APPENDICES

APPENDIX A. HIGH-WATER SHORELINE POSITION CHANGE	A1
 APPENDIX B. WAVE TRANSFORMATION NUMERICAL MODELING B1. Wave Model Theoretical Background B2. Spectra Development B3. Directional and Frequency Verification B4. Wave Transformation Compared with Historical Shoreline Change B5. Post-Dredging Wave Transformation Results B6. Pre- and Post-Dredging Difference Plots 	B1 B2 B9 B10 B10 B19 B29 B44
 APPENDIX C. SEDIMENT TRANSPORT NUMERICAL MODELING C1. Initiation of Sediment Motion Under Combined Wave and Current Action C2. Relative Magnitude and Direction of Transport C3. Longshore Sediment Transport Model Results 	
 APPENDIX D. BIOLOGICAL FIELD SURVEY DATA. D1. Sediment Profiling Camera Data. D2. Sample Types, Sample Codes, Coordinates, and Water Depths D3. Hydrolab Data. D4. Sediment Grain Size Data. D5. Infaunal Data 	D1 D2 D52 D52 D62 D67 D73

LIST OF FIGURES

Figure B1-1.	Coordinate and angle convention used for the wave modeling in the present study.	B2
Figure B1-2.	Diagram indicating the effects of refraction and diffraction as waves approach the coastline (from Svendsen and Jonsson 1976)	B4
Figure B1-3.	Example of subgrid development over a borrow pit feature (Kirby and Özkan 1994)	B7
Figure B3-1	East-northeast (22.5°) spectral verification and utilization at WIS 2067	B11
Figure B3-2.	0° spectral verification and utilization at WIS 2067.	B11
Figure B3-3.	East-southeast (-22.5°) spectral verification and utilization at WIS 2067	B12
Figure B3-4.	Southeast (-45°) spectral verification and utilization at WIS 2067.	B12
Figure B3-5.	South-southeast (-67.5°) spectral verification and utilization at WIS 2067	B13
Figure B3-6.	East-northeast (22.5°) spectral verification and utilization at WIS 2069	B13
Figure B3-7.	East (0°) spectral verification and utilization at WIS 2069.	B14
Figure B3-8.	East-southeast (-22.5°) spectral verification and utilization at WIS 2069	B14
Figure B3-9.	Southeast (-45°) spectral verification and utilization at WIS 2069.	B15
Figure B3-10.	South-southeast (-67.5°) spectral verification and utilization at WIS 2069	B15
Figure B3-11.	Northeast (45°) spectral verification and utilization at WIS 2070.	B16
Figure B3-12.	East-northeast (22.5°) spectral verification and utilization at WIS 2070	B16
Figure B3-13.	East (0°) spectral verification and utilization at WIS 2070.	B17
Figure B3-14.	East-southeast (-22.5°) spectral verification and utilization at WIS 2070	B17
Figure B3-15.	Southeast (-45°) spectral verification and utilization at WIS 2070.	B18
Figure B3-16.	South-southeast (-67.5°) spectral verification and utilization at WIS 2070	B18
Figure B4-1.	Wave height (green line on plot) taken from nearshore transect (black line	
	on image) for the east-northeast (22.5E) approach simulation at reference	
	Grid A compared with historical shoreline change rates (black line on plot;	
	1864/68 to 1997)	B19
Figure B4-2.	wave height (green line on plot) taken from hearshore transect (black line	
	on image) for the east (UE) approach simulation at reference Grid A	
	1864/68 to 1997)	B 20
Figure B4-3	Wave height (green line on plot) taken from nearshore transect (black line	020
rigulo Di O.	on image) for the east-southeast (-22.5E) approach simulation at	
	reference Grid A compared with historical shoreline change rates (black	
	line on plot; 1864/68 to 1997)	B20
Figure B4-4.	Wave height (green line on plot) taken from nearshore transect (black line	
-	on image) for the southeast (-45E) approach simulation at reference Grid	
	A compared with historical shoreline change rates (black line on plot;	
	1864/68 to 1997)	B21
Figure B4-5.	Wave height (green line on plot) taken from nearshore transect (black line	
	on image) for the south-southeast (-67.5E) approach simulation at	
	reference Grid A compared with historical shoreline change rates (black	
Figuro D4 6	Ine on piol, 1864/68 to 1997)	BZ1
Figure D4-0.	volve neight (green line on plot) taken nom nearshore transect (Dlack line	
	Grid B1 compared with historical shoreline change rates (black line on	
	plot: 1864/68 to 1997)	B22
	r	

Figure B4-7.	Wave height (green line on plot) taken from nearshore transect (black line	
	on image) for the east (0E) approach simulation at reference Grid B1	
	compared with historical shoreline change rates (black line on plot;	
Figure B4 9	1864/68 to 1997)B22	-
Figure 64-6.	vave height (green line on piot) taken norm hearshore transect (black line	
	reference Grid B1 compared with historical shoreline change rates (black	
	line on plot: 1861/68 to 1997)	2
Figure B4-9	Wave height (green line on plot) taken from nearshore transect (black line	,
riguie D+ 0.	on image) for the southeast (-45E) approach simulation at reference Grid	
	B1 compared with historical shoreline change rates (black line on plot:	
	1864/68 to 1997)	3
Figure B4-10.	Wave height (green line on plot) taken from nearshore transect (black line	
	on image) for the south-southeast (-67.5E) approach simulation at	
	reference Grid B1 compared with historical shoreline change rates (black	
	line on plot: 1864/68 to 1997)	1
Figure B4-11.	Wave height (green line on plot) taken from nearshore transect (black line	
0	on image) for the east-northeast (22.5E) approach simulation at reference	
	Grid B2 compared with historical shoreline change rates (black line on	
	plot; 1864/68 to 1997)B24	ł
Figure B4-12.	Wave height (green line on plot) taken from nearshore transect (black line	
	on image) for the east (0E) approach simulation at reference Grid B2	
	compared with historical shoreline change rates (black line on plot;	
	1864/68 to 1997) B25	5
Figure B4-13.	Wave height (green line on plot) taken from nearshore transect (black line	
	on image) for the east-southeast (-22.5E) approach simulation at	
	reference Grid B2 compared with historical shoreline change rates (black	
	line on plot; 1864/68 to 1997) B25	5
Figure B4-14.	Wave height (green line on plot) taken from nearshore transect (black line	
	on image) for the southeast (-45E) approach simulation at reference Grid	
	B2 compared with historical shoreline change rates (black line on plot;	
	1864/68 to 1997))
Figure B4-15.	wave neight (green line on plot) taken from hearshore transect (black line	
	on Image) for the south-southeast (-67.5E) approach simulation at	
	line on plate 1964/69 to 1007)	
Figuro B4-16	Mayo height (groon line on plots) taken from approximate breaker line)
Figure D4-10.	(black line on images) for the east-pertheast (22.5 degree) and pertheast	
	(45 degree) approach simulations, respectively, compared with historical	
	shoreline change rates (black line on plots: 1864/68 to 1977) for Grid C B27	7
Figure B4-17	Wave height (green line on plots) taken from approximate breaker line	
	(black line on images) for the east (0 degree) and east-southeast (-22.5	
	degree) approach simulations, respectively, compared with historical	
	shoreline change rates (black line on plots; 1864/68 to 1977) for Grid C B27	7
Figure B4-18.	Wave height (green line on plots) taken from approximate breaker line	
-	(black line on images) for the southeast (-45 degree) and south-southeast	
	(-67.5 degree) approach simulations, respectively, compared with	
	historical shoreline change rates (black line on plots; 1864/68 to 1977) for	
	Grid CB28	3

Figure B5-1.	Spectral wave modeling results for post-dredging conditions using an east-northeast (22.5E) approach direction for reference Grid A B29
Figure B5-2.	Spectral wave modeling results for post-dredging conditions using an east
Figure B5-3.	Spectral wave modeling results for post-dredging conditions using an
Figure B5-4.	Spectral wave modeling results for post-dredging conditions using a
Figure B5-5.	Spectral wave modeling results for post-dredging conditions using a
Figure B5-6.	south-southeast (-67.5E) approach direction for reference Grid AB31 Spectral wave modeling results for post-dredging conditions using a 50-yr
Figure B5-7.	northeast storm at reference Grid AB32 Spectral wave modeling results for post-dredging conditions using a 50-yr
Figure B5-8.	hurricane at reference Grid AB32 Spectral wave modeling results for post-dredging conditions using an
Figure B5-9.	east-northeast (22.5E) approach direction for reference Grid B1
Figure B5-10.	(0E) approach direction for reference Grid B1B33 Spectral wave modeling results for post-dredging conditions using an
Figure B5-11.	east-southeast (-22.5E) approach direction for reference Grid B1
Figure B5-12.	southeast (-45E) approach direction for reference Grid B1
Figure B5-13.	south-southeast (-67.5E) approach direction for reference Grid B1B35 Spectral wave modeling results for post-dredging conditions using a 50-yr
Figure B5-14.	northeast storm at reference Grid B1
Figure B5-15.	hurricane at reference Grid B1
Figure B5-16.	east-northeast (22.5E) approach direction for reference Grid B2
Figure B5-17.	(0E) approach direction for reference Grid B2
Figure B5-18.	east-southeast (-22.5E) approach direction for reference Grid B2
Figure B5-19.	southeast (-45E) approach direction for reference Grid B2
Figure B5-20.	south-southeast (-67.5E) approach direction for reference Grid B2
Figure B5-21.	northeast storm at reference Grid B2
Figure B5-22.	hurricane at reference Grid B2
Figure B5-23.	northeast (45 degree) approach direction for reference Grid C
Figure B5-24	east-northeast (22.5E) approach direction for reference Grid C
Figure 85-25	(0E) approach direction for reference Grid C
i iguio 00-20.	east-southeast (-22.5E) approach direction for reference Grid C

Figure B5-26.	Spectral wave modeling results for post-dredging conditions using a southeast (-45E) approach direction for reference Grid C	B42
Figure B5-27.	Spectral wave modeling results for post-dredging conditions using a south-southeast (-67.5F) approach direction for reference Grid C	R42
Figure B5-28.	Spectral wave modeling results for post-dredging conditions using a 50-yr northeast storm at reference Grid C	B43
Figure B5-29.	Spectral wave modeling results for post-dredging conditions using a 50-yr	B43
Figure B6-1.	Wave height modifications caused by potential offshore mining at Resource Areas A1 and A2 for an east-northeast (22.5E) approach direction for reference Grid A	B10
Figure B6-2.	Wave height modifications caused by potential offshore mining at Resource Areas A1 and A2 for an east (0E) approach direction for reference Grid A	B45
Figure B6-3.	Wave height modifications caused by potential offshore mining at Resource Areas A1 and A2 for an east-southeast (-22.5E) approach	DAE
Figure B6-4.	Wave height modifications caused by potential offshore mining at Resource Areas A1 and A2 for a southeast (-45E) approach direction for reference Grid A	Б4Э В46
Figure B6-5.	Wave height modifications caused by potential offshore mining at Resource Areas A1 and A2 for a south southeast (-67.5E) approach direction for reference Grid A	B46
Figure B6-6.	Wave height modifications caused by potential offshore mining at Resource Areas A1 and A2 for a 50-yr northeast storm at reference Grid A	B47
Figure B6-7.	Wave height modifications caused by potential offshore mining at Resource Areas A1 and A2 for a 50-yr hurricane at reference Grid A	B47
Figure B6-8.	Wave height modifications caused by potential offshore mining at Resource Area C1 for an east-northeast (22.5E) approach direction for reference Grid B1	B48
Figure B6-9.	Wave height modifications caused by potential offshore mining at Resource Area C1 for an east (0E) approach direction for reference Grid	B/8
Figure B6-10.	Wave height modifications caused by potential offshore mining at Resource Area C1 for an east-southeast (-22.5E) approach direction for reference Grid B1	B49
Figure B6-11.	Wave height modifications caused by potential offshore mining at Resource Area C1 for a southeast (-45E) approach direction for reference Grid B1	B10
Figure B6-12.	Wave height modifications caused by potential offshore mining at Resource Area C1for a south-southeast (-67.5E) approach direction for	D43
Figure B6-13.	Wave height modifications caused by potential offshore mining at Resource Area C1 for a 50-yr portheast storm at reference Grid B1	B50
Figure B6-14.	Wave height modifications caused by potential offshore mining at Resource Area C1 for a 50-yr hurricane at reference Grid B1	B51
Figure B6-15.	Wave height modifications caused by potential offshore mining at Resource Areas G2 (top and bottom) and G3 for an east-northeast (22.5E) approach direction for reference Grid B2	B51

Figure B6-16.	Wave height modifications caused by potential offshore mining at Resource Areas G2 (top and bottom) and G3 for an east (0E) approach direction for reference Grid B2	DEO
Figure B6-17.	Wave height modifications caused by potential offshore mining at Resource Areas G2 (top and bottom) and G3 for an east-southeast	. DJ2
Figure B6-18.	(-22.5E) approach direction for reference Grid B2 Wave height modifications caused by potential offshore mining at Resource Areas G2 (top and bottom) and G3 for a southeast (-45E)	. B52
Figure B6-19.	Wave height modifications caused by potential offshore mining at Resource Areas G2 (top and bottom) and G3 for a southeast (-45E)	. DUU
Figure B6-20.	Wave height modifications caused by potential offshore mining at Resource Areas G2 (top and bottom) and G3 for a 50-yr northeast storm at reference Grid B2	. D55 В54
Figure B6-21.	Wave height modifications caused by potential offshore mining at Resource Areas G2 (top and bottom) and G3 for a 50-yr hurricane at reference Grid B2	. DJ4 854
Figure B6-22.	Wave height modifications caused by potential offshore mining at Resource Area F2 for a northeast (45°) approach direction for reference	. DO4
Figure B6-23.	Wave height modifications caused by potential offshore mining at Resource Area F2 for an east-northeast (22.5E) approach direction for	. DUU
Figure B6-24.	Wave height modifications caused by potential offshore mining at Resource Area F2 for an east (0E) approach direction for reference Grid	. DDD В56
Figure B6-25.	Wave height modifications caused by potential offshore mining at Resource Area F2 for an east-southeast (-22.5E) approach direction for reference Grid C	. D00
Figure B6-26.	Wave height modifications caused by potential offshore mining at Resource Area F2 for a southeast (-45E) approach direction for reference Grid C	. D00
Figure B6-27.	Wave height modifications caused by potential offshore mining at Resource Area F2 for a south southeast (-67.5E) approach direction for reference Grid C	. DOT
Figure B6-28.	Wave height modifications caused by potential offshore mining at Resource Area E2 for a 50-yr portheast storm at reference Grid C	. D57
Figure B6-29.	Wave height modifications caused by potential offshore mining at Resource Area F2 for a 50-yr hurricane at reference Grid C	. D00
Figure C1-1.	Forces acting on grains resting on the seabed (Fredsoe and Deigaard, 1992) $F_{\rm r} = \text{lifting force}$ $F_{\rm p} = \text{drag force}$ and $W = \text{grain weight}$	C2
Figure C1-2.	Illustration indicating the angle between the apparent bottom current and wave-induced bottom current (Grant and Madsen, 1979)	02
Figure C1-3.	Illustration of a particle on a (a) transverse slope, and on a (b) longitudinal slope.	C6
Figure C3-1.	S_{xy} radiation stress and annual sediment transport potential for existing conditions at Grid A, 22.5° case	. C10
Figure C3-2.	S_{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid A, 22.5° case	.C11

Figure C3-3.	Existing versus post-dredging annual sediment transport potential at Grid A for the 22.5° case.	C12
Figure C3-4.	S_{xy} radiation stress and annual sediment transport potential for existing conditions at Grid A, 0° case	C13
Figure C3-5.	S_{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid A, 0° case	C14
Figure C3-6.	Existing versus post-dredging annual sediment transport potential at Grid A for the 0° case	C15
Figure C3-7.	S _{xy} radiation stress and annual sediment transport potential for existing conditions at Grid A, -22.5° case	C16
Figure C3-8.	S _{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid A, -22.5° case	C17
Figure C3-9.	Existing versus post-dredging annual sediment transport potential at Grid A for the -22.5° case	C18
Figure C3-10.	S _{xy} radiation stress and annual sediment transport potential for existing conditions at Grid A, -45° case	C19
Figure C3-11.	S _{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid A, -45° case	C20
Figure C3-12.	A for the -45° case.	C21
Figure C3-13.	S _{xy} radiation stress and annual sediment transport potential for existing conditions at Grid A, -67.5° case	C22
Figure C3-14.	S _{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid A, -67.5° case	C23
Figure C3-15.	A for the -67.5° case	C24
Figure C3-16.	S _{xy} radiation stress and annual sediment transport potential for existing conditions at Grid A, northeast storm case	C25
Figure C3-17.	S _{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid A, northeast storm case	C26
Figure C3-18.	A for the northeast storm case	C27
Figure C3-19.	S _{xy} radiation stress and annual sediment transport potential for existing conditions at Grid A, hurricane case.	C28
Figure C3-20.	S _{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid A, hurricane case	C29
Figure C3-21.	A for the hurricane case	C30
Figure C3-22.	S _{xy} radiation stress and annual sediment transport potential for existing conditions at Grid B2, 22.5° case	C31
Figure C3-23.	S _{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid B2, 22.5° case	C32
Figure C3-24.	Existing versus post-dredging annual sediment transport potential at Grid B2 for the 22.5° case.	C33
Figure C3-25.	conditions at Grid B2, 0° case	C34
Figure C3-26.	dredging conditions at Grid B2, 0° case.	C35
Figure $C3-27$.	Existing versus post-dreaging annual sediment transport potential at Grid B2 for the 0° case	C36

Figure C3-28.	S _{xy} radiation stress and annual sediment transport potential for existing conditions at Grid B2, -22.5° case	C37
Figure C3-29.	S_{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid B2 -22.5° case	C38
Figure C3-30.	Existing versus post-dredging annual sediment transport potential at Grid B2 for the -22.5° case	C39
Figure C3-31.	S_{xy} radiation stress and annual sediment transport potential for existing conditions at Grid B2 -45° case.	C40
Figure C3-32.	S_{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid B2, -45° case.	C41
Figure C3-33.	Existing versus post-dredging annual sediment transport potential at Grid B2 for the -45° case.	C42
Figure C3-34.	S_{xy} radiation stress and annual sediment transport potential for existing conditions at Grid B267.5° case	C43
Figure C3-35.	S_{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid B267.5° case	C44
Figure C3-36.	Existing versus post-dredging annual sediment transport potential at Grid B2 for the -67.5° case.	C45
Figure C3-37.	S_{xy} radiation stress and annual sediment transport potential for existing conditions at Grid B2, northeast storm case	C46
Figure C3-38.	S_{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid B2, northeast storm case	C.47
Figure C3-39.	Existing versus post-dredging annual sediment transport potential at Grid B2 for the portheast storm case	C48
Figure C3-40.	S_{xy} radiation stress and annual sediment transport potential for existing conditions at Grid B2, burricane case	C40
Figure C3-41.	S_{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid B2, burricane case	C50
Figure C3-42.	Existing versus post-dredging annual sediment transport potential at Grid B2 for the hurricane case	050 C51
Figure C3-43.	S_{xy} radiation stress and annual sediment transport potential for existing conditions at Grid B1, 22.5° case	C52
Figure C3-44.	S_{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid B1, 22.5° case	C53
Figure C3-45.	Existing versus post-dredging annual sediment transport potential at Grid B1 for the 22.5° case	C54
Figure C3-46.	S_{xy} radiation stress and annual sediment transport potential for existing conditions at Grid B1. 0° case	054
Figure C3-47.	S_{xy} radiation stress and annual sediment transport potential for post- dradging conditions at Grid B1. 0° case	055
Figure C3-48.	Existing versus post-dredging annual sediment transport potential at Grid	050
Figure C3-49.	S_{xy} radiation stress and annual sediment transport potential for existing conditions at Grid B1 -22.5° case	C58
Figure C3-50.	S_{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid B1, -22.5° case.	C50
Figure C3-51.	Existing versus post-dredging annual sediment transport potential at Grid	
Figure C3-52.	S_{xy} radiation stress and annual sediment transport potential for existing conditions at Grid B1, -45° case	C60

Figure C3-53.	S_{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid B1 -45° case	C62
Figure C3-54.	Existing versus post-dredging annual sediment transport potential at Grid B1 for the -45° case	C63
Figure C3-55.	S_{xy} radiation stress and annual sediment transport potential for existing conditions at Grid B1 -67.5° case	000
Figure C3-56.	S_{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid B1 -67.5° case	004 C65
Figure C3-57.	Existing versus post-dredging annual sediment transport potential at Grid B1 for the -67.5° case	
Figure C3-58.	S_{xy} radiation stress and annual sediment transport potential for existing conditions at Grid B1, northeast storm case	000 C67
Figure C3-59.	S_{xy} radiation stress and annual sediment transport potential for post- dredging conditions at Grid B1, porthoast storm case	000
Figure C3-60.	Existing versus post-dredging annual sediment transport potential at Grid	000
Figure C3-61.	S_{xy} radiation stress and annual sediment transport potential for existing	009
Figure C3-62.	S_{xy} radiation stress and annual sediment transport potential for post-	
Figure C3-63.	Existing versus post-dredging annual sediment transport potential at Grid	
Figure C3-64.	S_{xy} radiation stress and annual sediment transport potential for existing	
Figure C3-65.	conditions at Grid C_{22} , 45° case. S _{xy} radiation stress and annual sediment transport potential for post-	
Figure C3-66.	Existing versus post-dredging annual sediment transport potential at Grid	C74
Figure C3-67.	C_{22} for the 45° case. S _{xy} radiation stress and annual sediment transport potential for existing	C75
Figure C3-68.	conditions at Grid C ₀ , 22.5° case S_{xy} radiation stress and annual sediment transport potential for post-	C76
Figure C3-69.	dredging conditions at Grid C ₀ , 22.5° case Existing versus post-dredging annual sediment transport potential at Grid	C77
Figure C3-70.	C_0 for the 22.5° case S_{xy} radiation stress and annual sediment transport potential for existing	C78
Figure C3-71.	conditions at Grid C_0 , 0° case S_{xy} radiation stress and annual sediment transport potential for post-	C79
Figure C3-72.	dredging conditions at Grid C ₀ , 0° case Existing versus post-dredging annual sediment transport potential at Grid	C80
Figure C3-73.	C_0 for the 0° case S_{xy} radiation stress and annual sediment transport potential for existing	C81
Figure C3-74.	conditions at Grid C_0 , -22.5° caseS _{xy} radiation stress and annual sediment transport potential for post-	C82
Figure C3-75.	dredging conditions at Grid C ₀ , -22.5° case Existing versus post-dredging annual sediment transport potential at Grid	C83
Figure C3-76.	C_0 for the -22.5° case S_{xy} radiation stress and annual sediment transport potential for existing	C84
Figure C3-77.	conditions at Grid C_{45} , -45° case	C85
0	dredging conditions at Grid C ₄₅ , -45° case.	C86

Figure C3-78. E	Existing versus post-dredging annual sediment transport potential at Grid	
(C_{45} for the -45° case	C87
Figure C3-79. S	S _{xy} radiation stress and annual sediment transport potential for existing	
C	conditions at Grid C ₄₅ , -67.5° case	C88
Figure C3-80. S	S_{xy} radiation stress and annual sediment transport potential for post-	
ů (dredging conditions at Grid C4567.5° case.	C89
Figure C3-81	Existing versus post-dredging annual sediment transport potential at Grid	
() (gaile de de la 1	C ₁ for the -67.5° case	C90
Figure C3-82	S radiation stress and annual sediment transport potential for existing	
1 igule 05-02. 0	S_{xy} radiation stress and annual sediment transport potential for existing	C01
	Conditions at Grid C_0 , nonneast storm case	091
Figure C3-83. 3	S _{xy} radiation stress and annual sediment transport potential for post-	000
(dredging conditions at Grid C ₀ , northeast storm case.	C92
Figure C3-84. E	Existing versus post-dredging annual sediment transport potential at Grid	
(C_0 for the northeast storm case	C93
Figure C3-85. S	S_{xy} radiation stress and annual sediment transport potential for existing	
(conditions at Grid C ₄₅ , hurricane case	C94
Figure C3-86. S	S _{xy} radiation stress and annual sediment transport potential for post-	
J (dredging conditions at Grid C ₄₅ , hurricane case	C95
Figure C3-87	Existing versus post-dredging annual sediment transport potential at Grid	
(iguic 00 07. 1	$C_{\rm res}$ for the burricane case	C06
	Difference between existing and past dredging appuel adiment transport	090
Figure Co-oo. L	Difference between existing and post-dreuging annual sediment transport	007
F: 00.00	potential at Grid A for the northeast storm case.	097
Figure C3-89. L	Difference between existing and post-dreaging annual sediment transport	• • • •
F	potential at Grid A for the hurricane case.	C98
Figure C3-90.	Difference between existing and post-dredging annual sediment transport	
ĥ	potential at Grid B2 for the northeast storm case.	C99
Figure C3-91.	Difference between existing and post-dredging annual sediment transport	
ŗ	potential at Grid B2 for the hurricane case.	. C100
Figure C3-92.	Difference between existing and post-dredging annual sediment transport	
r	potential at Grid B1 for the northeast storm case	C101
Figure C3-93	Difference between existing and post-dredging annual sediment transport	
riguie ee oo. i	potential at Grid B1 for the burricane case	C102
Figure C2 04 F	Difference between existing and past dredging enougl addiment transport	. 0102
Figure C3-94. L	Difference between existing and post-dredging annual sediment transport	0400
F: 00.05	potential at Grid C_0 for the northeast storm case	. 0103
Figure C3-95. L	Difference between existing and post-dredging annual sediment transport	
ĥ	potential at Grid C ₄₅ for the hurricane case	. C104
Figure D1-1.	Hulcher Sediment Profile Camera and standard surface camera. Prism	
f	face plate is 15-cm wide.	D3
Figure D1-2. H	Hulcher sediment profile camera diagram	D4
Figure D1-3.	Habitat classes from Sand Resource Areas A1 and A2, Spring 1998	D29
Figure D1-4.	Habitat classes from Sand Resource Areas G1. G2. and G3. Spring 1998	D30
Figure D1-5	Habitat classes form Sand Resource Area C1, Spring 1998	D31
Figure D1-6	Habitat classes from Sand Resource Areas F1 and F2. Spring 1998	D32
Figure D1-7	Habitat class from Adjacent Station 1 Spring 1998	-22D
Figure D1 9	Habitat class from Adjacent Station 7, Spring 1990.	D33
Figure D1-0.	Habitat class from Aujacetic Station 2, Spilling 1990.	U34
Figure D1-9. 1	mabilal classes from Sand Resource Areas A1 and A2, Fall 1998	D35
Figure D1-10.	Habitat classes from Sand Resource Areas G1, G2, and G3, Fall 1998	D36
Figure D1-11.	Habitat classes from Sand Resource Area C1, Fall 1998	D37
Figure D1-12. H	Habitat classes from Sand Resource Areas F1 and F2, Fall 1998	D38
Figure D1-13. H	Habitat class from Adjacent Station 1, Fall 1998	D39
Figure D1-14. H	Habitat class from Adjacent Station 2, Fall 1998	D40

Figure D1-15.	Area A1, Image A1-13-2b, May 1998. Anemone dragged down into the sediments by the camera prism; its tube is visible at the sediment-water interface	741
Figure D1-16.	Area A1, Image A1-01-1b, May 1998. Infaunal polychaete with visible segmentation (enhanced by unsharp mask filtering)	D42
Figure D1-17.	Area C1, Image C1-04-1b, September 1998. Live mussels in sandy gravel with signs of decomposing buried organic material, and a crab on the surface.	זער
Figure D1-18	Area C1 Image C1-04-2b September 1998 Mussel shells in sandy	545
rigulo Di To.	gravel with an organic surface layer. Tick marks are spaced at 1cm	D44
Figure D1-19.	Area F1, Image F1-03-3b, September 1998. Large Diopatra tube and	
F : D (00	organic surface layer. Tick marks are spaced at 1 cm.	D45
Figure D1-20.	Area F2, Image F2-06-1b, May 1998. Large clam (probably Spisula;	
	gravely coarse sand. Tick marks (upper left) are spaced at 1 cm.	746
Figure D1-21.	(a) Area G1, Image G1-03-1a, May 1998 above, and (b) Area G2, Image	
-	G2-04-2b below. Small tubes of the polychaete Diopatra cuprea. Tick	
F : D (00	marks are spaced at 1 cm	D47
Figure D1-22.	Area G1, Image G1-02-2b, September 1998. Tubes of the polychaete	אר
Figure D1-23.	Area G2. Image G2-08-2b. September 1998. Sand clasts on the sediment	540
	surface. Tick marks are spaced at 1 cm	D49
Figure D1-24.	Area G3, Image G3-02-1b, May 1998. Black sediment grains,	
E	approximately 0.25 to 0.5 mm diameter.) 50
Figure D1-25.	dollars partially buried	D51

LIST OF TABLES

Table A1-1.	High-Water Shoreline Position Change	A2
Table D1-1.	Explanations for key terms used in Tables D1-2 and D1-3	. D12
Table D1-2.	Sediment profile image analysis data for the May 1998 Survey 1 and	
	September 1998 Survey 2 offshore New Jersey.	. D15
Table D1-3.	Sediment surface image analysis data for the May 1998 Survey 1 and	
	September 1998 Survey 2 offshore New Jersey.	. D24
Table D1-4.	Figure Key: Habitat classifications as predicted from discriminant analysis	
	of sediment profile image data from May and September, 1998; New	D 00
Table D2 1	Jersey Sand Resource Areas.	. D28
	1008 Survey 1	D52
Table D2-2	Sample types sample codes coordinates and water denths for the	. DʻʻJZ
	Sentember 1998 Survey 2	D58
Table D3-1	Temperature salinity dissolved oxygen (DO), and depth data recorded	. 000
	during the May 1998 Survey (S1) at Sand Resource Areas A1, A2, C1.	
	F2, G2, and G3 offshore New Jersey	. D62
Table D3-2.	Temperature, salinity, dissolved oxygen (DO), and depth data recorded	
	during the September 1998 Survey 2 (S2) at Sand Resource Areas A1,	
	A2, C1, F2, G1, G2, and G3 offshore New Jersey	. D64
Table D4-1.	Sediment grain size data for samples collected during the May 1998	
	Survey 1 in the eight sand resource areas (Areas A1, A2, C1, F1, F2, G1,	
	G2, and G3) and three adjacent stations (R1, R2, and R3) offshore New	D 0 -
	Jersey	.D67
Table D4-2.	Sediment grain size data for samples collected during the September	
	F2 G1 G2 and G2) and three adjacent stations (P1 P2 and P2)	
	offshore New Jersey	D71
Table D5-1	Phylogenetic list of infauna collected during May 1998 Survey 1 and	. 07 1
	September 1998 Survey 2 in the eight sand resource areas offshore New	
	Jersev	. D73
Table D5-2.	Infaunal assemblage summary parameters for the May 1998 Survey 1 in	
	the eight sand resource areas (Areas A1, A2, C1, F1, F2, G1, G2, and	
	G3) and three adjacent stations (R1, R2, and R3) offshore New Jersey	. D79
Table D5-3.	Infaunal assemblage summary parameters for the September 1998	
	Survey 2 in the eight sand resource areas (Areas A1, A2, C1, F1, F2, G1,	
	G2, and G3) and three adjacent stations (R1, R2, and R3) offshore New	Doo
Table DE 1	Jersey	. D80
Table D5-4.	Numbers of taxa occurring in Infaunal samples collected during the May	
	F2 G1 G2 and G3) and three adjacent stations (R1 R2 and R3)	
	offshore New Jersev	D82
Table D5-5	Numbers of taxa occurring in infaunal samples collected during the	. 202
	September 1998 Survey 2 in the eight sand resource areas (A1. A2. C1.	
	F1, F2, G1, G2, and G3) and three adjacent stations (R1, R2, and R3)	
	offshore New Jersey.	. D83

Table D5-6.	Numbers of individuals occurring in infaunal samples collected during the May 1998 Survey 1 in the eight sand resource areas (Areas A1, A2, C1, F1, F2, G1, G2, and G3) and three adjacent stations (R1, R2, and R3) offshore New Jersey.	D85
Table D5-7.	Numbers of individuals occurring in infaunal samples collected during the September 1998 Survey 2 in the eight sand resource areas (Areas A1, A2, C1, F1, F2, G1, G2, and G3) and three adjacent stations (R1, R2, and R3) offshore New Jersey.	D86