The research program of the Center for Economic Studies (CES) produces a wide range of theoretical and empirical economic analyses that serve to improve the statistical programs of the U.S. Bureau of the Census. Many of these analyses take the form of CES research papers. The papers are intended to make the results of CES research available to economists and other interested parties in order to encourage discussion and obtain suggestions for revision before publication. The papers are unofficial and have not undergone the review accorded official Census Bureau publications. The opinions and conclusions expressed in the papers are those of the authors and do not necessarily represent those of the U.S. Bureau of the Census. Republication in whole or part must be cleared with the authors.

PRIMARY VERSUS SECONDARY PRODUCTION TECHNIQUES IN U.S. MANUFACTURING

By
Joe Mattey
Federal Reserve Bank of San Francisco

Thijs ten Raa
Tilburg University The Netherlands

CES 94-12 October 1994

All papers are screened to ensure that they do not disclose confidential information. Persons who wish to obtain a copy of the paper, submit comments about the paper, or obtain general information about the series should contact Sang V. Nguyen, Editor, Discussion Papers, Economic Planning and Coordination, Center for Economic Studies, Room 1587, FB 3, Bureau of the Census, Washington, DC 20233-6101, (301-763-2065) or INTERNET
address snguyen@info.census.gov.

Abstract

In this paper we discuss and analyze a classical economic puzzle: whether differences in factor intensities reflect patterns of specialization or the co-existence of alternative techniques to produce output. We use observations on a large cross-section of U.S. manufacturing plants from the Census of Manufactures, including those that make goods primary to other industries, to study differences in production techniques. We find that in most cases material requirements do not depend on whether goods are made as primary products or as secondary products, which suggests that differences in factor intensities usually reflect patterns of specialization. A few cases where secondary production techniques do differ notably are discussed in more detail. However, overall the regresssion results support the neoclassical assumption that a single, best-practice technique is chosen for making each product.

Keywords: technology, specialization, economic classification

This paper presents the authors' own views, not those of the Census Bureau or the Federal Reserve System. The bulk of the research was completed while Mattey was at the Board of Governors of the Federal Reserve and a Research Associate at the Center for Economic Studies (CES). We thank seminar participants at the CES, Federal Reserve Bank of Chicago, and WEA International meetings in Vancouver, Canada for helpful comments.

I. INTRODUCTION

In this paper we discuss and analyze a classical economic puzzle: whether differences in factor intensities reflect patterns of specialization or the co-existence of alternative techniques to produce output. If specialization is the principal explanation of differences in factor intensity, then why is there so much joint production--the make of multiple goods by a single producing unit? In other words, why is not each good produced according to a single best-practice technique? Conversely, if a multiplicity of techniques is the principal explanation of differences in factor intensities, then how can this phenomenon be reconciled with the implication of cost minimization that all producers choose the most efficient technique?

This issue is central to many applications of regional economics and international trade theory. For example, the traditional Hecksher-Ohlin trade-theory explanation of labor- versus capital-intensive modes of production is that economies favor relatively abundant factor inputs. Equilibrium differences in factor intensities are explained by patterns of specialization in final goods and services. Per commodity, the co-existence of multiple techniques is not admitted.

In practice, patterns of specialization seldom conform to the sharp implications of such theory; specialization is not complete. To prevent such obvious contradictions, applied trade models often posit differences between seemingly identical commodities, either in terms of their price or perceived quality. ${ }^{1}$ Alternatively, trade models following the Ricardian tradition

[^0]consider differences of technologies as exogenous and exploit them to determine comparative advantages. The co-existence of multiple techniques is taken as given, without explanation.

Distinguishing between the alternative explanations of existing patterns of factor intensity--specialization or differences in production techniques--also confronts us at the level of measurement. Inputs are not reported by product or activity separately; the micro reporting units generally are conglomerates of production activities, establishments or legal forms of organization such as corporations. Moreover, applied studies generally use more aggregative data. The traditional approach to aggregation is to classify reporting units into sectors, $j=1, \ldots, n$ and to label the commodities primarily associated with these sectors accordingly. In national accounts, the inputs of all commodities to sector j are listed in column vector $u_{. j}$, and the make of all commodities by sector j is given in the row vector v_{j}. (U.N., 1993). Many of the off-diagonal elements of the corresponding make matrix V are non-zero. In considering perturbations of the patterns of production of final goods--changes in row vectors of the make matrix--a modeller needs to decide whether analysis can proceed on an element-by-element basis; alternatively, if this form of separability cannot be imposed, one must specify the nature of joint production.

Typically, jointness in production is ignored, and modellers adopt the commodity-technology assumption that the requirements for intermediates depend just on the commodity being made, not on what else is being produced at the same location. ${ }^{2}$ To apply the commodity technology assumption, one assumes that a technical coefficient $a_{i j}$ represents the requirements for commodity i
${ }^{2}$ For example, in the applied general-equilibrium model Lopez-de-Silanes, Markusen and Rutherford (1992) use to study the effect of a North American Free Trade Agreement on the motor vehicle industry, the intermediate input requirements of motor vehicle producers are assumed to just depend on whether they are making finished goods or parts (of two varieties), not on whether the production of finished vehicles and parts occurs jointly. More generally, the Social Accounting Matrices (SAMs) used to calibrate applied general equilibrium models (Reinert, Roland-Holst and Shiells (1993)) adopt this "commodity technology" assumption; see Pyatt (1992) for an explication of why the validity of the commodity technology assumption is critical in this context.
per unit of commodity j. Summing across the outputs $v_{j k}$ of sector j of commodities k, the overall requirements for the i-th input are $\mathrm{E}_{\mathrm{k}} a_{i k} \mathrm{v}_{\mathrm{jk}}$. Equating observed inputs, $u_{i j}$, to requirements yields, given obvious matrix notation, $A V^{\prime}=U$, where the superscript denotes transposition. If the matrices are square (the number of commodities equals the number of sectors), this equation can be solved for the commodity-specific input-coefficients A. Distinguishing between specialization and differences in production techniques as explanations for factor intensity is important to applied general equilibrium modelling; if the commodity technology assumption is invalid and techniques do differ, the predicted patterns of use will diverge from actual patterns.

With aggregative data, the ability to test the commodity technology assumption is limited. In fact, if the information on patterns of use and make are restricted to a single point in time, both the commodity technology assumption and the theoretically inferior alternatives critiqued by Kop Jansen and ten Raa (1990) will fit the base-year data exactly, leaving no over-identifying restrictions to be tested.

In this paper we provide a stochastic framework for the measurement of production techniques, a framework that nests the commodity technology assumption and alternatives that allow for significant jointness of production. Instead of aggregating the reporting units--manufacturing plants--into sectors, we analyze the plant-level data. The micro data give us extensive variation in product mix and intermediate use; by simply regressing plant input on the whole vector of plant outputs, we investigate whether differences in factor intensities reflect patterns of specialization or the co-existence of alternative techniques to produce output. In terms of the above notation, we calculate the coefficients per material input for all products simultaneously; i.e, the estimation of input-coefficients is row by row, using the $i-t h$ row of the above equation, $u_{i}=a_{i} . V^{\prime}$.

In summary, we offer three contributions to the literature. First, we improve upon the traditional procedure of measuring technical coefficients
from sectoral aggregates by allowing aggregation principles to be determined by the micro data. Second, by using raw data (reports from 96,515 U.S. manufacturing plants) we have a sound statistical basis for quantifying the accuracy of technical coefficient estimates; this lets us, for example, evaluate the so-called problem of negatives associated with the solution to the aggregate equation $A V^{\prime}=U$. Last, but not least, we test for the co-existence of differing production techniques.

II. DATA AND ESTIMATION METHODS

To avoid the trap that variation of input intensities reflects specialization rather than a technical phenomenon, the definition of products must be disaggregated enough to render insignificant the concept of further specialization. We attempt to achieve product homogeneity by following the detailed U.S. benchmark input-output (I/O) table commodity classification system and the Census product code extensions of the U.S. Standard Industrial Classification (SIC) system. Specifically, each I/O sector is associated with a group of SIC industries, and each I/O commodity is associated with a list of Census products. For now, Census products are assumed to be homogeneous if they belong to the same I/O commodity category. This assumption seems modest, since there are hundreds of I / O commodities, and we do not aggregate them. For each product, a dichotomy of producers is maintained. To one set of producers, the make of the product is considered primary output and to the other set it is considered secondary output. Under the commodity technology assumption, this dichotomy into primary production--the make of the product characteristic to the sector--and secondary production--the make of products characteristic to other sectors--has no special significance. However, we adopt the primary-secondary dichotomy in order to give our test of the commodity technology assumption power against likely alternatives. In other words, we assume that if a multiplicity of techniques really does exist, that
the choice of techniques is likely to be highly correlated with the primary/secondary split.

For each material input, the observations are the consuming plants. Mattey (1993) analyzed patterns of intermediate use for the subset of pure plants with no secondary production (table 1, line 8) to focus on the role of data truncation and errors of measurement in the problem of negatives. Because we are interested in possible differences in techniques, we also include the producers of secondary products (table 1, line 9). About 10 percent of the manufacturing plants report some secondary production, but because these manufacturers tend to be larger than average, about 46 percent of overall materials use occurs in plants with some secondary production. When secondary production is present in a plant, it tends to comprise a significant portion of a plant's activities; about 11 percent of all manufacturing output is secondary production. ${ }^{3}$

With regard to the decision of how many materials to study, we chose to focus on the 71 commodities used significantly as intermediates in manufacturing. ${ }^{4}$ For each of these 71 commodities (i), the null hypothesis of a commodity technology relation is represented in equations of the following form:

$$
\begin{equation*}
u_{i m}=a_{i 1} V_{m 1}+a_{i 2}+V_{m 2}+\cdots+a_{i 370} V_{m 370} \tag{1}
\end{equation*}
$$

Here, $u_{i m}$ is the use of material (i) by a plant (m). There are 370 manufacturing products in the I / O system, and the make of each of these

[^1]products by the plant is denoted by the variables $V_{m 1}$ through $V_{m 370}$. The unknown commodity technology coefficients $a_{i 1}$ through $a_{i 370}$ do not depend on the manufacturing plant or its industry affiliation. Thus, for estimating the unknown coefficients for use of material (i) we can stack the observations for all reporting plants in all manufacturing industries into an equation:
\[

$$
\begin{equation*}
\underline{u}_{i}-a_{i 1} \underline{v}_{1}+a_{i 2} \underline{v}_{2}+\ldots+a_{i 370} \underline{V}_{370} \tag{2}
\end{equation*}
$$

\]

where \underline{u}_{i} and \underline{v}_{1} through \underline{v}_{370} are now vectors with components representing the use or make entries for unique manufacturing plants. ${ }^{5}$ Data is available for the 96,515 manufacturing plants that report some specified materials use in 1982 (table 1). Thus, in principle the vectors in equation (2) have 96,515 elements. However, not all plants in all industries are asked about the use of every type of material, so no particular material input regression has this many observations.

To illustrate the scope of the dataset with regard to types of materials, table 2 lists the sectors in which the materials under study are produced as primary products. The analysis covers a wide range of materials. We study the use of particular agricultural materials such as dairy farm products. We also analyze the available reports on the use of mining materials such as copper ores, processed foods such as packed meat, and various textiles, wood, and paper materials. There are several chemicals, plastics and petroleum materials. We also study the use of manufactured materials such as stone, clay and glass and metals. Only a few equipment components and parts are included in the dataset.

To illustrate the scope of the dataset with regard to the identity of the users of the materials, table 3 lists the industry availability of reports on specified materials use of selected commodities. The use of dairy farm
${ }^{5}$ The column-vector \underline{u}_{i} of equation (2) is specified by the corresponding row of the use matrix U, and \underline{v}_{1} through \underline{V}_{370} are specified by the columns of the make matrix V.
products is reported by plants in five manufacturing industries, those which produce butter, cheese, condensed milk, ice cream, and fluid milk. The plants in these five industries make a variety of products, including those primary to twenty-five other industries, which are as diverse as cereal breakfast foods and manufactured ice. Correspondingly, for this first material, indexed by the subscript $i=1$, equation (2) has a vector of observed dairy products use as the left-hand-side variable, and there are thirty right-hand-side variables describing the product composition of these plants, five for the primary products and twenty-five for the secondary products. The commodity technology equations (2) explaining the use of copper ores, meat packing plant products, or other materials have a similar form: observations on use of the materials by plants in several industries are explained by the wide-ranging product composition of these plants.

III. PRIMARY VERSUS SECONDARY PRODUCTION TECHNIQUES

In fact, the most natural division of plants to test for differences in technical coefficients is between primary and secondary producers. So, in the estimation we focus on a subset of material-product combinations for which it is possible to estimate requirements for make as a primary product, a^{p}, separately from the requirements for make as a secondary product, a^{s}. Our regression equations are a less restrictive form of equation (2):

$$
\begin{equation*}
\underline{u}_{i}-a_{i 1}^{p} \underline{v}_{1}^{p}+\ldots+a_{i 370}^{p} \underline{V}_{370}^{p}+a_{i 1}^{S} \underline{v}_{1}^{S}+\ldots+a_{i 370^{+} \underline{V}_{370}^{S}}^{s}, \tag{3}
\end{equation*}
$$

where the superscripts p and s on v_{1} through v_{370} now index primary and secondary production of the specific commodities indexed 1 through 370 . This dichotomy is useful for investigating whether multiple production techniques are present. If techniques do differ substantially across manufacturing plants, it is likely that the distribution of techniques will be correlated with the product mix.

Table 4 summarizes the distribution of regression summary statistics. Estimates are computed from 71 separate OLS regressions, one regression for each of the materials. ${ }^{6}$ The goodness-of-fit tends to be quite high; only about 5 percent of the regressions explain less than 50 percent of the variation in materials use, and most of the regressions explain more than 80 percent of the variation.

The number of products of material users ranges from a low of 5 products in the regression explaining the use of sugar to a high of 205 products in the regression explaining the use of rolled or drawn copper. Most regressions reflect the make of 84 or more products. There are at least 27 manufacturing plant observations in each regression. Most regressions attempt to explain the use by more than 934 manufacturing plants of a specific material. The high numbers of observations facilitates estimation and testing of technologies and their differences.

As shown in table 5, the estimates of requirements for make as a primary product generally are in the expected range from zero to one, with less than 5 percent clearly negative and statistically significant at the five percent significance level. The estimates of requirements for make as a secondary product are a bit more imprecise and wide-ranging. A bit more than 5 percent of the estimates are significantly negative, suggesting that there are a few secondary production techniques that use fewer of these specified materials than the use in primary production. Also, about 4-1/2 percent of the estimated requirements for secondary production exceed one, whereas very few of the estimated requirements for primary production exceed this upper threshold.

To more fully quantify the extent to which secondary production techniques really do tend to differ, we also have computed the difference

[^2]between the parameter estimates and scaled the difference by its conventional standard error. This t-statistic for the difference between primary and secondary production requirements is significantly negative in about 7 percent of the cases and is significantly positive in another 10 percent of the cases (final column of table 5). In all, there is no evidence of a significant difference between primary and secondary production techniques in about 83 percent of the 1073 material-product combinations we tested. Thus, in the vast majority of cases, the results support the common assumption that material requirements for a product are not dependent on whether this production is the modal activity of a manufacturing plant.

The conclusion that techniques are mostly uniform across primary and secondary production is strengthened when the cases of different techniques are examined more closely. The 17 percent of the cases where material-product coefficients are different will be broken down into three, roughly equal subgroups. In one-third of these cases, the differences can be ascribed to possibly improper aggregation in the original tests. In a second third, the further examination is inconclusive due to insufficient reporting of the data needed for additional tests. Only in the remaining third, that is 6 percent of all the material-product combinations, do differences in primary and secondary production techniques withstand the tests with alternative specifications and, therefore, can be said to be indigenous. This share is low enough to be ascribed to measurement error. In other words, with regard to materials use, the neoclassical assumption that a single, best-practice technique is chosen for making each product is a good one for U.S. manufacturing.

The examination of the material-product combinations that have different proportions in primary versus secondary production proceeds as follows. The specification issues that could cause false rejections of the homogeneity test concern the use of produced-and-consumed materials and too much or too little aggregation of data on products and materials. Too much aggregation of
products could lead us to infer that technical coefficients differ, when really they only differ because of product diversity within the primary product group. Too little aggregation of materials could create apparent differences in technical coefficients that really only reflect the use of close substitute materials that, for most purposes, could just as well have been included in the original analysis. Under-reporting of own-materials use arises if the analysis is restricted to purchased materials. In all these cases, our original tests will lead to a rejection of homogeneity if there are significant differences between primary and secondary producers in the extent of underlying product diversity, use of close substitute materials, or use of own-materials. ${ }^{7}$

We use additional information, where available, to resolve these specification issues (table 6). In slightly over two-thirds of the material-product combinations with the appearance in our baseline results of differences in primary and secondary production techniques, we have the information needed to account for product diversity, use of close substitute materials, or use of own-produced materials. The analyses of each of these sources of heterogeneity in the original results are presented below. In each case, we estimate additional regressions for the testable portion of the 17 percent (190 cases) of material-product combinations that failed the original t-test. ${ }^{8}$ Our results are summarized in table 6 , which offers a four-way classification of the apparent differences into product diversity, use of close substitute materials, use of own-produced materials, or the residual unexplained category.

[^3]To summarize these results, underlying product diversity explains 28 percent of the original 190 findings of heterogeneity. Use of close substitute materials explains 8 percent, and use of produced-and-consumed materials explains 12 percent of the original findings of heterogeneity. A bit over one-third (37 percent) of the differences are explained (eliminating the double-counting that could arise because more than one explanation could be applicable). In 35 percent of the cases, the rejection of the t-test is still there under all tested explanations. The remainder of 28 percent is not testable. ${ }^{9}$

The first explanation of differences is the common one of inappropriate aggregation. Because sectoral definitions are not chosen strictly according to the supply-side criterion of material-input homogeneity, products with differing material requirements still can be aggregated into a commodity that is classified as primary to a single sector (Triplett (1992)). If the distributions of these more specific products differs across primary and secondary producer, estimation at the more aggregative level, as in equation (3), can lead to the appearance of heterogeneity in production techniques. In principle, further disaggregation can be used to identify this source of technical difference.

To identify cases in which the apparent difference in primary and secondary production techniques is explained by product heterogeneity among the products classified as primary to the same sector, we modify equation (3) by further disaggregating the explanatory variables that gave rise to the
${ }^{9}$ For product diversity, the explanation is not testable if there are not enough plants that report the make of the more disaggregate products; such additional detail must be available for both primary and secondary producers, but often the secondary producers specialize in a single product class. For the use of close substitute materials,the explanation is not testable if the questionnaires on materials use do not ask about close substitutes (other materials in the 3 -digit class)in both the industry where production is primary and the industries where production is secondary. For the use of own-produced materials, the explanation is not testable unless such activity is reported by both primary and secondary producers.
finding of heterogeneity in techniques. ${ }^{10}$ If the significant differences between primary and secondary production techniques get resolved by further disaggregation, we count the case as an instance explained by product diversity among primary products. As shown in table 6, about two-thirds of the cases can be tested for underlying product diversity. Of these, 53 material-product combinations no longer reject the test of homogeneity between primary and secondary production techniques. In other words, in 28 percent of the cases where we originally found an apparent difference, primary and secondary production techniques did look similar at a more disaggregate product level; this 28 percent of the differences between techniques is ascribed to underlying product diversity.

Too much disaggregation of materials also can create problems in interpreting the regression estimates of equation (3), yielding the second explanation of technical difference. For example, there are separate sectors for primary production of fluid milk and of condensed or evaporated milk. Clearly, in the production of many foodstuffs these materials are close substitutes. For some analytical exercises--such as deriving the total requirements for the products of dairy farms in producing a specified level of particular foods--any difference between primary and secondary producers in the form in which milk is consumed as a material will be inconsequential.

To identify cases in which the apparent differences in techniques can be explained by very close substitutability of the materials, we aggregate close substitute materials and re-do the test at the more aggregative levels. ${ }^{11}$ As

[^4]shown in the second grouping of rows in table 6, some use of similar delivered materials is reported by only enough respondents to apply this test to 20 percent of the cases. Of these, 16 cases, or 8 percent of the total 190 rejections, no longer indicate a difference between primary and secondary production techniques.

A third explanation pertains to the accounting convention of recording in I/O tables the use of only those materials that have been produced at another establishment. Because the convention that a transfer of commodities must have taken place also is adopted in the definition of production, the chosen method of recording materials use preserves the material balance accounting identity that all production must be used as an intermediate or by final demand. Materials that are produced and consumed at the same establishment are not recorded in traditional measures of materials use, and, thus far, such materials also have been omitted from the measures used in the regression estimates of materials requirements. ${ }^{12}$ To investigate the extent to which the omission of produced-and-consumed materials has introduced the appearance of heterogeneity, we also have estimated equation (3) under the broader definition of materials, that is including self-supplied inputs. ${ }^{13}$

As shown in the third group of rows in table 6, some use of produced and consumed materials is reported by enough respondents to test this explanation for about 22 percent of the cases. Of these, 23 cases no longer reject the test of similarity. In other words, about 12 percent of all of the initial rejections can be resolved by the incorporation of the use of produced-and-consumed materials. Many of these are cases in which

[^5]requirements for delivered materials are lower for secondary producers. Apparently, there is some tendency for the simultaneous production and consumption of materials to occur in conjunction with secondary production.

Table 7 gives selected specific examples of these classifications which help explicate the results. For example, the original estimates of equation (3) revealed that the use of feed grains to make pet foods is much higher when the make of pet foods occurs as primary production. However, the additional regressions showed that this was due to product diversity within the pet food category. The more disaggregated product categories distinguish between ``dog and cat food'' and ' 'other pet and specialty feeds''. Dog and cat food tends to use less feed grains than other pet and specialty feeds. Further disaggregation was able to reveal that the initial rejection reflected a difference in product composition, not a difference between primary and secondary production techniques.

As a second example, note that the requirements for packed meat products to make packed meat initially appeared to be higher for primary producers than secondary producers. Further inspection revealed that there no longer was an appearance of difference if either a broader definition of materials was used or if produced-and-consumed materials were counted as materials use.

IV. CONCLUSION

Simplified neoclassical models, under the law of one price and equal access to technology, imply that best practice techniques are adopted for all products by all producing establishments. In terms of a commodity technology model, technical coefficients are equalized. Any differences in factor intensities must reflect patterns of specialization rather than differences in production techniques. With regard to materials use, this paper lends support to this postulate.

Using raw data reports from almost 100,000 U.S. manufacturing plants, technical coefficients have been estimated and tested. The problem of negative coefficients in the presence of secondary production appeared to be
significant in only about 5 percent of the material-product combinations. Moreover, after further testing, we find that in only about 6 percent of the cases (which is 35 percent of the initial rejections) the difference between primary and secondary coefficients withstands further scrutiny. In other words, generally we find that material requirements do not depend on whether the goods are made as primary products or as secondary products. Differences in factor intensities tend to reflect patterns of product specialization, not the co-existence of alternative techniques to produce output.

Table 1

Coverage of Specified Materials Use in the 1982 Census of Manufactures

	Number Plants	Percent	Amount of Materials ${ }^{a}$	Percent
1. Total Manufacturing	348,385	100	990,060	100
2. Nonreporters	251,870	72	149,881	15
3. Not required	135,042	39	29,168	3
4. Noncompliance ${ }^{\text {b }}$	116,828	34	120,713	12
5. Reporters	96,515	28	840,179	85
6. Materials n.e.c. ${ }^{\text {c }}$			180,094	18
7. Specified materials			660,085	67
Memo:				
8. Pure plants reporting ${ }^{\text {d }}$	62,757	18	384,554	39
9. Other plants reporting	33,758	10	455,624	46

a. Millions of dollars of materials purchased and consumed. Excludes materials produced and consumed.
b. For plants in industries asked to report specified materials use, includes non-administrative-record plants with materials use explicitly coded as n.s.k. and plants with only a positive balancing record in the detailed materials records.
c. Also includes some unknown amount of materials of the types specified by kind but not reported under specified materials because the amount consumed was less than a censoring threshold, typically 10,000 dollars.
d. Pure plants make only primary products (I/O basis). Miscellaneous receipts are excluded from our calculation of this degree of specialization, but less than half of a pure plant's total receipts are allowed to come from miscellaneous activities.

Table 2

List of Sectors Producing Materials under Study

Material-producing Sector		Material-producing Sector
Sector Description		Sector Description
AGRICULTURAL MATERIALS		
	Dairy farm products	9 Tobacco
	Poultry and eggs	10 Fruits
3	Meat animals	12 Vegetables
5	Cotton	13 Sugar crops
6	Food grains	15 Oil bearing crops
7	Feed grains	19 Commercial fishing
MINING MATERIALS		
23	Copper ore mining	28 Sand and gravel mining
26	Crude petroleum and natural gas	29 Clay, ceramic, and refractory minerals mining
27	Dimension, crushed and broken stone mining	30 Nonmetallic mineral services and misc. minerals
FOOD AND TOBACCO MATERIALS		
91	Meat packing plants	120 Chewing gum
97	Condensed and evaporated milk	122 Malt
99	Fluid milk	124 Distilled liquor, except brandy
108	Flour and other grain mill products	126 Flavoring extracts and syrups, n.e.c.
117	Sugar	128 Soybean oil mills
119	Chocolate and cocoa products	139 Tobacco stemming and redrying
	TEXTILE, WOOD AND	PAPER MATERIALS
140	Broadwoven fabric mills and fabric finishing	196 Pulp mills
142	Yarn mills and finishing of textiles n.e.c.	197 Paper mills, except building paper

169	Logging camps and contractors	198 Paperboard mills
170	Sawmills and planing mills	202 Paper coating and glazing
175	Veneer and plywood	217 Blankbooks and looseleaf

[^6]Table 2 (continued)

List of Sectors Producing Materials under Study

Notes: The sector code ranges from 1 to 537, corresponding to the sequence of sectors in the benchmark U.S. IO accounts for 1977. The 370 manufacturing sectors in this system are in the 85-454 range of codes.

Table 3

Availability of Reports on Specified Materials Use for Selected Commodities by Sector

| | |
| :--- | :--- | :--- |
| Sector reporting use | |
| Sector Description | |

[^7]Table 4
Distribution of Regression Summary Statistics for Use of 71 Specific Materials by Manufacturers with Use Dependent on Make as Primary or Secondary Product

Quantile of Statistic	Fit and Scope of the Regression		
	Goodness of Fit	Number of Products	Number of Plants
0	. 38	5	27
5	. 50	10	75
10	. 53	28	98
25	. 66	46	373
50	. 80	84	934
75	. 89	129	1816
90	. 97	154	3239
95	. 98	170	4585
100	. 99	205	6360

Notes: There are 1073 observations on the statistics in the columns, one observation per material-product combination with reports of specified materials use available from manufacturing plants; material-product combinations with too few reports to identify both the primary-and secondary-production requirements parameters are excluded. The regression statistics in each column are sorted separately. Thus, for example, the smallest goodness-of-fit is 38 percent, but this does not necessarily arise in the regression with the fewest products (5).

Table 5

Distribution of Regression Results for Use of 71 Specific Materials by Manufacturers with Use Dependent on Make as Primary or Secondary Product

Quantile of Statistic	Make as a				T-statistic for difference
	Primary Product		Secondary Product		
	a^{p}	t-statistic	a^{s}	t-statistic	
0	-1.17	-5.00	-305.81	-18.38	-12.39
5	. 00	-. 05	-. 38	- -2.25	-3.22
10	. 00	. 05	-. 21	-1.04	-1.44
25	. 01	. 43	-. 03	$3-.17$	-. 37
50	. 02	1.55	. 02	2.13	. 04
75	. 09	6.33	. 13	3.91	. 57
90	. 23	16.75	. 43	3.85	2.07
95	. 37	29.05	. 90	5.79	3.32
100	232.48	348.89	29.85	5 46.81	19.98

Notes: There are 1073 observations on the statistics in the columns, one observation per material-product combination with reports of specified materials use available from manufacturing plants; material-product combinations with too few reports to identify both the primary-and secondary-production requirements parameters are excluded. The regression statistics in each column are sorted separately.

Table 6
Summary of Classification of Apparent Differences between Primary and Secondary Production Techniques

Explanation Code	Description	Number of Cases	Percent of Cases
	Total apparent differences	190	100
A	Underlying product diversity Not testable	64	34
	Testable	126	66
	No Rejection	53	28
	Still Reject	73	38
B	Use of similar delivered materials Not testable	152	80
	Testable	38	20
	No Rejection	16	8
	Still Reject	22	12
C	Use of produced-and-consumed materials		
	Not testable	148	78
	Testable	42	22
	No Rejection	23	12
	Still Reject	19	10
Memo:A, B, C			
	Any of the Explanations		
	Not testable	54	28
	Testable under at least one	136	72
	No Rejection under at least one	70	37
	Still Reject under all tested	66	35

Source: Calculations by the authors by the method described in the text.

Table 7
Selected Specific Classifications of Apparent Differences between Primary and Secondary Production Techniques

Material		Product		
Sector	Description	Sector	Description	Explanation
7	Feed grains	111	Pet food	A
29	Clay, ceramic and refractory minerals	286	Mineral wool	A
91	Meat packing	91	Meat packing	B, C
169	Logging camps	197	Paper mills	C
175	Veneer and plywood	191	Public building furniture	A, C
244	Petroleum refining	244	Petroleum refining	C
265	Glass containers	124	Distilled liquor	A
298	Primary copper	306	Nonferrous rolling and drawing n.e.c.	A, B

Notes: The explanation codes indicate no rejection under one of the additional tests described in table 6:
A Underlying product diversity
B Use of similar delivered materials
C Use of produced-and-consumed materials

[^0]: ${ }^{1}$ For example, a wide range of posited differences between seemingly identical commodities appears in the models used to study the effects of North American free trade agreements. The early work of Wonnacott and Wonnacott (1967) assumed that violation of the law of one price could explain the existing patterns of specialization; they argued that because of subtantial tariff and non-tariff trade barriers between the U.S. and Canada, Canadian manufacturers attempted to take advantage of economies of scale through product diversification. More recently, Hamilton and Whalley (1985), among others, explain patterns of specialization by following Armington (1969) in assuming that the demand for a good depends on its country of origin. Alternatively, Brown and Stern (1989) allow for monopolistic competition created by firm-specific product differentiation, such as that established by brand-name advertising.

[^1]: ${ }^{3}$ The benchmark make table for 1982 from the U.S. I/O accounts indicates that 11 percent of manufacturing output is secondary production.
 ${ }^{4}$ Specifically, we restrict the analysis to those 71 materials for which the median pure-plant commodity technology coefficient was at least 5 percent in at least one industry. The scrap commodity and non-comparable imports meet this 5 percent requirement but are excluded because of their heterogeneity. Five other materials also meet this 5 percent requirement but are excluded because their use is so broad-based (more than 100 industries report some use) that our econometric approach is intractable; the excluded materials with broad-based reporting are paperboard containers and boxes, plastics materials and resins, miscellaneous plastics products, blast furnace and steel mill products, and rolled or drawn aluminum products.

[^2]: ${ }^{6}$ In tables 4 and 5, each regression statistic is sorted relative to the same statistics from other regressions. Thus, for example, the smallest goodness-of-fit is 38 percent, but this lowest R^{2} does not necessarily arise in the regression with the fewest products (5).

[^3]: ${ }^{7}$ An example of underlying product diversity, is that the primary products of the pet food industry include both '`dog and cat food'' and 'other pet food''. Close substitute materials that can be aggregated include fluid milk and condensed or evaporated milk. The use ofvown-produced materials is relatively common in industries such as meat packing.
 ${ }^{8}$ In terms of materials, not material-product combinations, a difference between primary and secondary requirements was found for at least one product in 52 of the 71 regressions.

[^4]: ${ }^{10}$ Here, we disaggregate further along the lines of the more detailed product classifications used in collecting the data. Specifically, we distinguish between 5-digit product classes from the Census extension of the Standard Industrial Classification (SIC) system. We recognize that this form of further disaggregation is itself imperfect for achieving supply-side homogeneity for the same reason that the sectoral definitions are imperfect, namely that the classification describes a collection of products and supply-side homogeneity is not emphasized fully in the classification system.
 ${ }^{11}$ Again, we rely on the SIC as an indicator of substitutability. Specifically, materials use at the 6-digit materials code level is aggregated to a 3-digit level.

[^5]: ${ }^{12}$ The omission of produced-and-consumed materials does not necessarily lead to the appearance of heterogeneity, particularly if the definitions of the materials are broad. Any materials which are delivered to make the (omitted) produced-and-consumed materials are included in the traditional measures of materials use.
 ${ }^{13}$ The dependent and independent variables in equation (3) are measured in dollars, but the data on produced-and-consumed materials is available only in physical units. To aggregate across delivered and produced-and-consumed materials, we value the produced-and-consumed materials at the average price of the plant-specific delivered materials of the same kind.

[^6]: Notes: The sector code ranges from 1 to 537 , corresponding to the sequence of sectors in the benchmark U.S. IO accounts for 1977. The 370 manufacturing sectors in this system are in the 85-454 range of codes.

[^7]: Notes: The I/O sector codes of the materials are shown in parentheses.

