div (j — pvn) + ζ2 div v n ] , (1.1)

here ps and Vs (Pn a n d Vn) are the density and velocity,
respectively, of the superfluid (normal) component;
P = ps + Pn is the density of the helium; Ρ, Τ, and μ are
the pressure, temperature, and chemical potential; σ
is the entropy per unit mass of helium; η and κ are the
first-viscosity and heat-conductivity coefficients; £1,
£2, £3, and £4 = £i are "second-viscosity" coefficients;
and 6ik is Kronecker's delta.

By neglecting dissipative processes one can easily
derive the dispersion equation for the wave propagation
velocity u from Eqs. (1.1):

• , „ V I dP \ p. * I dT \ Λ p, „ / dT \ I dP \ Λ /.. Λ ν

u + u [ I — 1 + -ϊ-5-σ ι — I U - — σ — 1 I — 1 = 0 . (1 21
\ \ do la p« \ da /η ' On \ da In \ do Ιr ν*·"/

This equation has two roots C 9 : :

u|o ± [ ( « ? „ - 0 (u?e - u\T)\1
(1.3)

where

»?H£), *-(•£), * - £ " ( £
The difference between the adiabatic and isothermal
compressibilities is small:

" I T

(here Cp and Cy are the heat capacities at constant
pressure and volume, and α is the thermal expansion
coefficient). At T = 1.5°K the ratio Cp/Cy differs from
unity by a quantity of the order of 10~3. Hence from (1.3)
we have

(1.4)

(1.5)

The existence of two roots means that waves of two
types can propagate (and with different velocities) in
superfluid helium. Landau called these wave processes
first and second sound. Besides differing in propaga-
tion velocity, first and second sound differ as regards
the nature of the oscillations C l 0 3 : in first sound it is
mainly the pressure (density) that oscillates, and in
second sound, the temperature.

In many cases a is small enough to permit the sec-
ond terms in (1.4) and (1.5) to be neglected; then these
equations reduce to the well known expressions for the
velocities of first and second sound:

»i—3F' (1.6)

ul =• — O2 . ίΛ 7^
2 pn da \A · ' /

We emphasize that the presence of two types of waves
in a superfluid liquid is a consequence of the possibility
of two types of motion: normal and superfluid. When
p s = 0, only one type of wave is propagated: first (or-
dinary) sound.

The dissipative processes described by the viscosity
and heat-conduction coefficients naturally lead to attenu-
ation of the sound waves. Moreover, when the dissipative

processes are included the dispersion equation has a
third root (which is complex). The wave corresponding
to this third root is called the viscous wave. When all
dissipative processes except first viscosity (specified
by the coefficient η) are neglected, the length of the
viscous wave is given by λη = (2η/ωρη)1/2. The viscous
wave plays an important part in the propagation of
sound waves in limited spaces. In particular, the char-
acter of the wave processes in He Π in limited spaces
depends on the ratio of the characteristic linear di-
mension d of the region occupied by Hell to the pene-
tration depth λη of the viscous wave. When d « λη, the
normal component is clamped (vn — 0) and oscillations
are propagated only in the superfluid component.

The condition d « λη is satisfied in a He Π film on
a solid surface. In this case oscillations analogous to
capillary waves on an ordinary liquid propagate on the
free surface of the Hell film; they are called third
sound t u l .

The normal component can be clamped by saturating
a porous medium with He Π, provided the characteristic
linear dimension of the channels (pores) of the medium
is considerably smaller than λη. Then the liquid has no
free surface, and density oscillations due to oscillations
of the superfluid component propagate along the channel.
Such a wave process is called fourth sound .

It must be emphasized that third and fourth sound are
not new independent acoustic modes of the superfluid
liquid; they are the wave processes into which first and
second are transformed when the effects of the bound-
aries become predominant.

He4 is not the only superfluid liquid; He3-He4 solu-
tions are also superfluid over a wide range of tempera-
tures and concentrations. The hydrodynamic equations
for superfluid solutions are similar to those for He4,
but there must be an additional equation to describe
the conservation of the number of atoms of the second
component (He3) and the equations themselves must be
altered to take into account additional dissipative proc-
esses: diffusion, thermal diffusion, and barodiffu-
sionCs>12]. First and second sound can also propagate in
He3-He4 solutions. Their propagation velocities are de-
termined from the dispersion equation

(1.8)
i O2 Ps
) — ρ ——

Pn

in which

„ — / dT \ c dp - da „ , .

Ρ = α σ(Ί*)ρ,ο-7β7· σ = σ - ί : 1 7 · ·Ζ=ρ(μ3-μ4),

and μ3 and μ4 are the chemical potentials of He3 and
He4 in a solution in which the weight concentration of
He3 is c. The dispersion equation has two roots, which,
for β « 1 , are given by

They correspond to the propagation velocities of first
and second sound.

In formulating a theoretical description of the prop-
erties of superfluid He3-He4 solutions it is usually as-
sumed that the He3 participates only in the normal mo-
tion, since in superfluid motion the flux of He3 atoms
vanishes3'. This assertion corresponds to the current

216 Sov. Phys.-Usp., Vol. 17, No. 2, September-October 1974 Β. Ν. Esel'sonetal. 216



idea of the normal component as a collection of ele-
mentary excitations of the liquid. The motion of each
He3 atom is an elementary excitation (quasiparticle)
whose dynamical properties depend on the interaction
of the He3 atom with the He4 atoms and with the other
He3 atoms. These ideas correspond to the theory of a
Fermi liquid, according to the fundamental postulates of
which the number of elementary excitations is equal to
the number of fermions. Participation of the He3 atoms
in the superfluid motion can be expected only when the
He3 atoms themselves, as a result of pairing, form a
superfluid liquid dissolved in the superfluid He4.

In view of what was said in the preceding section, we
shall not give expressions for the velocities of first and
second sound derived on the assumption that the He3

atoms participate in the superfluid motion : i 3 : .

2. FIRST SOUND

Any linear wave process is characterized by a propa-
gation velocity u(o>) and an absorption coefficient α(ω),
which depend on the frequency ω and on other parame-
ters, e.g., on the temperature, pressure, etc.4 ' .

The propagation velocity and absorption coefficient
are connected to one another by dispersion relations t l 5 ]

analogous to the Kramers-Kronig relations. In principle,
the knowledge of one of these quantities at all frequencies
is sufficient to permit the other to be calculated. In
practice, however, each of the quantities is known only
in comparatively narrow frequency intervals, or even
only at definite fixed frequencies. Hence independent
measurements (and calculations) of the velocity u(u>)
and absorption coefficient α(ω) are desirable for a
complete description of the wave process.

The pioneering measurements of the velocity of first
sound were made in 1938 by Findlay, Pitt, Grayson-
Smith, and Wilhelm1'16'17·', using a standing-wave method.
In 1947, Pellam and Squire llsl used a pulse technique to
investigate the acoustic properties of He4, and this en-
abled them to measure the absorption of sound.

At present, thanks to the use of various techniques,
the acoustic properties of He4 have been investigated at
temperatures from 0.05 °K to the critical temperature
and at frequencies somewhat higher than 1011 Hz (Fig. 1).
The velocity and absorption have been measured in the
frequency range up to 109 Hz using piezoelectric crys-
tals to produce and detect density oscillations in the
liquid11β"36]. Various optical detection methods t 4 7 - 5 2 : ,
including Brillouin scattering of laser light, have made
it possible to cover the frequency range up to ~7x 108 Hz.

Interference of phonons at frequencies somewhat above
10u Hz has been observed in special acoustic interferome-
ters [ 5 3~5 5 3. information on the most energetic phonons
has been obtained from x-ray C56>57: and neutron C 5 8-6 o :

scattering data.

The most accurate absolute values of the velocity of
first sound in He4 at the saturated vapor pressure are
apparently those obtained in E23>24>383

; a n ( j a t elevated
pressures, those obtained in [ 3 7>4 3 : l. The most complete
data on the frequency dependence of the velocity and
absorption of first sound at frequencies up to 12 MHz
in C353 are given in C42] for frequencies up to 200 MHz.
The absorption at elevated pressures has been investi-
gated at frequencies up to 100 MHz in t 4 4 : .

a) Experimental techniques. The techniques most

0,01

FIG. 1. Regions in which the velocity (I) and absorption (II) of
sound in He4 have been measured at the saturated vapor pressure, and
relevant characteristic times ["] . l - [« ] , 2-[ M ] , 3-[ 2 3 ], 4-[ 3 2 · 4 7 · 4 8 ] ,
5^ M ' 4 1 ] ,6-[ 1 7 ] ,7-[ 2 1 ' 3 5 ' 3 8 ] ,8-[ 3 l ] ,9^ 3 7 ] ,10-[ 2 2 · 2 6 ] , H_[18,19,28-3O,97])

12-[4 0], 13-[3 S ' 3 6>3 9 > 4 4],14-[4 9], 15-[5 1], 16-[ s 0 ], 17-Γ4 6], 18-[4SJ,
19-[ s 3 - s 4 ], 20-[ 6 0 ] ,21-[ 5 8 ] .

FIG. 2. Sound cell for absolute
measurements of the velocity and ab-
sorption of first sound in liquid he-
lium ["]: 1-electrical contact, 2—
bottom cover, 3—pressed rouge, 4—
contact spring, 5-quartz crystal,
6—phosphor bronze spring, 7—cylin-
der, 8-reflector, 9-spring, 10-ad-
justing screw, 11—plunger, 12—link,
13-tube, 14-top cover.

widely used in the experimental study of the acoustic
properties of liquid helium are various modifications
of the pulse method. This is due to the fact that pulse
methods involve the dissipation of much less energy in

• the helium than do resonance methods, so that the
measurements, especially relative measurements, can
be made with very high accuracy.

In describing experiments we shall limit ourselves
to relatively simple apparatus and circuits that permit
adequate accuracy to be achieved. In some cases we
shall describe the apparatus that was used to obtain the
most accurate measurements.

Figure 2 is a drawing of a sound cell intended for ab-
solute measurements of the velocity and absorption of
first sound in liquid helium C 6 1 ]. The X-cut quartz crys-
tal served to generate ultrasonic pulses in the helium,
and to detect the reflected signals between these pulses.
To suppress spurious signals, a fine powder was pressed
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FIG. 3. Simplified block diagram of an ultrasonic comparator ["] .

into the bottom cover below the quartz crystal. The
grain size of the powder was so chosen as partially to
clamp the normal component in the interstices between
the grains; this results in strong sound absorption (this
is discussed in more detail in Sec. 6) and practically
completely suppresses the spurious signals.

The velocity of sound is determined from the transit
time of the pulse over the known acoustic path, and the
absorption is determined from the change in the ampli-
tude of the first echo signal when the reflector is moved
from one extreme position to the other.

Figure 3 is a block diagram of an ultrasonic com-
parator with which, using the phase comparison method,
relative measurements of the velocity of sound can be
made with a relative accuracy ~10"7, and absorption
measurements, with a resolution of 0.02-0.1 dB C 6 2 3.

The signal from the oscillator is split into two; one
of the signals is fed to the measuring channel, which
contains the sound cell, and the other, to the reference
channel, which contains a variable attenuator and a
variable delay line. At the input to each channel there
is a pulse modulator, which transforms the sinusoidal
oscillations into radio pulses. After traversing the
measuring and reference channels, the pulses are
added, and, passing through the "time switch," they
are amplified, detected, and displayed on the oscillo-
scope. The time switch opens the amplifier-detector
immediately before the signals arrive from the meas-
uring and reference channels, the delay line being so
adjusted that the two signals arrive simultaneously.
Thus, the time switch prevents saturation of the ampli-
fier by spurious signals arriving before the desired
signals and thereby reduces the measurement errors .

To make a measurement at some temperature To

(ordinarily the lowest attainable) one adjusts the variable
attenuator and delay line so that the signals from the
reference and measuring channels have the same ampli-
tude and differ in phase by (2η+1)π (η = 0, 1, 2, . . .), i.e.,
so that a zero signal appears on the oscilloscope. Then
one repeats the operation at another temperature. The
difference between the attenuator readings gives the
change in the sound attenuation due to the change in
temperature, and the change in the delay line adjust-
ment gives the change in sound velocity.

b) Velocity, absorption, and dispersion of first sound
in He*. The use of the hydrodynamic equations (1.1) lim-
its calculations of the velocity and absorption coefficient
of sound to the low frequency limits, in the limit ω — °°,
we have

»J <»> = (•£)„· (2.1)

and
α1(ω) = -^!τ^±η_)_ζ2\ . (2.2)

The observed frequency dependence of the velocity of
sound and the deviation of the frequency dependence of
the absorption coefficient from the quadratic law are
due to two effects, which can reasonably be called time
dispersion and space dispersion.

Time dispersion is a consequence of relaxation proc-
esses in helium, which are fairly complex because of
the peculiar energy spectrum of the elementary ex-
citations :

- VP!) (for small p), (2.3)

(2.4)

where ρ and s are the phonon momentum and velocity,
and γ, Δ, ρο, and m* are parameters.

According to [ 6 3 " 6 8 ] the most probable processes
(for γ >0) are the following:

1) Roton-roton scattering. This process leads to
rapid establishment of local equilibrium in the roton
gas; we denote its characteristic time by t r r ·

2) Four-phonon small-angle scattering. This process
has a high probability because of the almost linear dis-
persion law for phonons and leads to the establishment
of energy equilibrium for phonons moving in a given
direction; characteristic time,

3) Four-phonon large-angle scattering. This process
must be taken into account when Τ <0.9 °K; characteris-
tic time, Tphph·

4) Five-phonon conversion (conversion of three pho-
nons into two). This process leads to establishment of
equilibrium as regards number of phonons; characteris-
tic time, τ3—2.

5) Phonon-roton scattering. This is a relatively slow
process and governs the establishment of energy equi-
librium between the roton and phonon gases; character-
istic time, Tphr.

Table I shows how all the relaxation times depend on
the temperature, and lines representing the equations
COTJ= 1 for the several scattering processes are included
in Fig. 1.

The partial relaxation times characterize the prob-
abilities of these scattering processes. For example, in
the time t r r equilibrium is established in the roton gas
but not in the phonon gas, and in the time %^2 equi-
librium is established in both the phonon and roton gases,
but not between them.

The most general and detailed calculations of the
velocity and attenuation of sound were made by Khalat-
nikov and Chernikova Ce7»6s:l using the kinetic equation,
while considerations of partial equilibrium are used
first, to select the approximation, and second, to as-
sist in the physical interpretation of the results.

In presenting the results of the kinetic calculations
of the velocity and absorption of first sound (Table II) it
is convenient to distinguish four temperature intervals
in such a manner that the equilibration mechanisms be-
come operative or inoperative on passing from one in-
terval to another, depending on which of the relaxation
times TJ are governing (Fig. 1). We also distinguish
between high frequencies (α>Τρηρη, o>Tphr » 1) and low
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TABLE I

-Ν, « 2.2. ΙΟ-'OJV, =1.2-10» l/τ e ' ^ (sec-) ,

phph~ 192π3 ρ2« \ Ί δ " / ~y~ \ + ~ ϊ ~ /

,-ι 8,66 (Β + 1)« / kT\1 χ* αΆ,Μ3χ31"! , „
Phph 192π3 p2s ^ Ss Ι ν ~ a - o l u

 Y (sec).

9-13!
: (2π)'.21 3 '

2_2_ί^-Ι %3.8-10'Τ1» (sec·'),

Τ » (sec"1),

' iV p al.3.10'27 l 9 / 2 e- 4 / I ' (sec-)

JV . = ̂ | ί^- J° ss 2.10'»Γ3 (cm·1) — phonon density

^ = 2 p | J m | * n ^ e _ i / r ^ 5 4 1 0 2 2 Γ 1 / 2 ( , _ Δ / : Γ ( c m . J ) _ r o t o n d e n s i t y

I i = £ . ^ i = 2,84, s = 2,383-10« cm/sec, p = 0.145 i/cm'
s 5p

Δ = 8,65'Κ, po = 2,02-10-leg-crn/sec, mi = 1.06'10-s« 8,

| r 0 ρ = 6.3-10-'· iferg/cm3)1, Λ = 3,4·10«,

. ρ2 ί2Δ , Ρϋ I 0 dp

TABLE II. Velocity and absorption of first sound in He4 ([68])

Τ, ·Κ: Ο,β 0,9 1,2

T p h p h < T pht

ι »(3B + 1)2 P«ph;

T p h r ~ 'tphph

ρ as
δ 1η ρ

A a In Α 1 — (2Α/Γ)
Γ a In ρ 3 -ρ (2Α/Γ) '

The subscripts ph and r on C, S, and p n indicate the phonon and roton parts, respectively; B2 =
1/30 and B, = 1/42 are Bernoulli numbers.

frequencies (ω7ρηρΐι. W p h r « l ) . For all frequen-
cies, however, it is assumed that equilibrium is
established in the roton gas as regards number and
energy of the rotons as a result of roton-roton colli-
sions, and that energy equilibrium for phonons traveling
in a given direction obtains in the phonon gas, i.e., that
u)tr r « 1 and cotph ph << 1 ·

The general expressions in Table II for the different
temperature intervals5' can be considerably simplified
by taking into account the relations between the various
Tj and bearing in mind that the phonon contributions to
the thermodynamic characteristics are small when
Τ >0.9 °K and the roton contributions are negligible when
T<0.6°K. For example, for Τ <0.6 °K we have c = cph
and hence ζ2 = 0, and since Tphph« T phr, we have

/

In the low frequency limit, the absorption is correctly
given by the ordinary hydrodynamic expression (2.2),
as should be expected, but thanks to the consideration of
specific equilibration mechanisms, all the kinetic
coefficients (including their numerical values) have been
calculated. There are no adjustable parameters in these
calculations.

For high frequencies, interpolation formulas are
given in Table II. At very high frequencies,

where the phonon spectrum deviates considerably from
linearity, the terms containing ω Tphph and wTphr drop
out of the expressions for ui and αχ. At frequencies that
are high, but not too high, however, so that terms con-
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TABLE III. Parameter values for the phonon energy spectrum

X-ray scattering ["]

Neutron scattering ["]
Heat capacity Γ ]
Heat capacity ['"], as analyzed in ["]

v, sec'/g'cm1

-(5.7 ± 0 . 3 ) . №
or

(0.16 + 0.36) -103'
(0,0±0.2)-10 3 '

— 4.1-1037

—8-103'

δ, sec'/g'cm*

2.4-10'5

s, m/sec

230.7
238.3 ± O.I3»

taining y are negligible, the velocity of first sound ex-
hibits a logarithmic frequency dependence and the ab-
sorption is proportional to the frequency.

In considering the dispersion of first sound it must
not be forgotten that the difference between phonons
and first-sound waves is essentially terminological. At
Τ = 0 °K, quantized sound waves are indeed phonons 6 ) ,
the phonon dispersion law being a consequence of the
atomic structure of the liquid. This is especially clearly
evident from the relation e(p) = p2/2nuS(p) established
by Feynman[693 between e(p) and the structure factor
S(p) (here rm is the mass of an He4 atom). The disper-
sion of sound (of phonons) is thus due to the nonlinearity
of the relation between energy and momentum, and it is
natural to speak of space dispersion.

In view of the relation that the phonon spectrum bears
to sound, we present the basic results concerning the de-
viation of the phonon energy spectrum from linearity,
using the following interpolation formula, which contains
two adjustable parameters, y and δ (in addition to s):

ε (ρ) = sp (1 - γρ 2 - δρ'). (2.5)

The results are presented in Table III. It will be seen
that the experimental data are consistent with the condi-
tion y^O, and a negative value for y is evidently the
more probable.

If y is negative, then excitation decay processes—
processes in which one phonon breaks up into two-are
allowed at T = 0°K. However, the phonon lifetime Τγ(ρ)
calculated on the basis of this mechanism7' is very long
(fi/Tr(p) « e(p)), so we may regard the phonons as "good"
quasiparticles. At finite temperatures the relaxation
mechanisms described earlier prove to be more im-
portant, and the instability associated with a negative
value of y does not appear at all. At finite tempera-
tures, the difference between sound waves and phonons
is associated, as a rule, with the means of excitation.
When waves are excited by the inelastic scattering of a
neutron one speaks of phonon production, and when a
coherent flux of phonons is produced one speaks of the
excitation of sound waves.

In investigating the dispersion of sound it must be
borne in mind that it is not easy to distinguish experi-
mentally between time dispersion and space dispersion:
this can be done only by comparing the experimental re-
sults with theoretically predicted dependences of the
velocity and absorption on the frequency, temperature,
pressure, and other parameters.

First sound in He4 has been investigated experimen-
tally in considerable detail. Figure 4 shows the "small
scale" temperature dependence of ui: the monotonic
decrease of ux with rising temperature (except for the
anomaly near the λ point) reflects the temperature de-
pendence of the density of the liquid.

In the high temperature region (Τ ~ 1.2 °K) no appre-

230

190

no

λ- point

T,°K

FIG. 4. Temperature dependence of the velocity of first sound in He4

at the saturated vapor pressure.

λ- point

FIG. 5. Temperature dependence of the quantity 6u,. I-12 Mhz [42];
Π-[ 3 2 ] : 1-1.00 MHz, 2-3.91 MHz, 3-11.9 MHz; 4-curve calculated in
accordance with [68] for 12 MHz.

FIG. 6. Absorption of first sound in He4 at 12 MHz. The full curve
represents the experimental results, and the dashed curve, classical vis-
cous absorption (Eq. (2.7) with κ = 0) [ s].

ciable frequency dependence of the velocity of first
sound has been detected at frequencies up to 109 Hz
(to be sure, the ~1% accuracy of the measurements is
not high). Measurements of the velocity of first sound
in a helium film in the (2-6)x 1010 Hz frequency region
made with a spin-phonon interferometer revealed a
frequency dependence of the velocity of first soundC53'541,

" ι (0)
(2.6)

which is apparently associated with time dispersion,
since other experiments[72] made under conditions'in
which time dispersion should not appear did not reveal
this dependence8'.

At temperatures somewhat lower than 1.2 °K the dis-
persion becomes appreciable even at frequencies of
106-107 Hz. Figure 5 shows the quantity 6ui(T) = Ui(T)
-ui(0) as a function of Τ for various frequencies; the
frequency and temperature dependences of 6ui(T) agree
well with the Khalatnikov-Chernikova theory1·68 for fre-
quencies up to 12 MHz.

The absorption of first sound in He4 depends on the
temperature in a complicated manner: in addition to the
λ anomaly there is a maximum near 1 °K.

In He I the absorption should be determined by the
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tf MHz

%11'Κ iff

ΙΟ2

Z01 MHz

0.1
T,°K

FIG. 7. Absorption of first sound in He4: a) from [35J, b,c) from [4 2].
The curves were calculated [6 8].

viscosity and the heat conduction, as in an ordinary
liquid:

(2.7)

As is evident from Fig. 6, the experimental data for
temperatures above 3 °K agree well with this formula;
the discrepancy below 3 °K is associated with features
of the λ transition that are not taken into account in
Eq. (2.7).

The λ anomaly does not extend so far in He II as in
He I, but even at a considerable distance from Τ χ the
viscosity contribution to the absorption of sound is
small, the predominant contribution coming from sec-
ond viscosity, in accordance with the formulas listed in
Table II. The maximum absorption takes place when
a>Tphr~ 1; the absorption peak shifts toward the higher
temperatures as the frequency increases.

Beyond the dispersion region (ωτρ η Γ « 1) the absorp-
tion is proportional to the square of the frequency up to
the highest frequency (109 Hz) at which the absorption
of first sound has been measuredr[52J

Figure 7 shows some experimental data on the ab-
sorption of first sound at various frequencies, together
with «ι(ω, Τ) curves calculated in . It will be seen
that the theoretical curves agree well with the experi-
mental data at low frequencies over the entire tempera-
ture range and at 12 MHz for Τ >0.6 °K.

In the 12-36 MHz frequency range and 0.2-0.6 °K
temperature range, the experimental data satisfy the
power law <*ι(ω, Τ)°=ωΤ4 predicted theoretically, but
the experimental values are 2-2.5 times higher than
the calculated values. This discrepancy cannot be at-

tributed to four-phonon scattering processes since their
contribution to the absorption is proportional to ω3Τ4.
At low temperatures there is still another discrepancy
between experiment and theoryC68]: whereas 8ui/aw is
positive at frequencies below 12 MHz, according toC42]

it is negative at frequencies between 12 and 84 MHz.

Many papers [ 7 1>7 5-9 0 ] have been published in which
the velocity and absorption of first sound are calculated
in an attempt to explain these discrepancies. The region
concerned is attractive from the theoretical point of
view because there all the properties of He4 are due to
long-wavelength phonons alone, the roton density being
exponentially small.

In almost all of these theoretical papers, three-
phonon processes (the direct absorption of an acoustic
phonon by thermal phonons) were discussed; we denote
the characteristic time for this process by τ2—ι.
KawasakiC75] was the first to call attention to the possi-
bility of three-phonon processes in the case of a spec-
trum like (2.3) (even when y is positive!). When y >0,
three-phonon processes do not satisfy the energy and
momentum conservation laws. However, the thermal
phonons collide with one another, and their mean life-
time τ is finite. This results in an energy uncertainty
of the order of fi/τ, and if this uncertainty exceeds the
quantity 3τρ2Κω (here ρ is the mean thermal momen-
tum of a phonon) by which energy conservation is vio-
lated in three-phonon processes, such processes will
be allowed. If y <0, such three-phonon processes are
allowed even in the limit as τ —·°°.

Taking three-phonon processes into account in the
second nonvanishing order of perturbation theory leads
to the following expressions for the velocity and absorp-
tion of first sound (for y = 0)C 8 3-8 5 ]:

here

T) = i- 1+(2ωτ2^,)2]

(2.9)

(2.10)

The values of «ι(ω, Τ) calculated with F(co, T) turn out
to agree well with the measured absorption coefficient
of first sound in He4 at the "unfavorable" frequency 36
MHz. The maximum of F(w, T) corresponds to the
condition ωτ2—1= 1. Thus, there is dispersion of sound
in the phonon gas as a result of the slowness of the
three-phonon scattering processes.

Basing his calculations on the numerical solution
of the kinetic equation for three-phonon small-angle
scattering processes and an e(p) spectrum with
y=-8xlO3 7 sec2/g2cm2, Maris[ 8 7 i calculated the fre-
quency dependence of the relative velocity 6ui and
the absorption of sound. In Fig. 8 the results of this
calculation are compared with the experimental data
for Τ = 0.35 °K (this is the temperature at which the
discrepancy between experiment and the Khalatnikov-
Chernikova theory is greatest). As the figure shows,
the calculated and measured values of αι(ω) are in
agreement and, what is the most attractive, the fre-
quency dependence of 5ui also agrees with experiment:
d5\ii/db> is positive in the 1-10 MHz range and nega-
tive in the 10-100 MHz range, although there remains
some numerical discrepancy.

221 Sov. Phys.-Usp., Vol. 17, No. 2, September-October 1974 Β. Ν. Esel'son et al. 221



ι ιο m 1000
Frequency, MHz

m too npo
Frequency, MHz

h

FIG. 8. Frequency dependence of the relative velocity (a) and absorp-

tion (b)'of first sound in He4 ["]; experimental data from [42] (1) and

Π (2).

Thus, phonon-roton and three-phonon scattering
processes lead to time dispersion of first sound, which
appears when ω τ ρ η Γ ~ 1 and ω τ 2 ^ χ ~ 1 . The frequency
dependence of the velocity, and at low temperatures
(T < 0.6 °K) the absorption, of first sound is due both
to time dispersion and to space dispersion (the devia-
tion from linearity of the momentum dependence of
the phonon energy). A number of results favor, although
not always unambiguously, a spectrum of the type e(p)
= sp(l-rp 2 -6p 4 ) with y<0 and δ>0.

The remaining discrepancies between theory and
experiment apparently have nothing to do with our basic
ideas concerning the nature of the relaxation processes
in Hell, but are due to inadequate accuracy of the
analytic calculations, or even of the numerical calcu-
lations.

c) Hea-He* solutions. The experimental data on the
acoustic properties of solutions of the helium isotopes
are much less abundant than the data for He , and the
theoretical treatment of the solutions is less complete,

t d i H 3 H e 4 solutions has

OS 1.0 1.5 2.0 T,°K

FIG 9 Velocity of first sound in He3-He4 solutions [ 9 2 · 9 3 ] . Plot a):

1-He4 2-20% He3, 3-30.1%, 4-39.8%, 5-50%, 6-59.7%, 7-69.9%,

8-79.8%, 9-89.7%, 10-100% He3; plot b): l-1.0°K, 2-1.4°K, 3-1.6 K,

4 - 1.8°K, 5-2.O°K, 6-3.0°K (S is the solubility curve, and λ is the λ

curve).

depends on K,Q
U
 and £

3
. According to 9 8

(2.12)

In addition to this, diffusion processes give rise to
: 9 8 ]

gyivtivi** ». v — - ~ · ν - — — — 3 4 U 1** 3-00111011 IO till Ο , UllAUDlUll μ ι ά ν ο υ ν

The velocity of first sound in He -He solutions has a d d i t i o n a l absorption, which is given by1

been measured over the entire concentration range (in- ̂
eluding pure He3) at temperatures from 0.5 to 4 °K '
The absorption of first sound has been investigated at
frequencies up to -15 MHz in the 0 . 4 - 2 ^ temperature
range for He3 concentrations up to 11% 95~ 7 , and it
has been measured at higher temperatures (1.4-3.5 °K)
in solutions containing up to 20% He

Figure 9 shows the concentration and temperature
dependence of the velocity of first sound, u^c, T), for
solutions. The curves for superfluid solutions, as for
He4, have characteristic anomalies at the λ points, which
gradually smooth out as the concentration increases. At
temperatures below 0.9 °K the curves for solutions of
different concentrations merge into a common curve,
which is a peculiar sort of solubility curve in
Ui(c, T)-T coordinates.

Expression (1.9) for the velocity of first sound in
He3-He4 solutions simplifies when B\ »S\:

g
: 9 8 ]

(2.13)

It is easy to explain the linear dependence of Ui on
concentration that obtains in the region of superfluid
solutions (Fig. 9,b) on the basis of this relation .

In the hydrodynamic (limiting) case, the absorption
of first sound in superfluid solutions does not depend
only on η and £2, as in the case of He4 (provided the
thermal expansion coefficient be neglected), but also

(D and Dkx are the diffusion and thermal-diffusion
coefficients); here the first term in the second pair of
brackets is due to diffusion and thermal diffusion, and
the second term, to barodiffusion.

The temperature dependence of the absorption co-
efficient for first sound in solutions is similar to that
for He4, but the concentration dependence is different
for superfluid and nonsuperfluid solutions. In He I the
absorption increases linearly with increasing concen-
tration, mainly on account of the concentration de-
pendence of the quantity p\i\, whereas in Hen the sec-
ond component reduces the absorption, rather than in-
creasing it (Fig. 10). This is explained by the fact that
the main contribution to the absorption in the region
under consideration comes from second viscosity, which
decreases with increasing He3 concentration because
the presence of He3 results in more frequent roton-
phonon collisions. The decrease in Tphr leads on the
one hand to a shift of the absorption peak (at o>Tphr
~ 1), and on the other hand, to a decrease in the second
viscosity, and consequently in the absorption.

Assuming that the equilibrium as regard numbers of
rotons and phonons is established by the slowest
processes, AndreevC99] calculated the change in the
second-viscosity coefficient ζ2 resulting from three-
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FIG. 10. Absorption of first sound at 14.0 MHz in He 3 -He 4 solutions
[97] 1-He4, 2-0.32% He3, 3-1.2% He3, 4-5.2% He3.

FIG. 11. Reduced absorption coefficients5, (η), «] (D), anda^i i ) at
1.4 °K vs. He3 concentration [6 1].

phonon scattering from the impurity and phonon-roton
conversion at the impurity. Then from the experimental
data on dilute solutions he evaluated several parameters
Tphri and Γρηϊ characterizing the rate of change of the
number of rotons and phonons.

Figure 11 shows the concentration dependence of the re-
duced absorption coefficients (the absorption coefficients
divided by a>2/2pu?) associated with first and second
viscosity and diffusion: α^η), c?i(£i), and 5i(D). The
values of «1(77) and 5j(D) were calculated directly
from Eqs. (2.12) and (2.13), and α^ζ) was defined as
the difference between the measured absorption co-
efficient «i and <ϊι(??) + δι(ϋ), i.e., α1(ς) = α1-α1(η)
-<5i(D); estimates indicate that the contribution from
heat conduction is negligible. If one assumes that
«i(£)~S1(£2), one can estimate £2 from 5χ(ζ). The
values obtained in this way for £2 at He3 concentra-
tions exceeding 7% turn out to be considerably smaller
than the values calculated from Andreev's equation
using his values of the parameters Tphri and Γ phi.

d) The effect of pressure. By applying pressure to
liquid helium one can vary its properties within certain
limits, including its acoustic properties-the velocity
and absorption of sound.

The pressure dependence of the velocity of sound
has been investigated in the temperature range 1-4.2 °K,
both for He4 Cl7>20>37: and for solutions t 3 7 ] . Special
measurements were made for He4 at low temperatures
(below 0.1 °K) C 4 3 ] , and the Gruneisen constant
u= θ lns/a In ρ and the quantity w = (p2/s)(a2s/ap2) were
evaluated from the results. These constants serve as
a measure of the intensity of the phonon-phonon inter-
action in the third and fourth orders in an expansion
in the density oscillations. It was found that u = 2.84 and
w=8.26 in the limit Ρ —0, and u = 2.21 and w=4.94 at
Ρ = 25 atm; i.e., the phonon-phonon interaction weakens
somewhat as the pressure increases.

The pressure dependence of the absorption of first
sound in He4 at moderate frequencies (below 15 MHz),
which has been measured in the 0.2-1.8 °K temperature

FIG. 11

ai as

FIG. 12 FIG. 13

interval
[26-29] (Fig. 12), can be explained by the fact that

the second viscosity, and with it the sound absorption,
decreases as the quasiparticle collisions become more
frequent as a result of increasing density. However,
the agreement between the experimental data and the
calculated1100·1 values of £2 proves to be only qualitative.

Measurements of the absorption at high frequencies
(15-256 MHz) in the 0.1-1.0 °K range at pressures up

FIG. 12. Temperature dependence of a, for He4 at 14.4 MHz and
various pressures [29]: 1-saturated vapor pressure, 2-8.4 atm, 3-16.4
atm, 4-24.7 atm.

FIG. 13. Temperature dependence of the absorption of first sound
in He4 at 105 MHz and various pressures [44]: 1—saturated vapor pressure,
2-1.1 atm, 3-3.0 atm, 4-8.4 atm, 5^14.0 atm, 6-15.5 atm, 7-16.4
atm, 8-17.8 atm, 9-19.0 atm, 10-24.7 atm.

to 25 atm led to the discovery of unexpected regularities
(Fig. 13): when P ^ 8.4 .atm, aj(T)ocT4, but at higher
pressures and temperatures above 0.6 °K, the a^T)
curve has a form close to βχρ(-Δ/τ).

A process that has come to be called partially al-
lowed three-phonon scattering has been proposed"·101·1

in order to explain such a complicated pressure and
temperature dependence of sound absorption. In es-
sence, this process is based on the fact that for a spec-
trum like (2.5) with γ<0 and δ >0, there is a limiting
momentum pc=-3y/56 such that ae/apss when p—pc·
Hence an ultrasonic phonon can be absorbed by a ther-
mal phonon only if p—pc, where ρ is the mean thermal
momentum of the phonon. Calculations lead to the
expression

<2ι(ω, Ρ, Τ) = oc2-, ι
/(=») (2.14)

where

= | x*f{x)[l - l(x))dx.

f(x) is the Bose function, z = (spc/kT), and a2—1 is the
absorption due to three-phonon scattering. When y * 0 ,

is given in the first nonvanishing order of pertur-
' 8 1 3 () ()bation theory'813 by Eq. (2.9) with F(co,T) replaced by

Thus, at low temperatures (ζ »1), α1*α2-,1 <χωΤ4, and
at high temperatures (z « 1), αχ = α2—ιΖ3/3α:ωΤ.

At low pressures the values of γ and 5 are such that
p c is large (z »1) and the partially allowed three-phonon
processes reduce to fully allowed processes. As the
pressure rises, p c decreases and the partially allowed
three-phonon processes begin to appear as a weak tem-
perature dependence of the absorption: aiocT.

The experimental data can be reconciled with calcu-
lations of the absorption of first sound based on Eq.
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FIG. 14. Block diagram of apparatus for investigating second sound
by the solitary thermal pulse method. [132]

(2.14) by choosing values of the parameters y and δ
(i.e., of pc) for various pressures. The roton com-
ponent, which is responsible for the exponential de-
pendence of the absorption on the reciprocal tempera-
ture, becomes important when Τ >0.6°Κ.

3. SECOND SOUND
.123The peculiar wave process predicted by Landau '

and known as second sound was detected by Pesh-
kovC l 0 2'1 0 3 ] after LifshitzCl°3 had elucidated its physical
nature. In the many subsequent studies, the velocity of
second sound in He4 has been measured at temperatures
from 0.1 °K to the λ point[102-119] , and its absorption, at
frequencies from 0.2 to 270 kHz and temperatures from
0.7 °K to the λ point : i 2 0" 1 2 6 ] . Second sound in He3-He4

solutions has been less thoroughly investigated1·127"1323.

a) Experimental techniques. The velocity and ab-
sorption of second sound have been measured both by
resonance methods and by pulse methods. As an ex-
ample we shall describe the system used by Sandiford
and FairbankCl323 to investigate He3-He" solutions (Fig.
14). Its principal advantage, which is very important
for helium solutions, is that very little heat is injected
into the liquid. The measurements were made as fol-
lows. First a long (50 msec) rectangular dc pulse was
applied to the receiver R. Because of the long (5 msec)
rise time of this pulse and the ~10 kHz low-frequency
cutoff of the preamplifier, the latter did not saturate
and dc conditions effectively prevailed after -20 msec.
The oscilloscope time base was triggered 10 msec be-
fore the end of this pulse, and a short pulse was fed to
the transmitting resistor X~ 10 μββο later. This pulse
produced a pulse of second sound and also appeared on
the oscilloscope screen because of the drop across the
resistance r of the ground lead. After a time t = u2/z
(I is the distance from X to R) the second-sound pulse
reached the receiver, was amplified, and also appeared
on the oscilloscope screen. Thus, the velocity could be
determined from the transit time of the solitary pulse.

The absorption of second sound can be determined
either from the decrease in the pulse height on increas-
ing the acoustic path or from the width of the resonance
curve obtained by varying the frequency of the sound
while keeping the distance between the emitter and de-
tector fixed.

Temperature sensitive phosphor bronze wires were
used as detectors in early experiments with second sound;
later more sensitive transducers were developed, which
employed thin carbon films or powders (the fabrication of
these detectors is discussed, for example, in C l 3 3>1 3 4 ]).
It has been suggested Cl353 that the susceptibility of a

paramagnetic salt be used to record temperature oscil-
lations. Semiconducting materials C l 3 6 ] , films of super-
conducting materials and alloys1137"1401, and carbon
bolometers1141'142·1 have recently begun to be used for
this purpose. A condenser microphone with a porous
membrane as the vibrating element1143"1453 has proved
to be a very efficient emitter and detector of second
sound.

In addition to the "direct" methods described above,
second sound has been studied by Brillouin scattering
of light from second-sound wavesCl46"1483 and by
schlieren photography1·1493.

b) Velocity, absorption, and dispersion of second
sound In He4. Detailed analysis of the various mech-
anisms for the establishment of equilibrium in the ex-
citation gas, the basic ideas of which were presented in
the preceding section, enabled KhalatnikovC8'65'150"1523

and Khalatnikov and Chernikova[67'683 to investigate the
dispersion and absorption of second sound. The results
of these studies are presented in Table IV where, as in
the case of first sound, we distinguish between low fre-
quencies (a>Tphph, uxphr «U2/U1) and high frequencies
( 2/ui).

In the low-frequency limit the absorption of second
sound is given by the ordinary hydrodynamic formula,
but the formula for the velocity of second sound differs
from the ordinary hydrodynamic expression because
the isobaric expansion coefficient, which is proportional
to 3u+ l + (BSr/Sph), is taken into account.

As in the case of first sound, one can use not only the
experimental values of the kinetic coefficients in analyz-
ing the experiments, but also the values calculated on
the basis of studies of the relaxation processes. We em-
phasize once more that there are no adjustable parame-
ters at all in this comparison.

It is interesting that for Τ <0.6 °K, when the proper-
ties of He4 are due to phonons alone9', all the kinetic co-
efficients vanish except the phonon part of the viscosity,
and the absorption of second is given by the formula

while the velocity of second sound tends to the well
known limit u2o~~ s/V~3 as Τ -"0 .

Estimates show that when Τ >0.6 °K, the main con-
tribution to «2(0», T) comes from heat conduction.

At high frequencies, the velocity of second sound is
given by the hydrodynamic formula with the complete
thermodynamic quantities replaced by their respective
roton contributions; this is the so called roton second
sound. In this case the absorption coefficient a2x is
frequency independent.

Thus, on increasing the frequency while holding the
temperature constant one should observe a gradual tran-
sition from ordinary equilibrium second sound to roton
second sound. This transition involves a decrease in
the velocity from u20 to u2Q0.

The dispersion of second sound discussed above
should be observed for

when the phonon mean free path Zpn becomes com-
parable with the wavelength λ2 of second sound. At
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TABLE IV. Velocity and absorption of second sound in He4 ([68])

1,2

T phph ~ T phr
C3~2 « Tphr Tphr

- v r L 1 - ^ "

2C—

"ph=

TS,
"2oo= Π

u2o = — g- , and Cr and Sr are the heat capacity and entropy of the roton gas,

ρητ is the roton contribution to the density of the normal component.

higher frequencies Zph » λ 2 , and equilibrium can be
established during a period of the sound oscillations
only in the roton gas, since it is assumed that
ω Τχ r « 1.

When the temperature is low enough, however, the
quantity (3kT/mis2)(Cph/cr) may become so large that
roton second sound will be damped out in a distance of
the order of the wavelength of second sound, the dis-
persion being "dragged," so to speak, up to higher
frequencies:

3kT CPh U2

uz, m/sec

At very high frequencies, ω τ ρ η Γ »(3kT/mJs2)(Cph/Cr)
and second sound again becomes weakly attenuated; then
its velocity and absorption are given by the formulas
presented in Table IV for the high-frequency region.

Despite the fact that dispersion should set in at lower
frequencies for second sound than for first sound, sec-
ond sound has not been investigated in its dispersion re-
gion because of experimental difficulties.

Figure 15 shows calculated u20(T) and u2oo(T) curves
together with corresponding experimental data. At high
temperatures, the measured velocities of second sound
agree perfectly with the theoretically calculated U20
values. At temperatures below ~0.6 °K, however, the
discrepancies are large. This may be attributed to the
fact that the mean free path of the excitations (phonons)
becomes comparable with the dimensions of the appara-
tus at low temperatures. Under these conditions one
does not measure the equilibrium value of u2, but a
much larger quantity, which can approximate the phonon
propagation velocity s.

The experimental data on the absorption of second
sound in He4 (Fig. 16) agree well with the theoretical
values.

c) He3-He4 solutions. One of the peculiarities of sec-
ond sound is its high sensitivity to the presence of He3.
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FIG. 15. Temperature dependence of the velocity of second sound
in He II: 1-data from ['"], 2-[1 2*], 3-u2O, 4-u2OO, calculated in accord-
ance with [6 8].

FIG. 16. Absorption of second sound in He4: 1 -data from [ '"],

PomeranchukCl53:l first called attention to this in con-
nection with his theory of dilute He3-He4 solutions. Even
slight additions of He3 can considerably alter the velocity
u2 of second sound, and the u2(T) curves for solutions
that are not dilute (Fig. 17) differ markedly from the
corresponding curve for He4. The u2(c, T) curves for
fixed He3 concentration tend toward zero as the λ
point of the solution is approached, and at low tempera-
ture they merge into a common curve corresponding to
a branch of the solubility curve for superfluid solutions
in u 2 - T coordinates.

To calculate us(c, T) in the hydrodynamic approxima-
tion for solutions of arbitrary concentration we use Eq.
(1.10), from which, neglecting thermal expansion, we
easily derive the following expression for the case
S i » s2:
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This expression is not well suited for a comparison of
the calculated u2(c, T) values with experiment because
in the general case no explicit expression is known for
the potential Ζ, and experimental data on the excess
chemical potentials of He3 and He4 in the solution, from
which Ζ could be calculated, are available only in a
limited range of temperatures and concentrations.

An expression for Ζ can be derived from various
solution models, or for dilute solutions by expanding in
the concentration. In the latter case we obtain : 3 ]

here σ40 is the entropy per gram of He4 and m3 is the
mass of a He3 solute atom.

The expression for u2(c, T) simplifies even further
if we assume not only that the solutions are dilute, but
also that the temperature is so low that the phonon and
roton contributions to the thermodynamic properties
can be neglected. Under these conditions, using the dis-
persion law e = p2/2m* for the impurity excitations, we
obtain

cP 1 dp \ 5 vt
ί57ΓβΊ"~3 f

5 vt (3.3)

This result has a simple physical meaning: when the
thermodynamic properties of the solutions are due
mainly to the solute particles, second sound propagates
in this solute gas-"extrinsic second sound"-and its
velocity is the velocity of first sound in an ideal gas of
particles having the mass m^. ·

The absorption coefficient of second sound in He3-He4

solutions has been calculated for dilute solutions by
Khalatnikovt7] and for solutions of arbitrary concentra-
tion, by Sanikidze and KarchavaC9a:. In the most general
case, the part of the absorption coefficient due to heat
conduction and viscosity is given by

(3.4)

Apart from heat conduction and viscosity, there are other
dissipative mechanisms for solutions: diffusion, thermal
diffusion, and barodiffusion. The part of the absorption
coefficient due to these processes can be written in the
form

Uj, m /sec

OS 10 IS 10 T,"K

FIG. 17. Velocity of second sound in He3-He4 solutions [IM]:
1-He4, 2-4.3% He3, 3-18.4%, 4-31.4%, 5-43.9%, 6-50.5%, 7-59.4%,
8-63.9% He3; 9-solubility curve.

(3.5)

here the first term in the second pair of brackets (the
numerator) is associated with diffusion and thermal dif-
fusion, and the last term, with barodiffusion.

Unfortunately, the absorption of second sound in
He3-He4 solutions has been investigated experimentally
only in very dilute solutions (He3 concentration below
0.03%): m 3. The resulting data were used to determine
the heat conductivity κ on the assumption that in such
dilute solutions, as in He4, the absorption of second
sound is due entirely to heat conduction. The tempera-
ture dependence of κ found in this way is in satisfac-
tory agreement with the calculations of Khalatnikov
and ZharkovCl54] for Τ >0.6°Κ. There is considerable
discrepancy between theory and experiment for
Τ <0.6 °K, i.e., where the rotons are "frozen out."

d) Effect of pressure. In addition to the measure-
ments of the velocity of second sound in He4 at the
saturated-vapor pressure, there are data on the Τ
dependence of U2 at elevated pressures up to 27
atmcio6,ii6,ii8] u w a g f o u n ( J t h a t a t t e m p e r a t u r e s at

which the roton contribution is predominant, u2 de-
creases with increasing pressure (as the He4 energy
spectrum changes), while at temperatures at which the
phonon contribution is predominant, U2 increases with
increasing pressure (much as does Ui).

Similar data have been obtained for solutions of He3

in He4 in the 0.2-1.1 °K temperature interval3 0 ' 1 3 2 3 . The
parameters of the Bose branch of the spectrum (Δ, po,
and m*) have been calculated from measured values of
u2 for a 0.32% solution of He3 in He4; the results proved
to be in good agreement with the values found for He4

from the neutron scattering. In addition, the pressure
dependence of the effective mass m^ of the impurity
excitations was elucidated.

4. PECULIARITIES OF THE EXCITATION AND
PROPAGATION OF FIRST AND SECOND SOUND

The concept of first and second sound as oscillations
of pressure and temperature, respectively, gives only a
crude picture of the real situation, in which certain
details are lost.

Calculations
the relations

[155] show that, neglecting dissipation,

I "n\ _ 1 ι Ρ β (—\ — Ρ· ° β
\"B Ιί Pn 1 —β ' U . ' l Pn "1 ' — β '
[EL\ p"' (sL) = . £ < L J L_ ί 4 · 1 '
\ V, /l 1 — Ρ ' \ vs /l p n u, 1 — Ρ '

obtain in a first-sound wave in an He3-He4 solution, and
the relations

ι/ "n \ _ P. 1—Ρ l—\ = " Pa

\ "s 12 Pn l + P(ps.Pn) ' \ "s >2 "s Pn
/P^\ _ u j ) ,
( f, / 2 ~ P " 2 Pn 1-

1 + P(p«/P»> '
(4.2)

β(Ρ./Ρι>) ' Pn l + P(Ps/Pn) '

obtain in a second-sound wave. Here the prime indicates
the variable part of the corresponding thermodynamic
quantity. (The relations for pure He4 are obtained by
setting c = 0.)

Thus, first and second sound are two independent
acoustic modes that propagate with different velocities.
The quantities vn, v s , Ρ, σ, and c all oscillate in each
of these modes, but in a first-sound wave the entropy
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(temperature) oscillations are relatively small, as are
the concentration oscillations in the case of solutions,
whereas in a second-sound wave it is the pressure os-
cillations that are small.

The excitation of first and second sound takes place
in accordance with what has just been said. For example,
if a cylindrical tube of radius r be filled with super-
fluid He4, then temperature oscillations of amplitude To

will excite pressure oscillations, which will propagate
with velocities ut and u2, and whose amplitudes (with
allowance for the viscosity coefficients) will be given
by C l 5 6 :

= P«i"2 •

In these expressions the first terms in the brackets
describe the effect of viscosity throughout the entire
volume, while the second terms describe the wall effect.

As a rule, the viscosity contribution to Pi is small
as compared with the contribution from thermal ex-
pansion (proportional to a), but the contribution from
bulk viscosity to P2 at Τ < 1.4 °K and ω > 10 kHz is of
the same order as the contribution from thermal ex-
pansion. Thermal expansion plays a special part above
1.4 °K at low frequencies. The ratio of the intensity of
the first sound to that of the second sound excited
simultaneously by temperature oscillations is of the
order of 10~3 over a wide temperature range.

If one end of the tube be closed by a membrane that
is impermeable to Hell and vibrates with amplitude v0,
then not only will pressure oscillations be excited in
the He4, but also temperature oscillations, which propa-
gate with velocity u2:

here we give only the principal terms, the corrections
for η and £2 being small. The intensity ratio of the
first and second sound simultaneously excited in this
manner does not exceed 10"6, even under the most
favorable conditions.

Similar results have been obtained11573 by numerical
solution of the hydrodynamic equations for Hell, includ-
ing nonlinear terms in the velocities but neglecting dis-
sipative terms. It was found that a pressure pulse P'= 1
bar excites a temperature pulse T'~ 5x ΙΟ"8 ΤΚ, but that
a temperature pulse T'= 10"3 °K excites an easily de-
tectable pressure pulse P ' = 0.2-0.4 bar (T = 1.5°K).

Both the pressure oscillations Pi and P2 excited by
temperature oscillations, and the temperature oscilla-
tions T2 excited by pressure changes have been inves-
tigated experimentally. The pressure oscillations were
detected either by condenser microphones'1156'1583 or by
light scattering1 1 4 6'1 4 7 3. The temperature oscillations
were produced with the aid of carbon or gold films on
massive backings. The same carbon films served to
detect the temperature oscillations, while in this case
the pressure change was produced by a condenser
microphone11563.

We note that experiments have been made, both
using the pulse method and using the standing wave
method. In comparing the experimental results with
theory one must either normalize the experimental data
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T'K
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FIG. 18. Temperature dependence of the amplitude of density oscil-
lations in a second-sound wave [1 4 7]: l-calculated from Eq. (4.4); 2—
density oscillations p^ averaged over the width d of the laser beam; 3—
experiment. p'2 = p'2(T) {l-exp[-a2(T)d]}/a2(T)d.

FIG. 19. Temperature oscillations T 2 generated by a membrane vi-
brating with amplitude v0 [1 5 6]: 1—calculated with Eq. (4.5), 2—from Eq.
(4.5) with τ) = 0. The experimental data were normalized at 1.4° K.

to the theoretical value at some fixed temperature or
calibrate the transducers independently.

Figure 18 shows the temperature dependence of the
amplitude of density oscillations in a second-sound wave
in He4. The experimental points were obtained by meas-
uring the scattering of light from a neon-helium laser
beam. The experimental data agree well with the theory
when the change in the amplitude of the density oscilla-
tions in the second-sound wave over the width of the
laser beam is taken into account. Equally good agree-
ment between experiment and theory is also obtained
for the temperature dependence of the amplitude p[ of
the density oscillations in a first-sound wave.

Similar data on p{ have been obtained by detecting
the pressure wave directly, using a condenser micro-
phone

[157]
A discrepancy between theory and experiment

noted in C l 5 7 3 was explained in t I 5 9 3 as resulting from
perturbation of the acoustic field by the recording trans-
ducer itself, a factor that was not taken into account
in reducing the experimental data.

Figure 19 shows the results of measurements11563 of
the temperature dependence of the amplitude T2' of the
temperature oscillations in a second-sound wave excited
by a vibrating membrane. The reason for the discrep-
ancy between theory and experiment at high temperatures
is not known (perhaps the discrepancy is due to incor-
rectly chosen boundary conditions).

The peculiarities of the excitation and propagation of
first and second sound in superfluid He3-He4 solutions
are basically described by the second term in the ex-
pression for the parameter β:

- T_ - - _ c dp
P — aa'C'~C' C~J"dc'

Because of this term, β can be large. For example,
for c = 0.2, we have /3«c=-0.15. Over a wide tempera-
ture range, we have vn = (1.2-1.5)vs in a first-sound
wave, and vn=-(0.6-0.8)(ps/pn)vs in a second-sound
wave. The difference from the case of pure He4, for
which vn ~ v s and p s v s « pnvn for first and second
sound, respectively, is the greater, the higher the He3

concentration: for highly concentrated solutions,

Because of the large values of β, both pressure and
temperature oscillations are present in both first- and
second-sound waves, and their amplitudes (in com-
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FIG. 20. Temperature dependence of the amplitude of the pressure
oscillations excited by a heat pulse [ l i 0 ] : 1-0.085 He3, 2-0.046 He3,
3-He4. The dashed curves were calculated.

parable units) can differ only by a small factor. This
appears under conditions in which first and second
sound are excited in superfluid He3-He4 solutions. If
the temperature of an immobile membrane that is im-
permeable to Hen is caused to fluctuate, the ratio of
the intensities of the first- and second-sound waves
thereby simultaneously excited will be given by

(4.6)

and for a solution with c = 0.2 at Τ = 1.5 °K will be of the
order of 0.1. If the membrane is caused to vibrate, how-
ever, while its temperature is held constant and there is
no heat flux through it, then

Ji _ R 2 P. "a (4.7)

and for c = 0.2 and Τ < 2 °K, this ratio is close in order
of magnitude to 10"4. (Equations (4.6) and (4.7) are also
valid for He4, but for that case one must put c = 0 in the
expression for β.)

The simultaneous excitation of first- and second-
sound waves in superfluid He3-He4 solutions by temper-
ature oscillations (the most favorable case) has been
confirmed experimentally1·1063. In these experiments
the temperature oscillations were induced by an elec-
tric current pulse through a thin carbon film. The
emitter was mounted at one end of a cylindrical cell,
and a first-sound detector (a device similar to a con-
denser microphone) or a second-sound detector (a
phosphor bronze wire) was mounted at the other end.

The temperature dependence of the amplitude of
the pressure oscillations excited by a heat pulse is
shown in Fig. 20. The pressure oscillations propa-
gated with the velocity of first sound in the solution;
hence it is the temperature dependence of Pi that was
measured. The dashed curves in the figure show the
calculated value of 'Pi~(ca1/(fT)q, where q is the heat
flux at the heater. The experimental data were matched
to the theoretical curve for c = 0.085 at Τ = 1.8 °K. The
agreement between theory and experiment is evidently
satisfactory.

The simultaneous excitation of first and second
sound must be taken into account when investigating
the absorption of second sound in He3-He4 solutions,
since in this case the fraction of the power supplied to

the emitter that is expended in generating second sound
depends on the temperature and concentration.

5. WAVE PROCESSES IN He II FILMS; THIRD
SOUND

As a result of superfluidity, Hen films have a
number of unusual properties, including that of support-
ing the propagation of sound waves. The general picture
of wave processes in helium films is very complicated;
it depends essentially on the ratio of the thickness d
of the film and the penetration depth λη = (2τ}η/ωρη)1/2

of the viscous wave. If d « λη, i.e., if the normal com-
ponent of the liquid is fully clamped (v n ^ 0), a weakly
damped wave, which has come to be called third sound,
can propagate along the film. Third sound was first
predicted by Atkins[ u 3 and was later detected and in-
vestigated experimentally1161"164]. The character of
third sound, in turn, changes sharply on going to very
thin (unsaturated) films not more than 50 atomic layers
thick1 1 6 5"1 6 8 3.

If d~ λη or d>Xjj, not only the superfluid component,
but also the normal component of the helium participates
in the propagation of oscillations along the film, and this
leads to a peculiar dispersion of third soundt169"1723 and
its conversion at d » λη into ordinary capillary or
capillary-gravitational waves.

In discussing the propagation of sound in Hell films
it is convenient to begin with the very general case of
arbitrary d (arbitrary frequencies ω). We assume that
the normal motion in the film is partially clamped and
introduce an effective clamping force proportional to
the velocity of the normal component:

fctomp-= —Λν η = ωρΓνη. ( 5 . 1 )

Strictly speaking, to take the slippage of the normal com-
ponent into account one must solve the entire set of
hydrodynamic equations with the correct boundary con-
ditions (as is done in treating fourth sound-see Sec. 6),
but the physical picture of the propagation of the oscilla-
tions will look much simplier if we take the slippage of
the normal component into account phenomenologically
by introducing the parameter R or r, which is a compli-
cated complex function of the oscillation frequency and
film thickness C l 7 2 ] :

: Pn
ρ k3d — tgk3d ' (5.2)

where
wave.

= (i(opn/i?n)
1/2 is the wave vector of the viscous

This approach also allows us to neglect the variations
of the velocity and other quantities throughout the thick-
ness of the film, i.e., we may assume that all the thermo-
dynamic quantities (vn, v s , Ρ' , Τ', p ' , and c') depend
only on the time t and the coordinate χ measured
along the film. In addition, in this approximation we
need not consider the components of vn and Vs normal
to the surface of the film (vn = νηχ, v s = vSx).

To derive the equations we make use of the conser-
vation of mass, energy, and momentum, and note that
the local thickness of the film, ζ = ζ (χ, t), must be in-
cluded among the unknown functions. Mass conserva-
tion leads to the equation

dt (5.3)

The last term in (5.3) represents the change in the mass

228 Sov. Phys.-Usp., Vol. 17, No. 2, September-October 1974 Β. Ν. Esel'son et al. 228



of the film due to local vaporization or condensation of
helium.

Denoting the heat of vaporization by L, we obtain the
energy conservation equation in the form

(5.4)

10s- V, cm/sec

PtdoT ̂ —dpoT^-pdC^f- KLV = 0.

In writing the equation for superfluid flow (see Eq.
C3:(20.3) in C3:) it is convenient to express the pressure

change P ' in terms of the variables T' and ζ:

Ρ' = βΓ + ρ/ζ; (5.5)

here β = 3ρ/θΤ, the derivative being taken along the
vapor pressure curve, and f is the restoring force per
unit mass of film, which we shall discuss later.

Thus, the equation for superfluid flow takes the form

(5.6)

Taking the clamping force (5.1) into account, we can
write the momentum conservation equation [ 1 6 9 ] in the
form10':

- = — inrvn. (5.7)

We note again that using the phenomenological coeffi-
cients r, K, and L enables us to avoid solving the two-
dimensional problem with the correct boundary condi-
tions.

Assuming as usual that vn, vs, T, and ζ in Eqs.
(5.3), (5.4), (5.6), and (5.7) are harmonic functions of χ
and t, i.e., that they are proportional to exp[—i(cot—kx)],
we obtain the dispersion equation for the velocity
u = w/k of the wave. The equation for u is biquadratic,
and this means that oscillations of two types can prop-
agate in the film. The first root corresponds to a sur-
face van der Waals wave, and the second to a thermal
wave.

The analytic expressions for the velocity and damp-
ing (Im k) of each of these oscillations are complicated
and their implications are not immediately evident
Figure 21 shows the velocity and absorption coefficient
of the oscillations of the first type as functions of
film thickness and frequency. For thin films (d-S 10"5

cm for ω = 2ΤΓΧ 103 sec"1) one obtains Atkins' result
(third sound); in this region the oscillations are only
slightly damped. As d increases the absorption rises
sharply, reaches a maximum, and then decreases as
a new oscillation regime becomes established. Thus,
Fig. 21 depicts the dispersion of surface sound result-
ing from the clamping of the normal component. The
second root of the dispersion equation corresponds to
a strongly damped wave. Calculations'1172·1 indicate that
the minimum attenuation coefficient at 1.8 °K in the
frequency range 102-108 Hz for films from 10"6 to 10"4

cm thick is of the order of 103 cm"1. Oscillations of the
second type are very difficult to investigate experimen-
tally because of the strong absorption.

The propagation velocity of oscillations of the first
type when d « λ^ (third sound) is easily obtained di-
rectly from Eqs. (5.3), (5.4), and (5.6) by setting

As will be seen from Eq. (5.8), the velocity of third

FIG. 21. Theoretical curves [172] showing the velocity and absorption
coefficient of surface van der Waals waves at Τ = 1.8° Κ, as functions of
film thickness (a, b) at ω = 2ττ·103 sec"1 and of frequency (c, d) at d =
5 X KT'cm.

sound depends on the restoring force f, the character-
istics of which are determined by the thickness of the
film. If the film is thick enough, the restoring force
will be determined by the van der Waals forces between
the film and the wall. For a film that has crept up the
wall to a height h under the action of these same van
der Waals forces (with a potential proportional to d" n ),
the expression for the velocity of third sound assumes
an especially simple form:

(5.9)

(g is the acceleration of gravity). The exponent η de-
pends on the film thickness: i 7 3 J: n= 3 for a film no
thicker than about 14 atomic layers
4 as the film thickness increases.

[174] and η approaches

For thicker films (but with d «λη as before) in which
the restoring force is associated with surface tension,
third sound becomes modified
which (see Sec. 25 in t 3 ])

capillary waves, for

(5-10)

where γ is the surface tension.

Whenever sound is excited in a film, both modes are
usually present, but of course only the weakly damped
wave (third sound if the film is thin enough) reaches the
detector.

The relation between the amplitudes of the various
quantities for an arbitrary value of ά/λη is very com-
plicated, but it simplifies considerably for the case of
third sound:

Τ

pd σω vs

~KL~ "ST (5.11)

The imaginary unit in the second of Eqs. (5.11) shows
that the P' and v s oscillations are 90° out of phase.
Estimates indicate that for Τ = 1.2 °K and ω = 2πΧ ΙΟ3

Hz, a relative change £/d = 0.25 in the film thickness
corresponds to an amplitude T ' / T = 3 X 1 0 " 6 for the
temperature oscillations, and the temperature oscilla-
tions are even weaker at lower frequencies. In other
words, the temperature oscillations in a third-sound
wave are very small.

Everitt, Atkins, and DenensteinCl61'162

o

] observed third
sound in saturated Hell films 200-900 A thick, using a

229 Sov. Phys.-Usp., Vol. 17, No. 2, September-October 1974 Β. Ν. Esel'son et al. 229



no

is

I-
zs

0
1.Z t.t 1.6 1.8 2.0 IZ Τ,'Κ

FIG. 22. Velocity of third sound
vs. temperature [162] for various
heights of the film above the helium
surface: 1-0.44 cm, 2-12.3 cm,
3—13 cm. The dashed curve was cal-
culated from Eq. (5.8) and normal-
ized to the experimental data at
1.3° K.

thermo-optical excitation method. The sound was gen-
erated as a result of periodic vaporization of a narrow
strip of the film by infrared radiation and was detected
by an optical interference system that was sensitive to
local variations in the film thickness.

The measured temperature dependence of u3 is pre-
sented in Fig. 22. One cannot very well compare the
measured U3 values with values calculated directly
from Eq. (5.8), because neither d nor f is known.
One must normalize the theoretical curve to the ex-
perimental value at some point. The dashed curve in
the figure represents the quantity (ps/p)1 / 2[l + (TS/D]1 / z

calculated on the assumption that ps/p is the same in
the film as in the bulk of the liquid. The evident dis-
crepancy between theory and experiment may be due,
first, to a temperature dependence of f and d, and
second, to the effect of oscillations of the second type.

The technique used in C l 6 3 ] made it possible simul-
taneously to measure the velocity and absorption co-
efficient of third sound. The experimental values ob-
tained for the absorption spread widely and were 2-3
orders of magnitude larger than predicted by Atkins'
theory1"161·1, which is based on the assumption that the
principal attenuation mechanism is connected with the
vaporization and condensation of helium in the film
associated with the temperature oscillations in the
third-sound wave.

Third sound can also be excited in unsaturated Hell
films, i.e., when the pressure Ρ of the vapor above the
film is lower than the equilibrium pressure Po of the
saturated vapor at the given temperature. Experiments
of this type were undertaken by Rudnick, Kagiwada,
Fraser, and GuyonCl65], who used a thermal method for
generating and detecting third sound. The emitter and
detector were aluminum films a few hundred Angstroms
thick, operating close to the superconducting transition
temperature (-1.5 °K) where they are very sensitive to
temperature oscillations.

An ordinary transit time method was used to meas-
ure the velocity of third sound. The U3 values obtained
for saturated films agree well with the results of C l 6 2 : l,
but as the pressure difference Po-P increases, i.e., as
the films become thinner, the velocity rises sharply,
reaching -3000 cm/sec at P= 1000 μΐη Hg (-5.5 atomic
layers) for Τ = 1.5 °K.

In unsaturated films, the absorption of third sound
becomes almost an order of magnitude lower than in
saturated films.

The results of numerical calculations of the absorp-
tion of third sound using the entire set of linearized hy-
drodynamic equations for the case of saturated films
are presented in Fig. 23. The general behavior of the
absorption coefficient a is as follows: for thin films
a decreases with increasing d as d"5/2 and is propor-
tional to ω1' 2; then the absorption passes through a

FIG. 23. Absorption of third sound
at 1.3° Κ vs. film thickness. The full
curves were calculated by numerical
solution of the complete set of hydro-
dynamic equations for third sound
[168], and the dashed line represents
the prediction of Atkins' theory ["] .

12 S 7 10 20 SO 100 300
d, atomic layers

asminimum and begins to increase with increasing d
d11/2 and becomes proportional to ω2. In the latter case
the behavior of the absorption as a function of d and ω
agrees with the predictions of Atkins' theory1·113, but
quantitatively, they agree only in order of magnitude.
The dependence of a on d presented in Fig. 23 has
not yet been confirmed experimentally.

Studies have shown that third sound in Hell films
can be successfully used to investigate the nature of
superfluid films. The method of third sound has made
it possible to determine the critical flow velocity of a
helium film and to investigate peculiarities of the super-
fluid transition in films C l 7 4 " 1 8 o : .

Not only third sound, but also waves that have a
classical analog-ordinary capillary waves-can propa-
gate on the free surface of helium (when d >λη). Such
waves have been investigated experimentally in liquid

: i
helium, beginning in

[181-182]

g
: i and then in more detail

In concluding this section we consider still another
interesting phenomenon that was recently predicted by
Andreev and Kompaneets1183'1843: surface second sound
in liquid helium. These authors called attention to the
fact that in liquid helium there are not only bulk excita-
tions, but also surface elementary excitations-capillary
waves-and that in superfluid solutions of He3 in He4

there are surface impurity levelsCl85>186]. Their motion,
which is accompanied by transport of mass, energy,
entropy, etc., can be regarded as the motion of a sur-
face normal component. Unlike the density of the bulk
normal component in He4, which is proportional to Τ4,
the density of the surface normal component varies
as T 5 / 3 . At sufficiently low temperatures, therefore,
one can neglect the effect of the bulk normal com-
ponent on the surface phenomena and assume that there
is only a surface normal component. This appears es-
pecially clearly in the case of dilute solutions of He3 in
He4, which have a dense layer of He3 on the surface at
at temperatures of the order of 0.1°K.

Using a specially derived set of equations for sur-
face hydrodynamics to describe the motion of the sur-
face, Andreev and Kompaneets showed that, in addition
to ordinary capillary waves, oscillations analogous bulk
second sound can propagate on the surface. Waves of
this latter type have been called surface second sound.

The velocity of surface second sound in pure He4

is given by
03 Γ (7/3) ζ (7/3)

40 Γ (5/3) ζ (5/3) ί*Ρ (5.12)

where Γ(χ) and ζ(χ) are the gamma function and
Riemann's zeta function, respectively. For He3-He4

solutions at temperatures above the degeneracy tem-
perature, we have
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"2 = ̂ 7 · (5.13)

corresponding to the velocity of sound in a two-dimen-
sional ideal monatomic gas (mg is the effective mass of
an impurity on the surface levels).

If the solute is highly degenerate, the velocity of sur-
face second sound will be

U-^W7' (5.13a)

where Na is the number of solute atoms on surface
l e v e l s ' , μ is the chemical potential of the solute,
and mg is an effective mass that differs from m s be-
cause of the Fermi-liquid interaction between the im-
purities.

At very low temperatures u agrees in order of mag-
nitude with the velocity of ordinary sound, and u(T) has
a minimum at a temperature close to the degeneracy
temperature of the impurities. The principal mechanism
for the attenuation of surface second sound is interac-
tion with the bulk normal component. We note that at low
temperatures and frequencies exceeding the reciprocal
of the time between impurity collisions at the surface,
surface second sound must reduce to oscillations of the
type of zero sound in a two-dimensional Fermi liquid.

Surface second sound has not yet been detected ex-
perimentally .

6. PROPAGATION OF SOUND IN NARROW
CHANNELS; FOURTH SOUND

The behavior of sonic oscillations in narrow channels
filled with a superfluid liquid is determined by the ratio
δ = ά/λη of the transverse dimension d of the channel
(capillary) to the penetration depth λη of the viscous
wave. When δ»1 (high frequencies and wide channels)
the walls have no significant effect: "ordinary" first
and second sound can propagate in such a liquid. As δ
decreases, the normal component of the helium becomes
more and more firmly clamped as a result of friction
with the walls, and the propagation of sound suffers an
essential change in character. In the limit of infinitely
narrow channels, Vn= 0, but sound can still be propa-
gated via the superfluid component. Oscillations of this
type have been called fourth sound'11'187·1.

It is not difficult to calculate the velocity of fourth
sound. One simply sets Vn=0 in the linearized hydro-
dynamic equations for Hell (see, e.g., Sec. 17 of ),
eliminating the momentum conservation equation since
momentum is transferred to the wall of the capillary:

»:-•£• » ί + ^ « ! · (6.1)

The second term in (6.1) is considerably smaller than
the first term. The transition from the case of thick
capillaries, in which first and second sound propagate,
to thin capillaries, in which fourth sound propagates,
can be traced by analyzing the solution of the complete
set of linearized hydrodynamic equations'1883, which
expresses the wave process as a sum of waves of three
types: first and second sound and the viscous wave. As
was shown in C i a a : l, the principal part in the dispersion
and absorption of sound in channels is played by first
viscosity, which leads to the clamping of the normal
component.

Oscillations of two types12' can propagate in channels,

as in free helium. The dispersion equation (the relation
between the frequency ω and the wave vector k) for ar-
bitrary values of δ can be written in the form [188]

I w- )i~

(— \ -

(6.2)

(6.3)

The dimensionless parameter r is given by Eq. (5.2);
it is advantageous to separate its real and imaginary
parts:

(6.4)

in which a and b are functions of δ that depend on the
shape of the channel cross section [188,189]

We note that Eqs. (6.2) and (6.3) can be derived
[190]

by introducing a clamping forcephenomenologically
equal to wprun.

The velocity and absorption coefficient of both types
of sound can be obtained from Eqs. (6.2), (6.3), and
(6.4). We give the results for the case1 3' in which \i\«a\.
For first sound,

ι
α1ί ="T2 u,j p — (,pn '

and for second sound,

-1-1/2

-,1/2

(6.5)

(6.6)

(6.7)

(6.8)

The transition from first sound to fourth sound as the
normal component becomes more firmly clamped, and
from second sound to damped thermal waves, has been
detected and investigated experimentally'1 9 0'1 9 3"1 9 5 3.

The transition from first sound to fourth sound via
an intermediate region of strong dispersion is graphically
illustrated in Fig. 24. Since the difference between ui
and U4 increases with increasing temperature, the dis-
persion is naturally more apparent at comparatively
high temperatures. The attenuation of first sound as-
sociated with slippage of the normal component increases
with increasing frequency, reaches a maximum corre-
sponding to δ~ 1, and then decreases with further in-
crease of frequency. The experimental results agree
well with the theoretical predictions

0.9

[188]
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FIG. 24. Dispersion of first sound in He II associated with clamping
of the normal component [ m ] . Plots a) and b) give the velocity and ab-
sorption per wavelength, respectively, of sound as functions of frequency:
I-1.9° K, 2-1.7° K, 3-1.5° K. The dashed curves were calculated from
Eqs. (6.5) and (6.6).
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FIG. 25. Dispersion of second sound in narrow channels filled with
He II [1 9 S], The plots give the temperature dependence of the velocity
for two frequencies: a)-0.6 kHz, b)-2.0 kHz. The full curve gives the
velocity of second sound in bulk helium; the dashed curve was calculated
from Eq. ( 6.7) for d = 6.5 μηι.

The dispersion of second sound in narrow channels
was first detected by Pollack and PellamC l 9 0 3 and was
subsequently also observed in C l 9 5 3. The temperature
dependence of the velocity is given in Fig. 25 for two
different frequencies. The sound was propagated in
straight channels having a mean diameter of ~6.5 μτα.
The measured velocities agree well with Eq. (6.7).

The effects discussed above are also possible when
sound propagates in narrow channels filled with a
superfluid He3-He4 solution. The corresponding phe-
nomena have been thoroughly investigated both theo-
retically[ 1 9 e : and experimentallyCl973.

The addition of He3 enhances the dispersion of first
sound, extends the dispersion region further toward the
lower temperatures, and leads to strong absorption of
first sound. The dispersion of second sound, on the
other hand, should be less marked in solutions than
in He4.

Fourth sound, which, as was pointed out above, is ac-
tually modified first sound, can also propagate in He3-
He4 solutions"-198'199-1. The expression for the velocity of
fourth sound in solutions of arbitrary concentration is
rather cumbersome. For the case U2«u? it reduces to

• ψ uj(l + £
( β - 9 )

In the derivation112003 of Eq. (6.9) it was assumed that
the He3 participates in the normal motion of the solu-
tion (see section 2).

The pressure and temperature simultaneously oscil-
late in a fourth-sound wave, even if the thermal expan-
sion coefficient be neglected, and in solutions, the con-
centration also oscillatesc ; in Hell we have

r = _ £u.iLw
ρ U4O * '

(6.10)

According to estimates,

i.e., the pressure oscillations are much the stronger.
Hence the best way to generate fourth sound is to cause
the pressure or density of the liquid to vary1201-1. How-
ever, fourth sound can also be generated by the thermal
method12023. Fourth sound was first detected in Hell by
Rudnick and Shapiro12013, and its velocity was later in-
vestigated in detail as a function of temperature and He3

concentration^01.2033.

A sound cell such as is usually used to investigate
fourth sound is shown schematically in Fig. 26. The

FIG. 26. Sound cell for investigating fourth
sound [200] (the upper part is shown disassem-
bled): 1-body, 2-fine grained powder, 3—
membrane, 4-massive electrode, 5-insulating
gasket, 6—cover.

0J 1.0 1.5 2.0 Τ,'Κ

FIG. 27. Temperature dependence of the velocity of fourth sound in
He4 (curve 1) and in superfluid solutions with the following molar con-
centrations of He3: 11.05% (2), 19.7% (3), 27.0% (4), 39.9% (5), 53.6%
(6). S is the solubility curve.

most suitable device for generating and detecting the
sound is a condenser type transducer in which one
plate is the stationary electrode (4) and the other
movable plate is a membrane (3) consisting of a thin
polymer film bearing a metallic coating a few microns
thick. The fourth sound propagates in the system of
narrow channels formed by tightly pressed fine-grain
powder. With such a device one can measure the
velocity of fourth sound by both resonance1-201-1 and
pulse112003 methods, correcting for multiple scattering
of the sound from the powder grains.

We note that in experiments on the propagation of
fourth sound, the oscillations in the capillaries are al-
ways excited in the bulk helium; strictly speaking,
therefore, one excites either first or second sound,
which then generates the fourth-sound waves. Esti-
mates1 2 0 4 3 show that fourth sound is better excited by
first sound than by second sound.

The investigations of the velocity of fourth sound in
superfluid He4 and He3-He4 solutions are summarized
in Fig. 27. The experimental data for He4 and for dilute
solutions agree well with calculations based on Eqs.
(6.1) and (6.9). Such a comparison cannot be made for
concentrated solutions because of the lack of data on
the density of the normal component. In this case, in-
formation on p n can be extracted from the measured
u4 values themselves, as was done in : 2 0 3 : i . This, in
turn, made it possible to make some estimates of the
parameters for the Bose and Fermi branches of the
energy spectrum of the superfluid solutions.

Fourth sound has also been successfully used to
determine the density of the superfluid component of
He4 in very narrow channels with diameters of a few
tens of Angstroms'-205"2073, and to investigate persistent
superfluid currents and critical velocities in rotating
heliumC208-2113.

The hydrodynamic theory of the absorption of fourth
sound in Hell was worked out by Sanikidze, Adamenko,
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and KaganovC212]. The part of the fourth-sound absorp-
tion coefficient due to viscosity can be written in the
form

2u\ (6.11)

The first term in (6.11) is due to incomplete clamping
of the normal component. It is curious that this term
contains the viscosity in the denominator and so de-
creases with increasing η. This is due to the fact that
a decrease in r\ increases the slippage of the normal
component and thus increases the energy dissipation.
Unlike the first term, which can be attributed to sur-
face losses, the second term is due to absorption taking
place directly in the volume occupied by Hell. Although
the second-viscosity coefficient £2 plays the principal
part in the absorption of first sound, it is the coefficient
ζ3 that makes the main contribution to the absorption
of fourth sound. This is due to the fact that the super-
fluid component moves relative to the normal com-
ponent in the propagation of fourth sound.

To calculate the part of the fourth-sound absorption
coefficient associated with heat conduction one must
take into account the boundary conditions for the tem-
perature of the wall; these boundary conditions affect
even the velocity of the sound, leading to a peculiar type
of dispersion1·2123. If the heat resistivity l / α of the
boundary is small and the heat conductivity KW of the
wall is large, the temperature oscillations in the
fourth-sound wave will impose their thermal conditions
on the wall. In this case the velocity of sound is rigor-
ously given by

p«
ρ (6.12)

If the heat flow through the wall is small, however, the
velocity of fourth sound will be given by Eq. (6.1).

In the intermediate case of partial heat flow through
the wall the second term in (6.1) acquires the weight
factor C/Ceff, where Ceff = C +Cw(di/d). Thus, in nar-
row channels, dispersion of sound associated with the
thermal conditions at the wall can arise.

In He3-He4 solutions, the presence of He3 solute
atoms in the superfluid helium leads, as was shown
in1"196'2131, to an increase in the viscous absorption of
sound; in addition, still another dissipative mechanism
is present to contribute to the bulk losses: diffusion of
the solute.

The hydrodynamic approximation used up to now is
valid for I « d , where I is the mean free path of the
phonons and rotons. Fourth sound can also propagate
in the opposite limiting case. It is easy to understand
that Eq. (6.1) will still give the velocity of fourth
sound when / » d since only the condition of complete
clamping of the normal component (v= 0) was used in
deriving it. When I » d , direct collisions of the phonons
and rotons with the walls of the capillary will assure
that the normal component will be clamped.

To calculate the absorption coefficient of fourth
sound for I » d one should solve the kinetic equa-
tionC 2 1 4 ], the principal energy dissipation mechanism
being collisions of phonons with the walls of the capil-
lary. Since in narrow capillaries the probability for
the elastic scattering of phonons wtih the wall vanishes
except within a small angle <p~ui/uw reckoned from
the normal to the wall (u w is the velocity of sound in the

solid body), the phonons moving within this angle (the
"normal" phonons) come into equilibrium with the solid
body more rapidly than do the other phonons. Hence one
of the dissipative processes under these conditions is
the establishment of temperature equilibrium between
the "normal" phonons and the other ones (under such
conditions two temperatures are required to specify
the state of the phonon gas).

7. SOUND IN DEGENERATE He3-He4 SOLUTIONS

The phase diagram for He3-He4 solutions1215-1 shows
that the solubility curve does not go to zero as Τ ^ 0 :
the solubility of He3 in He4 remains finite at Τ = 0
(c i 6.3%). This means that an He3-He4 solution at Τ = 0
is a superfluid liquid, and that at low enough tempera-
tures it is a Fermi-Bose quantum liquid in which the
principal elementary excitations are the Fermi excita-
tions characteristic of a Fermi liquid.

The treatment of dilute He3-He4 solutions at low tem-
peratures as Fermi-Bose quantum liquids makes it pos-
sible to describe their thermodynamic properties in a
comparatively simple manner11216·1 and to investigate the
peculiarities of the propagation of sound in themt 2 1 7~2 2 o : l.
The theory of Fermi-Bose quantum liquids has been
presented in detail in Khalatnikov's monograph[3] (Chap-
ter 16), so we shall not dwell on it here but shall merely
write down the formulas for the velocity of sound in de-
generate solutions. As in any superfluid liquid, both
first and second sound can propagate in a Fermi-Bose
quantum liquid. Their respective velocities are given
byC3]

(7.1)

(7.2)

here
_ I de \

e, p, and m* are the energy, momentum, and effective
mass of a Fermi excitation, N3 is the number of ex-
citations per unit volume, Ε is the energy per unit
volume of the liquid, and the Fi are the coefficients
in the expansion in Legendre polynomials of the corre-
lation function characterizing the Fermi-liquid inter-
action between the He3 atoms (only the first two har-
monics were taken into account in the calculation). In
the case of solutions, the interaction of the He3 atoms
with the He4 atoms results in the necessity of replacing
the coefficient F o , which occurs in the corresponding
expressions for a pure Fermi liquid, by the renormal-
ized constant F o :

We should call attention to the fact that in the present
case second sound is nothing but ordinary sound in the
Fermi liquid consisting of the He3 atoms. If it were not
for correlation effects, its velocity, as Eq. (7.2) shows,
would be vp/3, the velocity of sound in a degenerate
Fermi gas. First sound, however, reduces to first
sound in Hell as the He3 concentration tends to zero.

The question whether zero sound can propagate in
degenerate He3-He4 solutions has not yet been cleared
up; the values of the correlation constants F o and Fj
seem to be such that zero sound cannot propagate (t 3 ],
Sec. 77).
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FIG. 28. Absorption of first sound in a 5.5% solution of He3 in
He4 at Τ < Γ Κ. The experimental points are from [222] and the curves
were calculated in accordance with [2 2 S],

If we estimate the parameters in Eq. (7.1) from the
experimental data we find that the velocity of first sound
is somewhat lower in degenerate solutions than in pure
He4. An extremely sensitive and precision technique is
required for an experimental study of the temperature
and frequency dependence of ui. Abraham, Eckstein,
Ketterson, and VignosC623 developed such a technique on
the basis of the phase comparison method and used it
to make very accurate relative measurements of the
velocity and absorption of first sound in degenerate
solutions'2 2 1"2 2 3 3.

Studies of the velocity of sound at various frequencies
have shown that Ui varies strongly with frequency, and
that this frequency dispersion is accompanied by appre-
ciable absorption. The physical cause of this dispersion
and absorption is a relaxation process in the Fermi-ex-
citation gas. According to Baym:2193 this relaxation
process is a consequence of ordinary viscosity, which,
as in any Fermi liquid, is inversely proportional to the
square of the temperature (see, e.g., Chapter 14 in C 3 : ) .
The characteristic relaxation time of this process is
given by the semiempirical formula'2223

(7.3)

in which Tjr is the Fermi degeneracy temperature and
the parameters A and B, which depend on the He3 con-
centration, are evaluated from experimental data. A
theoretical formula for the velocity of first sound'2243

derived with allowance for this relaxation process, which
is due to the interaction of the He3 atoms, represents
the experimental data very well at temperatures below
0.3 °K.

Measurements of the absorption of first sound in de-
generate solutions have led to interesting results. Such
measurements were first made'2 2 1 3 on a 5% solution at
frequencies of 20, 60, 100, and 140 MHz and were then
repeated'2223 on a 5.5% solution at 15, 45, and 75 MHz.
Although in He4 the absorption decreases monotonically
with decreasing temperature below 0.8 °K, in the solu-
tions, the absorption passes through a minimum at
Τ »0.3 °Κ; further, a maximum was found at a lower
temperature, which broadens and shifts toward the
higher temperatures with increasing frequency (Fig. 28).

These features of the temperature and frequency de-
pendence of the absorption coefficients have been ex-
plained by Baym, Ebner, and Saam'2 1 9 ' 2 2 6"2 2 8 3, who showed

that at temperatures below 0.3 °K, where the effect of
thermal phonons can be neglected, the absorption of first
sound in dilute solutions of He3 in He4 is due almost en-
tirely to the He3 impurity atoms, and, as was mentioned
above, the characteristic relaxation time Τη is associ-
ated with the viscosity of the He3. Calculation of the
absorption coefficient of a 5% solution of He3 in He4 leads
to the simple formula1219"2263

(7.4)

in which

This equation is valid for Τ « T F , the relaxation time
Τη being given by Eq. (7.3), in which the second term
in the brackets may be neglected.

At temperatures above 0.3 °K thermal phonons, in-
teracting with the He3 quasiparticles, contribute sig-
nificantly to the absorption of sound. Calculations1225'2273

in which this interaction is taken into account (and which
are valid for temperatures up to 0.7 °K) lead to very
complicated formulas that are ill suited for study. A
numerical calculation is compared with the experimental
results in Fig. 28; the agreement is satisfactory1'".

The study of second sound in degenerate solutions of
He3 in He4 was begun in 1949 by Pomeranchuk[1533, who
treated the impurity particles as an ideal quasiparticle
gas with the dispersion law E0 + (p2/2m£) and showed
that the velocity of second sound at low temperatures
is extremely sensitive to even small additions of He3.
It was found that in a fully degenerate Fermi gas the
velocity of second sound for a fixed concentration is
temperature independent, being determined by the ef-
fective mass alone:

(7.5)

where
, _ ( 3 π ' ) 2 ' 3 λ> / ρ
fe° 3 ΊΖψ \Ί^

The low-concentration limit of the range of appli-
cability of Eq. (7.5) is determined by the condition that
the contribution from impurity excitations predominate
over the contribution from phonons (at T~4.5 °K, this
condition is satisfied when c >10~5). The high-concentra-
tion limit of the range of applicability is associated with
the necessity of taking into account the interactions of
the impurity excitations with one another. The possibil-
ity of taking these interactions into account arose after
an effective He3-He4 interaction potential was proposed,
as was done in : 2 1 6 ] , and this led to the appearance of a
number of experimental and theoretical papers on second
sound in dilute He3-He4 solutions at low tempera-
tures ' 1 4 3 ' 1 4 4 ' 2 3 0 " 2 3 4 3 .

One peculiarity of the experimental study of second
sound in degenerate solutions is associated with the fact
that the oscillations propagate in the Fermi component
of the liquid and have much in common with first sound
in a Fermi liquid. Although here, as before, the temper-
ature oscillations play the principal part in a second-
sound wave, at very low temperatures the heater gener-
ates second sound, not mainly by the direct mechanism,
but as a result of the interaction of the phonons and ro-
tons excited by the heat with He3 atoms. In this connec-
tion, one way to observe second sound in a solution is to
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there appeared a number of papers
can merely list.

[237-2483 , which we

am D.OS 0.2 0.5

FIG. 29. Temperature dependence of the velocity of second sound
in degenerate solutions [1 4 4]: 1-0.143% He3 ( T F « 0.029° K), 2-6.28%
He3 ( T F * 0.33° K).

excite it by means of the mechanical vibrations of a plane
surface; this should result in the simultaneous generation
of first and second sound12323.

Sherlock and Edwards[ 1 4 3 : developed special mechani-
cal transducers to excite and detect oscillations. These
transducers consist of condenser heads in which the vi-
brating membrane is a porous film permeable only to the
superfluid component. Special analysis showed that the
fraction of the energy emitted by such a transducer as
first sound when P n « P is negligible. These transducers
have been successfully used to investigate second sound
in solutions of He3 in He4 at low temperatures : i 4 4 > 2 3 3 ] .

The measurements were made in the temperature
range 0.03-0.6 °K. In this region, the Fermi excita-
tions in very dilute solutions can be described by Boltz-
mann statistics, and as is evident from Fig. 29, the
"classical" relation u2°cT1/2, corresponding to Eq.
(3.3), obtains for the 0.143% solution. The effect of
Fermi degeneracy of the impurity is manifest for the
6.28% solution: there are deviations from the T1 / 2 law
at low temperatures and a tendency toward saturation,
in accordance with Eq. (7.5), at Τ

The results are in qualitative agreement with a
numerical calculation of the velocity of second sound
in degenerate solutions1·2343 in which the interaction of
the impurity excitations was taken into account in the
context of the Bardeen-Baym-Pines theory12163. The
quantitative difference is apparently associated with the
values chosen for the parameters in the Bardeen-Baym-
Pines theory. In accordance with the calculation, the
form of the temperature dependence of the velocity of
second sound remains virtually unchanged as the pres-
sure increases; this was also noted i n

: i 3 2 > 2 3 1 1 .

The absorption of second sound in the degeneracy
region still remains virtually uninvestigated. Only es-
timated upper bounds to the absorption coefficient based
on analysis of experimental data have been givenCl443.

Up to now we have been considering the propagation of
sound under conditions in which the effect of the walls of
the container can be neglected. If the solution is contained
in narrow channels whose characteristic linear dimen-
sion is much smaller than the penetration depth of the
viscous wave or than the mean free path of the elemen-
tary excitations, fourth sound can also propagate. This
possibility has been discussed by Sanikidze and
Shaanova"353.

We also note that fourth sound is possible in pure He3

in the temperature region in which it can become
superfluid12353.

Note added in proof. The propagation of fourth sound
has recently been detected in pure He3 in the superfluid
phase (at a temperature below 3x 10"3 °K)t2363.

After the work on the review had been completed,

" I t is assumed that the reader is familiar with the principal properties
of liquid helium, which have been presented in some detail in mono-
graphs [3~6].

2'This topic is discussed in a recent review article (7J.
3 Ά rigorous proof of this assertion for low He3 concentrations is given

in ["] .
4 ' ln addition, any wave is naturally characterized by its polarization and

the ratios of the amplitudes of the various physical quantities involved
in it. In place of the propagation velocity, one may characterize a wave
by its wavelength λ(ω) = 2πυ(ω)/ω.

5'For clarity we have considered only temperatures below 1.2° Κ and
have neglected heat conduction.

""'Historical tradition is responsible for the use of the two terms
"phonons" and "rotons."

''Private communication from L. P. Pitaevskii.
"An attempt has been made [73] to explain this διΐι(ω) relation on the

basis of an energy spectrum containing a term quadratic in the momen-
tum, and the numerical value of the constant in Eq. (2.6) was success-
fully reconciled with the neutron data on e(p) I 6 0 ] . However, it was
shown in [74] that the spectrum with the quadratic term in the momen-
tum is much less successful than the widely used spectrum (2.5) in ac-
counting for the pressure dependence of the heat capacity and the
velocity of first sound. We also note that the neutron "does not know"
what causes the dispersion.

9'Hence in this region, second sound in He4 is "ordinary" sound in the
phonon gas.

lo'We note that the heat exchange between the film and the substrate and
between the film and the vapor above it was not taken into account in
deriving Eqs. (5.3), (5.4), (5.6), and (5.7). To take the interaction of the
film with the substrate and the vapor rigorously into account one must
use not only the hydrodynamic equations for the superfluid film, but
also the equations for the temperature distribution in the substrate and
for the viscous, acoustic, and thermal waves in the vapor [166· " * ] . Such
calculations lead to much more cumbersome formulas, which, however,
give essentially the same results except in the case of unsaturated films.

'"With the normal component clamped.
12)As before, we shall call them first and second sound.
1 3 Ά similar treatment of wave processes in narrow channels has also been

given in I " 1 · " 2 ] .
14'We note that in [2 1 9 > 2 2 5~2 2 8], where the sound absorption problem was

solved in the r approximation, the fermion relaxation tiire enters as an
adjustable parameter. The τ approximation means essentially that only
the zeroth and first harmonics in the angular expansion of the distribu-
tion function are retained in the collision integral in the kinetic equa-
tion. As has been recently shown [229], the contribution to sound ab-
sorption from the second harmonic is of the same order as those from
the zeroth and first harmonics.
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