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We study effects of magnetic field on the quasiparticle energy spectrum in a superconducting quantum point
contact. The supercurrent induced by the magnetic field leads to intermode transitions between the electron
waves that pass and do not pass through the constriction. The latter experience normal reflections which couple
the states with opposite momenta inside the quantum channel and create a minigap in the low-energy spectrum
that depends on the magnetic field.
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I. INTRODUCTION

Transport in superconducting/normal-metal hybrid struc-
tures is governed by normal and Andreev reflections. Com-
petition between these processes is determined by insulating
barriers at the interfaces, mismatch in the material param-
eters, impurities, etc. The devices where the degree of nor-
mal and Andreev reflections can be tuned to control the sys-
tem conductance are in the focus of current nanoscale
physics research. One of the possible ways to manipulate the
conductance is to use an external magnetic field either to
influence the cyclotron trajectories of particles and holes in a
normal part of a hybrid system1,2 or to induce interference
between partial reflected waves as in Ref. 3sAndreev inter-
ferometerd. Another mechanism to change the trajectories
and to affect the interplay between the Andreev and normal
reflections is to interfere with the fundamental property of
the Andreev reflection, i.e., with its almost exact backscatter-
ing. During the Andreev reflection, the angle of divergence
between the trajectories of an incoming particle and the re-
flected hole does not exceedskFjd−1, wherej is the super-
conducting coherence length andkF is the Fermi wave vec-
tor. Generally, small deviations from exact backscattering
come from interaction of electron and hole waves with an
inhomogeneity in spatial distribution of the order-parameter
phase. For example, such deviations can be caused by the
transverse force on particles and holes from the
supercurrent4,5 induced by a magnetic field.

Although the deviations from the exact backscattering are
small, they become noticeable if the divergence between the
particle and hole trajectories is comparable with the size of
the system involved. The exemplary device where such a
condition is achieved is a ballistic quantum point contact
having the form of a narrow channelsconstrictiond between
the two superconductor electrodes. In the present Brief Re-
port we show that breaking down the exact Andreev back-
scattering produces a dramatic change in the low energy
spectrum of quantum contact. The loss of backscattering
mixes the modes passing through the channel with the modes
that do not penetrate inside but are normally reflected from
the channel end. The normal reflections couple the waves
propagating through the channel in the opposite directions,

which leads to formation of a minigap in the energy spec-
trum at a superconducting phase differencep in a way simi-
lar to that for contacts with normal scatterers.6–9 The devia-
tion from backscattering is produced by an exchange, during
the Andreev process, of a Cooper pair momentum induced in
the electrodes by an applied magnetic field. Varying the mag-
netic field one can tune the degree of normal reflection to-
gether with the minigap thus controlling the transport prop-
erties of the contact.

II. MODEL

Shown in Fig. 1sad is the model device that illustrates the
loss of exact backscattering during the Andreev reflection: A
single-mode channel with the radiusa,kF

−1 opens into a
normal semispherical region with the radiusb much larger
than the superconducting coherence lengthj. The normal
region is surrounded by a superconductor which carries the
supercurrent with the momentum"ks. For b@j the quasi-
particle propagation is well described via a trajectory repre-
sentation. Due to the transfer of"ks the Andreev reflected
trajectory deviates from its initial direction4 and can miss the
constriction to experience a normal reflection from the insu-
lating barrier. The trajectory returns to the constriction after
several reflections; this results in coupling of states propagat-
ing through the channel in the opposite directions. The mo-
mentum transfer of"ks deflects a trajectory by an angle
ks/kF and produces its divergence byksb/kF over a distance
b. The probability of normal reflection thus depends on the
ratio of the trajectory divergence to the transverse channel
dimensiona. For a single-mode quantum channel,a,kF

−1,
this ratio becomesksb/kFa,ksb.

In a superconducting point contact, the wave functions for
subgap states decay at distancesb,j, thus ksb,ksj&1.
However, the trajectory divergenceksj /kF is less than the
wavelength, and the trajectory description is not adequate. A
single-mode channel with a radiusa,kF

−1 irradiates an elec-
tronic wave determined by diffraction. Let us consider the
right superconductor occupying a half-spacez.0 and
introduce the spherical coordinatesx=r sinu cosf, y
=r sinu sinf, z=r cosu with the origin at the right channel
outlet. Far from it,r @a, particlelike and holelike wave func-
tions are
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Su±

v± D = r−1e±ikFrSU±

V± D . s1d

The microscopic wave functions vanish at the
superconductor/insulator boundaryu=p /2 which is assumed
specular for simplicity; thus the amplitudesU± andV± can be
expanded in spherical functionsPl,msu ,fd with odd angular
momental. Inside the single-mode channel there are two
particle and two hole waves~e±ikxz with amplitudesu0

± and
v0

±, respectively, corresponding to the momentum projections
±"kz on the z axis. To match the channel modes with the
quasiparticle waves in the superconducting half-space we
note that, for a waveguidea&kF

−1, the radiated/incident dif-
fraction field is exps±ikFrdcosu / r. We now assume that it is
only one mode in the diffraction field, Eq.s1d, proportional
to P1,0=cosu that ideally transforms into the channel mode
u0

±, v0
± without reflections, while all other modesl Þ1 are

normally reflected from the waveguide end without transmis-
sion into the channel. Thus the wave-function amplitudes
have the form

SU±

V± D = P1,0Su0
±

v0
± D + SCu

±

Cv
± D . s2d

The amplitudesCu
± and Cv

± stand for the modes withl Þ1
which experience normal reflections at the channel end. They

are coupled by a normal reflection matrixŘe: Cu
+=ŘeCu

−,

Cv
+=Ř−eCv

−. The functionsCu
±, Cv

± are orthogonal toP1,0:
kP1,0uCu,v

± l=0. The angular brackets denote the angular av-
erage within 0,u,p /2.

We use the Bogoliubov–de Gennes equations

F 1

2m
S− i" = −

e

c
AD2

− EFGu + Dv = Eu, s3d

F 1

2m
S− i" = +

e

c
AD2

− EFGv − D*u = − Ev, s4d

where A is the vector potential of the magnetic fieldB
=Bszdx̂. The gap function has the formD=D0e

isxR+ksRr d or
D=D0e

isxL+ksLr d in the right sleftd superconducting electrode;
xR,L= ±x is the zero-field constant phase in the rightsleftd

electrode with 2x phase difference between them;ksR,L is a
constant wave vector in each electrode. It enters the super-
conducting velocitymvs="ks−s2e/cdA that determines the
difference in the eikonals of particle and hole wave func-
tions, sm/"devs·dr . The magnetic field is screened in the
superconductor at the London lengthl. In the right super-
conductor, for example,vsszd=−s2e/mcdB0lŷe−z/l. Assum-
ing for simplicity l@j we can neglectA in the regionr
,j where the low-energy wave functions are localized:
ksR=s2p /f0dlB0ŷ, wheref0=p"c/ ueu is the flux quantum.
The parameterksj that determines the relative weight of nor-
mal reflections at the channel end isksj,B0/Hcm where
Hcm,f0/ sljd is the thermodynamic critical field. The gap
D0 is suppressed by the magnetic field. However, this does
not change the backscattering properties of Andreev reflec-
tion; we ignore it in what follows.

III. SCATTERING MATRIX

In the normal channel, particlesu0
+ and holesv0

− propagate
in the +z direction while particlesu0

− and holesv0
+ propagate

in −z direction. Using the scheme employed in Ref. 8, we

introduce the scattering matricesŜRse ,x ,ksRd and ŜLse ,
−x ,ksLd that relate the incident and outgoing wave ampli-
tudes, respectively, at the right,z=0, and left,z=−d, ends of
the channel:

Su0
−

v0
+D

R

= ŜRSu0
+

v0
−D

R

, Su0
+

v0
−D

L

= ŜLSu0
−

v0
+D

L

. s5d

Hered!j is the channel length. The wave functions at dif-
ferent ends of the channel have different phase factors:

Su0
±

v0
± D

R

= e±ikzdSu0
±

v0
± D

L

. s6d

The solvability condition of Eqs.s5d and s6d yields

dets1 − eiŝzkzdŜReiŝzkzdŜLd = 0. s7d

For uEu,D0 the matrixŜ is unitary: ŜŜ†=1. Indeed, Eqs.
s3d and s4d conserve the quasiparticle flow

divFu*S− i" = −
e

c
ADu + uSi" = −

e

c
ADu*

− v*S− i" = +
e

c
ADv − vSi" = +

e

c
ADv*G = 0.

Since this flow vanishes deep in the superconductor where
vs=0, it should be zero also in the channel, whenceuu0

+u2

+ uv0
−u2= uu0

−u2+ uv0
+u2 which results inŜŜ†=1. The unitarity im-

plies that those quasiparticles which are scattered normally at
the superconductor surface and the channel end will eventu-
ally return into the channel either as particles or as holes
after certain number of Andreev reflections at the supercon-
ducting side.

We now calculate the matrixŜR explicitly. Consider first
low energies such thatuE+Ess0du,D0 where Ess0d is the
Doppler shift associated with the supercurrent near the plane

FIG. 1. sad A single-mode channel is open to a normal region
swhite semicircled in a contact with a superconductorsgray regiond.
Andreev reflected trajectories deviate from initial direction due to
the transverse pair momentum"ks and experience normal reflec-
tions from the insulator surfacesblackd, which couple right-moving
u+ and left-movingu− states.sbd Asymmetric andscd symmetric
point contacts.
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z=0. We assume, of course,uEss0du,D0. Wave functions de-
caying for z→` at distances of the order ofj obey the
relations

vR
+ = e−i/2sx+ksRr dǎe

+sksRde−i/2sx+ksRr duR
+, s8d

uR
− = ei/2sx+ksRr dǎe

+sksRdei/2sx+ksRr dvR
−, s9d

which couple the electron and hole amplitudes near the chan-
nel endur u!j. Here

ǎe
±sksd = e + ěss0d 7 iÎ1 − fe + ěss0dg2,

j="vF /D0, e=E/D0, anděs= i"vss0d= /2D0. For the left su-
perconductor, similar expressions hold with the replacement
x→−x and ǎ+→ ǎ−.

The Andreev relationss8d ands9d should be applied to the
entire functions with the amplitudesU andV from Eq.s2d at
a hemisphere with a radiusa! r !j where ksr
,ksr sinu sinf!1. Taking the derivatives only of the rap-
idly varying radial exponents in Eq.s1d we obtain

v0
+P1,0+ Ř−eCv

− = e−iw+su0
+P1,0+ ŘeCu

−d, s10d

u0
−P1,0+ Cu

− = eiw−sv0
−P1,0+ Cv

−d, s11d

where

eiw± = e ± es ± iÎ1 − se ± esd2, s12d

es=−1
2jks sinu sinf, and the indexR is omitted. Equations

s10d ands11d are written forx=0, the phase can be recovered

by Ŝsxd=eixsz/2Ŝsx=0de−ixsz/2.
For higher energies, it may happen that the Doppler-

shifted energy exceeds the gap,ue±esu.1, where the sign
depends on the momentum direction and on the sign ofe.
The full Andreev reflection then occurs at a pointr0
,l /cosu where the corresponding Doppler-shifted energy
is equal to the gap energyue±essr0du=1 due to the screening
of vs. In this case, one of the corresponding factors,eiw±, in
Eqs.s10d and s11d should be modified. The new factors can
be found using the WKB approximation forl@j. We do not
present these expressions here.

Since the normal reflection at the channel end is associ-
ated with the momentum transfer,"kF, one can neglect the

energy dependence ofŘ on the scaleD0 and takeŘ=−eiwr

with a constant phase shiftwr which is a reasonable approxi-
mation at least for specular reflection. Solving Eqs.s10d and
s11d for Cu and Cv and then applying the orthogonality
kP1,0uCu,v

− l=0, yields two equations couplingu0
+, v0

− andu0
−,

v0
+ through the matrix

Ŝ=
1

1 − c+c−
* Se−iwrsuc+u2 − 1d eixsc− − c+d

e−ixsc+
* − c−

* d eiwrsuc−u2 − 1d D , s13d

where

c± =
kP1,0s1 − eisw7−w±dd−1P1,0l
kP1,0seiw± − eiw7d−1P1,0l

. s14d

Using eiw+sesd=e−iw−s−esd and applying the transformationf
→p+f in the integral over the angles in Eq.s14d we find

c−
* =c+. For smalles, it is sufficient to take Eq.s12d whence

c+ . eih −
isksjd2kP1,0

2 sin2 u sin2 fle2ih

8kP1,0
2 lsin3 h

, s15d

whereeih=e+ iÎ1−e2. Without ks one hasuc+u= uc−u=1. As a

result, the diagonal components ofŜvanish, thus the +pz and
−pz states are decoupled.

In the diffraction picture, the transitions that couple the
penetrating and nonpenetrating modes are caused by the
angle-dependent Doppler shiftes in Eq. s12d which distorts
the wave fronts of reflected holes as compared to those of
incident particles. The interference of these waves results in
the suppression of the amplitude of the Andreev reflected
wave entering the channel.

IV. RESULTS

Consider first the zero-bias conductance of a normal-
metal/quantum-channel/superconductor junction10 Gs
=se2/p"ds1−uS11u2+ uS12u2d where uS11u2 and uS12u2 are prob-
abilities of normal and Andreev reflection, respectively. We
get for smallksj

Gs =
e2

p"
F2 −

2suc+u2 − 1d2

uc+
2 − 1u2 G

e=0

.
e2

p"
F2 −

1

2
SB0

Hc
D4G .

Here we introduce a fieldHc,Hcm through

B0
2

Hc
2 =

sksjd2kP1,0
2 sin2 u sin2 fl
4kP1,0

2 l
=

sksjd2

20
. s16d

Consider now an asymmetric structure that consists of a
superconducting tip with a curvature radius smaller thanlL
in a contact with a bulk superconductor, see Fig. 1sbd. In this
caseksL=0 while ksR=ksÞ0. On the right end of the chan-

nel the matrixŜR=Ŝse ,x ,ksd is determined by Eq.s13d. On

the left end the matrixŜL=Ŝse ,−x ,0d assumes an Andreev

form ŜL=e−ihe−ixszŝx. The phase shiftkzd−wr drops out and
Eq. s7d yields

s1 − c+
2deih − s1 − c+

*2de−ih = 2sc+
* − c+dcoss2xd. s17d

For ks=0 with c+=eih we obtain a standard gapless
expression11,12e= ±cosx. For a nonzeroks, a minigap opens
in the spectrum. To see this consider Eq.s17d in the limit of
small e andks. We have

e2 = cos2 x + 1
8fsic+ + 1d2 + sic+

* − 1d2ge=0.

Within the leading terms inB/Hc we find

e2 = cos2 x + eg
2, s18d

where the minigap in the spectrum iseg= 1
4sB0/Hcd2. The

spectrum for energies close to ±D0 is not expected to change
qualitatively.

In the case of a symmetric contact shown in Fig. 1scd
the solution of the screening problem yieldsksL=−ksR=−ks.

The spectral equations7d with ŜR=Ŝse ,x ,ksd and ŜL

=Ŝse ,−x ,−ksd reduces to
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sc+ + c+
* d2

4
= cos2 x +

suc+u2 − 1d2

sic+ − ic+
* d2 sin2skzd − wrd. s19d

The spectrum has a gap for nonzeroks. In the limit of low e
and ks, the right-hand side of Eq.s19d can be treated as a
perturbation. We putsuc+u2−1d2.sB0/Hcd4 whereHc is de-
fined in Eq.s16d while sc+−c+

* d2<−4 andsc++c+
* d2/4.e2.

Finally we get Eq.s18d where

eg =
1

2
sB0/Hcd2usinskzd − wrdu. s20d

V. DISCUSSION

Since the wave vectorks&j−1!kF, it induces transitions
only between the modes with close transverse quantum num-
bers. Thus, the predicted effect is more easily seen in a con-
tact transparent only for a few modes. On the contrary, in a
multimode channel, coupling to the reflected modes that
mixes p and −p states has a small weight while transitions
occur mostly between the penetrating modes. In large area
superconductor/normal-metal/superconductor junctions,
these transitions result in an instability of the spectrum ac-
companied by formation of energy bands.1

The minigap calculated here has the same origin as in the
presence of normal scatterers. Note that in a symmetric con-
tact, the gap, Eq.s20d, vanishes for the phase difference
kzd−wr =pn. It is the result of resonant tunneling through a
system of two barriers with equal reflection coefficients. The
transmission probabilityuTu2 through such a system is unity
at the resonance, and the gapeg=1−uTu2 disappears. An

asymmetry in the scattering removes the resonant tunneling
effect, thus a finite gap exists for any phase shiftkzd−wr as
illustrated by Eq.s18d. Similar effects of resonant tunneling
and minigap oscillations as functions ofkzd can also take
place for other mechanisms of normal reflection such as mis-
match in the material parameters, interface barriers, etc.13

The predicted minigap is not small but can reach values of
the order ofD0 for B0,Hcm. It can be monitored by varying
the magnetic field and measuring the Josephson current that
decreases in magnitude and acquires more sinusoidal shape
with the increase in the minigap.9 The minigap affects dy-
namic properties of the contact; in particular, at voltage bias
eV,eg the dc current is suppressed.14 Varying the magnetic
field one can thus observe a transition from the ballistic to
high-resistance behavior of the contact. For simplicity we
assumed specular reflections from both the insulating surface
and the channel end. However, the general arguments on the
loss of backscattering and formation of a minigap in the
energy spectrum of a single-mode contact should hold for an
arbitrary rough surface as well.
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