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User Manual For Blossom Statistical Software

By Brian S. Cade and Jon D. Richards, U. S. Geological Survey

Introduction

Blossom is an interactive program for making statistical comparisons widmcksfunction

based permutation tests developed by P. W. Mielke, Jr. and colleagues at Colorado State
University (Mielke and Berry 2001) and for testing parameters estimatedan tmelels with
permutation procedures developed by B. S. Cade and colleagues at the Fort Collins Science
Center, U. S. Geological Survey (known as the Midcontinent Ecological Science @entéw

2002). This manual is intended to update and replace earlier versions by B. S. Cade and J. D.
Richards dated 2000 and 1999 and by W. B. Slauson, B. S. Cade, and J. D. Richards dated 1991
and 1994. We have expanded on material in earlier versions and provide documentation on new
routines added since 2000. Routines added since 2000 are: double permutation (HYP/DP)
procedures for linear model tests (OLS, LAD regression, and quantile rank storevkes null

models are either implicitly or explicitly constrained through the origin, i.e., recept models

(Cade 2003, Cade et al. 2005, Cade et al. In press); dropping all but a single zero residual in LAD
(and quantile) regression permutation tests of subsets of variables in mugiipkesien models

(Cade 2005, Cade and Richards In press); and computation of all quantile regressidesestima
(LAD/ QUANT = ALL). In addition, we now offer the option of saving output to a terse

formatted file that is useful for summarizing results of multiple simuiat{OUTPUT /TERSE

or VERBOSE), and the option to store (SAVETESfilenamé the vector of permuted test

statistic values from Monte Carlo resampling approximations of probabilities.cdmputer

code has been made more efficient where possible and was compiled with Lahey Fodran 95 t
dynamically allocate memory.

Routines added between 1994 and 2000 included a permutation version of ordinary least squares
(OLS) regression that parallels the least absolute deviation (LADssegnepermutation test; a
permutation and asymptotic chi-square approximatidPedilues for a rank score statistic for
regression quantiles; empirical coverage tests for univariate goodnetsaraf-f-sample
comparisons that are extensions of the Kolmogorov-Smirnov family of statwticsrhparing
cumulative distribution functions, including an option for testing goodness-of-fit for a random
uniform distribution on a circle; a second option for standardizing multiple dependentasriabl
in multiresponse permutation procedures (MRPP) based on the variance/covarisixce mat
(Hotelling’s commensuration); computing exact probabilities by complete eatiareof all
possible combinations for small block and treatment designs in multiresponse randolocke
permutation procedures (MRBP); a Monte Carlo resampling approximation alterieatall the
MRPP family of statistics (MRPP/NPERM); and multivariate mediaksdistance quantiles
(MEDQ) to be used as descriptive statistics with MRPP analyses.
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The permutation procedures in Blossom can be used for comparing data obtained in familiar
survey sampling and comparative experimental designs.

1. Multiresponse permutation procedures (MRPP) are used for univariate and mtetivaria
analyses of grouped data in a completely randomized one-way design. MRPP are used for
comparing equality of treatment groups analogous to one-way analysis of variarts{ofor
univariate data, or multivariate analysis of variance (or Hotelliifyfor multivariate data. The
default Euclidean distance function in MRPP provides an omnibus test of distributional
equivalence among groups or a test for common medians if the assumption of equal dispersions
is applicable. Options allow MRPP to perform permutation (randomization) versittestd,
one-way analysis of variance, Kruskal-Wallis tests (for ranked data), Marimé&yh/ilcoxon

tests (for ranked data), and one-way multivariate analysis of variance. OptioR$iA 8so

allow you to truncate distances to evaluate multiple clumping of data, establisteas gsoup,

and select arc distances to compare circular distributions of grouped data. Mixtigdata are
commensurated (standardized) to a common scale but an option allows you to turn off
commensuration. Commensuration can be done by using average Euclidean distancegidefault)
the variance/covariance matrix for the dependent variables. Multivariatenneadid distance
guantiles (MEDQ) are provided as estimates to be used in describing distributimmges

detected by MRPP analyses.

2. Multiresponse permutation procedures for randomized blocks (MRBP) are used for tenivaria
and multivariate analyses of grouped data in a complete randomized block design. Again, the
default Euclidean distance function provides an omnibus test for equivalence of distributions
common medians if the assumption of equal dispersions is satisfied. Univariateisongpare
analogous to analysis of variance or Friedman's test (for ranked data) for coampdet®ized

block designs. Options allow MRBP to perform permutation versions of these two tests.
Options also allow for aligned or unaligned data analyses and to commensurate or not
commensurate multivariate data. MRBP also can be used to calculate agreeasines

among blocks. A linear transform of Pearson's correlation coefficient and a gevmiest of
significance also can be calculated in MRBP.

3. The permutation test for matched pairs (PTMP) is a special case of MRBPiatmigtata in
two groups andh blocks, used for paired comparisons. Options allows PTMP to perform
permutation versions of pairédests and Wilcoxon's signed rank test (for ranked data).

4. Multiresponse sequence procedure (MRSP) is a special case of MRPP wherddirs

sequential pattern of data is tested against the null hypothesis of no sequentral patte

Univariate analyses are analogous to the Durbin-Watson test for first-ondépatern and

bivariate analyses are analogous to Schoeief'statistic (Solow 1989). Permutation versions

of these two tests can be done. Options allow you to select the sequencing variable and to turn
off multivariate commensuration.



5. Least absolute deviation (LAD) regression is an alternative to ordinargdgests (OLS)
regression that has greater power for thick-tailed symmetric and asyoenedr distributions

(Cade and Richards 1996). LAD regression estimates the conditional median (a cdridi®na
guantile) of a dependent variable given the independent variable(s) by minimizing sums of
absolute deviations between observed and predicted values. Options allow for tedbpe all s
parameters (full model) equal to zero or to test subsets of parameters ifpaaieds) equal to

zero by Monte Carlo resampling of the permutation distribution (Cade and Richards 1996). LAD
regression can be used anywhere OLS regression would be used but is often more desirable
because it is less sensitive to outlying data points and is more efficient fadskewar

distributions as well as some symmetric error distributions.

6. Regression quantiles are a natural extension of LAD regression to estignataditional
guantile and provided as an option in LAD regression. Regression quantiles allows you to
estimate any conditional quantile (say0 < t <1) of a dependent variable given the
independent variable(s) by minimizing the asymmetrically weighted sum olLiébslelviations,
where the weights arefor positive residuals and-1t for negative residuals. A 0.50 regression
quantile is LAD regression. Regression quantiles are useful in ecologicakdippis involving
limiting factors where it is desirable to estimate functional changes btmmglaries of
distributions (Terrell et al. 1996, Cade et al. 1999, Cade and Guo 2000, Dunham et al. 2002,
Cade et al. 2005) and for general modeling of rates of change associated with hetasgene
variation in linear models. Cade and Noon (2003) provide a primer on quantile regression for
ecological applications. The LAD permutation tests of Cade and Richards (1996) have been
extended to regression quantiles (Cade 2003, Cade and Richards, In press). Anothergrermutati
testing alternative also is provided that is based on the quantile rank score functions for
regression quantiles (Koenker 1994, Cade et al. 1999, Koenker and Machado 1999), which
maintains better Type | error rates than the Cade and Richards (1996) procedure \gleme ther
heterogeneous errors. The permutation approximati®wafues for the quantile rank score test
statistic was evaluated in Cade (2003), Cade et al. 2005, and Cade et al. (In preBsyaliiae
based on the asymptotic Chi-square approximation of Koenker (1994) is also reported and was
also evaluated by Cade (2003), Cade et al. 2005, and Cade et al. (In press). Both test statisti
require weighted estimates to maintain correct Type | error rates wiifogeheous

distributions. It is possible to estimate all possible regression quantilesvartthesastimates by
guantiles to a specified file.

7. G-sample and goodness-of-fit tests based on empirical coverages (COV) areitoraiai
comparisons of grouped data similar to the Kolmogorov-Smirnov family of stafistics
comparing cumulative distribution functions (Mielke and Yao 1988, 1990). These statsstics ar
appropriate for continuous univariate responses with no or few tied values. Options allow for
testing goodness-of-fit to a uniform distribution on the unit circle, which is equivalent t
permutation version of Rao’s spacing test (Rao 1976).

It is our intent that this software be considered a companion to and not a replacement of other
commercial statistical software. We'’ve consciously avoided duplicatingrdatigpulation and
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graphical capabilities that are available in commercial packages suBts8s SYSTAT, SAS,
and S-Plus. We believe that graphical exploration of data and graphical presentaguitef
analyzed by the procedures in Blossom are extremely important for proper iatévpret your
results. The open source “R” software is especially attractive.

Appendix A lists common statistical tests encompassed by these permutatiacupgscd he
methods contained in Blossom are presented by example. Most of the examples are from
ecology, but of course the procedures in Blossom can be used on many other sorts of data.

Overview of Statistical Concepts

The statistical procedures in Blossom are distribution free in the sense thailpredaf

obtaining extreme test statistic values given the truth of the null hypothepss I(€yrors) are

based on permutations of the data from randomization theory and are not based on an assumed
population distribution (Edgington 1987, Good 2000, Mielke and Berry 2001). In most
investigations, the population distribution will never be known and assuming an inappropriate
distributional model can lead to weak or invalid statistical inferences. The nadistrddution is

an inappropriate model for many ecological data, which often are skewed, discontinuous, and
multi-modal. When sample sizes are small, large sample (asymptotic) iapgiors often are
guestionable. Permutation procedures make efficient use of small samples, peuaaisiéities

can be calculated exactly by complete enumeration of all possible combinationshenudt t
hypothesis. Of greater importance, the permutation testing framework allowssestest

statistics based on measures of variation other than squared deviations (varibesesbatistics
based on variances are derived from the distributional assumptions underlying theimmaxim
likelihood approach. Other measures of variation may be more appropriate in a permegation t
that does not require assumptions about the specific form of the error distribution.

The distance-functions that form the basis of the MRPP family of tests afibstdéstics to be
based on powers of Euclidean distances. The distance function between any 2 obsgrvations
andx; with r response variables (dependent variables) in MRPP is defined by

4
- 21v/2
Ai,j N [hz_:l O,y ~ %, j) I’

wherev > 0 (Mielke and Berry 2001). We emphasize use of test statistics based on ordinary
Euclidean distances € 1), a metric measure of variation that is congruent with most data
measurement scales (Mielke 1986, Biondini et al. 1988). Euclidean distances are tlo@ comm
geometrical interpretation of distance applied to differences betweeratemlata values on

their measurement scale. Most conventional parametric and nonparametric methizded on
squared Euclidean distances (squared deviations are squared Euclidean distanceg)i.e.,
Statistics based on squared Euclidean distances (variances) are nonmsturesngiaey violate



the triangle inequality of a metric) that have no simple geometrical intatiprein an

r-dimensional data space, whens the number of response variables. In contrast to Euclidean
distance statistics, geometrical interpretation of variance baseafissativolves distances

between vectors in ardimensional space, whenas sample size (Box et al. 1978:197-203).

An n-dimensional geometric interpretation is complex, does not coincide with the deta a&pe
results in considerable loss of graphical information because distances betpleates vanish.

It is impossible to graph individual data points in a nonmetric space to examine ldissasi

(Pielou 1984:41-46). Although we emphasize tests based on Euclidean distances, analyses bas
on powers other than 1 (Euclidean distance) are appropriate in some specific applicati

Euclidean distance based statistics have greater power (the probabiligcohgeihe null

hypothesis when it is false) to detect location (central tendency) shifts akewngds

distributions than do squared Euclidean distance statistics (Zimmerman et al. Do@hniBt

al. 1988, Mielke and Berry 2001). Power to detect location shifts in symmetric distmutith
Euclidean distance statistics is greater than or equal to power with squareeédtudistance
statistics, depending on distributional form (Mielke et al. 1981, Mielke and Berry 198keMiel
1984, Mielke and Berry 1994, 1999, 2001). Euclidean distance based statistics have better power
to detect location shifts across a greater variety of distributions than squaietbén distance
(variance) statistics. Euclidean distance based statistics also @ite dstect omnibus

differences in distributions, sensitive to both dispersion (variation) and shifts raldentlency
(median) (Biondini et al. 1988, Mielke and Berry 1994). There is no a priori reason to presume
that shifts in central tendency of data distributions characterize the ordiseifenterest in
ecological investigations.

The permutation procedures based on distance functions are readily extended to several nove
applications including, truncation of values to detect multiple clustering, compaaoisoinsular
distributions, assignment to an excess group, agreement of values, and first-omregresgive
analyses (Mielke 1991, Mielke and Berry 2001). Each of these applications will be elistuss
appropriate examples.

Medians and other quantiles are estimates obtained by minimizing sums of absohitterdevi

and are appropriate descriptive statistics for permutation procedures based deaEudibtance
functions (Mielke and Berry 2001). Functions are provided to estimate multivariatensedi

grouped data and quantiles for distances between individual observations and their group median.
This function can also be used to compute medians and any selected quantiles for unitariate da
distributions.

Permutation procedures for testing hypotheses in linear models are availabéstablsolute

deviation (LAD) regression (Cade and Richards 1996), a generalization for i@yassntiles

(Cade et al. 1999, Cade 2003), and for ordinary least squares regression (Anderson and Legendre
1999). LAD regression estimates rates of change in conditional medians, wheraassthe

familiar OLS regression estimates rates of change in conditional meagressten quantiles

estimate rates of change in any selected conditional quantile (Koenker and B2i&8gt The



6

forms of the permutation test statistics are similar for all three of gstsnation methods, and

are based on a proportionate reduction in sums minimized when passing from a null, reduced
parameter model to the alternative, full parameter model (Mielke and Berry 2Q@#.2035).

These tests are a drop in dispersion form. The observed test stBjjstexjuals the (sum of
deviations for reduced parameter null model - sum of deviations for full parametaatite

model) / sum of deviations for full parameter alternative model; where the desiatie squared
residuals if OLS regression, absolute values of residuals if LAD regressieaighted absolute
values of residuals if regression quantiles. This test statistic is equit@lesuaF-ratio used in

OLS regression, except that the sums minimized are not divided by their degreesloff ¢f)
because they are invariant under the permutation arguments. Hypothesis testinlrés af

these regression estimates are made either by permuting the dependensvarildlenodel

tests that all slope parameters are zero (null model includes just an interdgppermuting
residuals from reduced parameter null model for partial model tests (subhyppthasssme
specified subset of slope parameters are zero (null model includes more thanrjtestapt).
Extensive simulation work has demonstrated the approximate validity of permsichggate

under the reduced parameter null model when making permutation tests involving nuisance
parameters in linear models (Cade and Richards 1996, Kennedy and Cade 1996, Anderson and
Legendre 1999). Simulation research (Cade 2003, Cade 2005, Cade et al. 2005a, Cade et al.
2005b, Cade and Richards In press) has demonstrated that Type | error rates can be improved by
using double permutation schemes when null models are constrained through the origin (no
intercept) and by deleting all but a single zero residual when LAD and quantilssiegraull
models include multiple independent variables.

All the tests described above for the linear model maintain validity of their gperirates only

if it is reasonable to assume independent and identically distributed (i.i.d.) efribwes edrors

are heterogenous as happens when the variance changes as a function of the independent
variables, other methods must be employed. One possibility is to estimate weigbimusvef
either LAD or OLS regression, where weights are selected to be inverselytjgmogldo the
square root of the variances. Permutation testing then is employed on the weightexirtsaois
the dependeny) and independenk] variables (Cade and Richards 1996, Cade 2005, Cade et
al. 2005a, Cade et al. 2005b). Alternatively, for the regression quantile estimatesyide ar
permutation test for the quantile rank score statistic (Koenker 1994, Koenker and Machado
1999), which is not as sensitive to heterogeneity of variances because it uses thietlseggns
residuals and not their magnitude. Statistical performance of the permutati@n tes quantile
rank score statistic was investigated by Cade (2003), Cade et al. (2005a), and C426e05k3!
Weighted estimates and rank score tests were required to maintain copetefipr rates

when heterogeneity exceeded a change in 2.5 standard deviations across the domain of the
independent variable. Blossom also reports the asymptotic version of the quantile rank scor
statistic that is distributed as a Chi-square distribution with degreesdbfreequal to the
difference in number of parametecg between alternative (full parameters) and null (reduced
p - g parameters) models (Koenker 1994, Koenker and Machado 1999).
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The empirical coverage tests included in Blossom are related to the KolmogoirooSfamily

of tests for equality of univariate cumulative distribution functions. One-sample gsedfiBt
andg-sample tests exist. The coverage test statistic is based on the spdauvegs liee order
statistics. These tests provide another permutation testing alternativePte fdRunivariate
continuous data. Unlike MRPP, the coverage test are not appropriate when there aredmany t
values, as this violates the continuity assumption. Little can be said at thibtotele power

of the coverage tests relative to MRPP for data for which both tests are appro@aaforth and
investigate!

Preparing to run Blossom

Blossom runs on computers running secure 32-bit Windows operating systems, i.e., Windows XP
or Windows 2000. The program is not supported, but may also run under Windows 95,

Windows 98, Windows ME, and Windows NT. An installation program is provided. See
Appendix B, which gives computer requirements and contains installation instructions.

Installation creates a Blossom folder with the Windows and Console versions of Blossom
(BLOSSOM.EXE and CONBLOS.EXE, respectively). Access the programs freWindows
"Start | Programs | Blossom" folder. Frequent users can make shortcuts frowiitickeiws
Desktop as suggested in Appendix B. Appendix B also contains information on setting up a
command prompt window for the Console version. Only one instance of Blossom can exist
(only one session can run at a time).

Blossom operates on data files in the current folder (local directory). The Windmsimvean
access data through a dialog box that allows the user to change directories. Theveosisole
accesses local data so it should operate from within the folder where the dagai§ite Both
versions accept command line input and in fact, most of the function of Blossom is accessed
through the Blossom command line. All general (non-statistical) commands of Bloaadme
given through the command line of both the Windows and Console versions. The general
Blossom commands are explained in the General Program Functions section. The Windows
version allows graphical interface access to some general functions. tidticgtbfunctions

must be accessed through the command line input.

The Blossom command line prompt for the Console version is a ">" character (followesl by t
cursor positioned to accept input). Commands in the Windows version are entered via a
"Blossom Command>>" entry field at the bottom of the Blossom window. In the Windows
version a copy of the command is written to the Blossom session output window.

Blossom output goes to the user console (screen), specified or implied output files, and to a
session log file called BLOSSOM.LOG. Blossom writes command input and progsalts te

the screen in the Console version and to an output window in the Windows version. Results
from the statistical procedures are written to a local output file (in cuoielerj. Blossom



8

keeps a history of commands given during a session in the BLOSSOM.LOG file locdtted in t
installed BLOSSOM\LOG folder.

The output window of the Windows version contains both input to and output from the Blossom
session. The contents of the output window can be saved, copied, or printed. The contents can
be erased during a session with the CLS command explained below. Each session begins a new
output window. The contents of the output window are lost when a session is quit or the CLS
command is given. The screen (or console) output of the Console version also contains program
input and output. The amount that can be seen or recovered during a session depends on the
properties of the command prompt window (Appendix B). Access to the command prompt
window is through normal Windows interface to any command session.

Results from Blossom statistical programs are written to Blossom ougazit fihese are named

and created with the USE or OUTPUT commands as explained below. The output of each
statistical procedure is appended to the output file so these files may be used agaited.

The NOTE and DATE commands provide a means to annotate and write the date and time to a
Blossom output file. In the Windows version, Blossom starts in the folder where datastere
accessed during the previous session.

The BLOSSOM.LOG file in the installed BLOSSOM\LOG folder keeps a histocpoimands

given during a Blossom session. This file is saved at the end of each session buténrewri
when another session begins. To retain the session history the log file contents shouletbe copi
to another folder or file after a Blossom session is quit. The quote (comment) commavelis

to write documentary comments to the BLOSSOM.LOG file.

Data Formats

Blossom is devised to operate in local folders containing data files. (Output stfcsihti
procedures is written to local Blossom output files). The Blossom user spdwfiesal folder
either through target folders of shortcuts or the folder from which the Console version is
executed. In the Windows version, folders may be changed via a dialog box to accesssdata fil
(or Blossom submit files).

Blossom can read ASCII text files, SYSTAT (.SYS and .SYD) files, S-Plus 2080rdates

with only numeric values, and some Data Interchange Format (.DIF) data filesogbft DIF

files reverse the order of tuple (observation) and vector (variable) DIF conventiosorBlos
cannot read Microsoft DIF files). Only numeric values can be read and used withionBloss
Character (string) variables can’'t be used in ASCII text data files anactéravariables are
ignored in SYSTAT files. S-Plus 2000 (compatibility with other versions of S-Pluscirtain)
data frames must have be identified with the name followed by “.” with no extension. All
numeric variables are treated as real numbers, not integer numbers. Whole numbges, howe
may be entered with or without a decimal point. Numeric values including leading—+ and
signs, the decimal point, and the places necessary for exponential notation (if ugedjtmus
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exceed 25 places. Missing values are indicated by a period (a lone decimal poinpmBloss
tallies the number of missing values in an analysis and appropriately removegroeses (if
possible).

ASCII Text Files

Text files can be used by Blossom if they contain ASCII text. Unicode textéitesbe used by
Blossom. ASCII text data files read by Blossom contain columns of numbers whekaon

is separated from the others by at least one space or a comma. Data are reddridtethus
columns need not be perfectly aligned. Each column in the data file contains valuesalla vari
for each of the objects (or observations, events, or cases) sampled. Thus, there is acolumn f
each variable and a row for each object. The variables represent different meassie
observations made on each object, and such information as to which group or block the
observation belongs. Here is a sample data set to be used later.

NNNNR R
WWNNPWS
PNNWWRAO

It contains observations on seven objects (rows) with values for each of three variables
(columns). In the data shown above the variable in the first column is a grouping variable whic
indicates membership in one of two groups (values of 1 or 2). The other two variables are
measured values for each of the seven objects. To make this example more concretethtink of
grouping variable as indicating a burned versus an unburned site and the other two variables as
the abundance of two different species. Alternatively, think of the grouping variable as
indicating gender and the other two variables as measuring skull length and width.

The order of the variables (columns) in the file and the order of the cases (rows)lenrtiakés
no difference. Blossom does all the necessary data sorting. For MRPP, where groups ar
compared, the grouping variable must exist in the file. For MRBP the blocking variakie m
also exist in the file. For LAD, OLS, and quantile regressions a minimum of two coluosts
be given, one for the dependent and one for the independent variable. They can be in any order.

ASCII data files can be of two different forms. The first form is merely dhentns of numbers
described and shown in the example above. These are called unlabeled data files. To use this
form of data, names for each column (variable) must be specified in the USE command as
described below. The second form also consists of columns of numbers, but the first row of the
data file contains the variable names. These are called labeled data filéabeltier variable
names must contain no more than 25 alphabetic or numeric characters, start vathankbtt

contain no blanks or other special characters (the underscore character howgeaér isnle
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labeled data files, the labels must be separated from one another by at leastene gpama.
Here is the same data from above but shown as a labeled data file.

X

_COORD Y .COORD

WWNDNPA_WAT
PNNWWAO

This file is spaced so that the numbers are listed beneath the labels or variasdemanhis is
not necessary. The file is equally readable by Blossom in the following form.

GROUP X_COORD Y_COORD

NNNNR R
WWNNPRWS
PNNWWAO

There must be a single label for each column of data (variable), no extra labéta aokxnns
of numbers are allowed (there must be data for each variable). Blossom checks fiirenckzaty
errors. But a data file intended, for example, to have four variables and six cases ceattl be
by Blossom if, by mistake, only three variables were labeled and four columns of numbers
existed, then Blossom would interpret the data file to have three variables ancegght ¢
Unless you make a mistake that evens out like this Blossom will detect the error.

Sometimes the data will have too many columns to fit on a single line. In such cadegat for
the rows of data values and labels to be continued (or "wrap") to the next line in theedata fil
Even this small, sample data file can be read if one set of observations occupidsamorest
line in the data file. Blossom can read it in the following form.

GROUP X_COORD
Y _COORD
14

5

13

4
14
3
22
3
22
2
23
2
23
1
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It is possible to add comment lines to a data file by beginning each line with a Singl@ouble
qguotation mark (). The quotation mark must occur as the first non-blank character of the
comment line. Such lines are completely ignored by Blossom as command input, butt@ne writ
to the Blossom.LOG session history file for documentation purposes. For example, the data
given above could appear as follows:

' Spatial coordinates of young and old birds
' data collected summer 1989
GROUP X _COORD Y COORD
' begin group 1 = young
1 4

1 3
1 4

' begin group 2 = old
2 2

wh o

NN N
WWN
PNNW

Programs such as statistical packages, text editors, spreadsheetse datvase, and word
processors can all be used to produce data files in ASCII text format. (Programedtation

should be consulted about how to specify ASCII text output files). Data lines should be no
longer than about 4000 characters and no more than about 1000 variables. (Blossom statistical
commands select subsets of variables in data file for analysis, but verynlangge¢ of columns)

data files are unwieldy and should be avoided for practical considerations).

SYSTAT and DIF Files

Data Interchange Format (DIF) files with all numeric values can be readbyddh. DIF files

have the exetension .DIF, and can often be written and read read by spreadsheet and data base
programs. Note that Microsoft DIF files reverse the tuples (rows) and vemdtumfs) of data

so they cannot be read as standard DIF files by Blossom.

SYSTAT data files (.SYS and .SYD) also can be read by Blossom. Only numeric \aaiuas c
used by Blossom; character string variables are ignored if present. S-Plus 2G0énazgavith
only numeric variables also can be read by Blossom.

General Program Functions
Either the Console or Windows version of Blossom is invoked to begin a Blossom session.

To begin a Console session in the operating system command prompt window, type CONBLOS
followed by the ENTER key. As soon as the program'’s prompt, the greater than symbol (>),
appears, Blossom is ready to receive commands. Commands can be typed in upper or lower
case.
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For the Windows version, start BLOSSOM.EXE as any Windows program by clicking on the
shortcut icon or from Windows Start Menu selection: "Programs | Blossom | Blosgonfie
bottom of the Blossom window is the "Blossom Command>" entry field.

In this document, to make them stand out, commands are always shown in UPPER CASE red.
These commands are shown with the Console version prompt, indented like this:

>USE FROG

After the command has been completely specified, enter it with the ENTER key.oftor m
commands, only the first two or three characters need be typed, but it is good pragtdie to s
them out completely. If a command is too long for a single line, it can be continued on the next
line by entering a comma at the end of the line to be continued. In the example command lines
given in this document, the > symbol should not be entered; it is supplied by the program and
appears on the computer screen for the Console version. For the Windows version the input
cursor must be in the "Blossom Command>" entry field.

Commands for a complete Blossom session may look like the following.

>USE FROG

>TITLE Final Analysis of North Fork Frog Study
>OUTPUT FLAST

>MRPP AGE HEALTH SIZE * LOCATION / EXACT
>QUIT

Here a data file (FROG.DAT) is specified, results will be labeled withittee'Final Analysis of
North Fork Frog Study" and results will be written to a file named FLAST.OUT. &het&tal
procedure called for is an exact, multiresponse (three-variable) permutatiedyym(MRPP)
on groups of different location. A complete log of all commands entered is kept in dldite ca
BLOSSOM.LOG found in the installed BLOSSOM\LOG folder. Renaming or copyingilehis f
after quitting Blossom retains the history of a session.

In this documentation, each command (line) is explained in detail and the complete command
syntax for each command is provided.

Commands in Blossom are of two sorts. The first sort is general commands usedyalagseci
output options, and obtain help. The second sort consists of commands for statistical.analyses
In this section, general commands are discussed.
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HELP with BLOSSOM Commands

The HELP command gives general help or specific help for Blossom commands. The command
line syntax of the HELP command is:

HELP
- Or -
HELP <topic>

Where <topic> is the name of the command for which help is sought. The simple HELP
command (without a topic specified) lists the topics for which help is available.

For example,
>HELP

gives Blossom syntax help with a list of all Blossom commands for which syntaxshelp i
available, and

>HELP MRPP
results in help on syntax of the MRPP command.

Additional help is available in the Windows version. The F1 Function Key brings up a Windows
Help session for Blossom. The F5 Function Key duplicates the syntax HELP command above.
The SHIFT + F5 Function Key brings up the Windows default Web browser with an HTML
version of the Blossom User Manual. These help items are also accessible fRlossioen

menu bar (Help). The Blossom toolbar help button (with a question mark on it) invokes
Windows Help for Blossom.

Alternatively, double-clicking on the installed BLOSSOM\DOCS\BLOSS . HlePiffiitiates the
Windows Help for Blossom and double-clicking on the installed
BLOSSOM\DOCS\BLOSSOM.PDF file brings up an Adobe® Acrobat® Reader™ view of the
Blossom User Manual (assuming Adobe Acrobat Reader is installed on the computer). The
Adobe® Acrobat® Reader™ may be invoked concurrently with either the Console or Windows
version Blossom sessions.

USE a Data File

The USE command specifies the data file to be used. The command line syntax of the USE
command is:
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USE [data filenamg][/ variable name ligt

The simple USE statement (with no arguments following on the line) provides afiies of
available (Console version) or a Windows file access dialog box. A filename mpgdiiges!

with the form USHlata filename If the file is an ASCII text file and contains no variable names
(labels), these should be added after the filename wéhable name lista "slash” followed by
variable names in the correct order and number as in the file).

Blossom determines whether the file being read by the USE command is an A§Qhatax
Interchange Format (DIF), S-Plus 2000 (*.), or SYSTAT (SYS or SYD) file. The W8t#nand
has two forms for ASCII text data files: USiEEnameand USHilename/ variable list The first
form specifies a labeled and the second an unlabeled data file. (The structure okaewicéisf
between these files is described above in the Data Formats section.) For example

>USE STUDY.DAT

causes Blossom to read the labeled data file STUDY.DAT and provide a list of esiiabte

file and number of cases read. In this example, the period and file extension need noebtle enter
since "DAT" is the default file extension for Blossom data files. Otheefitensions must be
supplied explicitly. Data files with no extension are indicated as such by erttezifig name
followed by a period (e.g., USE DATA.)

To use unlabeled data files specify the variable labels (names) after thefrthméle. The
command

>USE FIELD1.DAT / GROUP PLOT RESPONS1 RESPONSE2

causes Blossom to read file FIELD1.DAT and assign labels (variable nam@)/SRLOT,
RESPONS1, and RESPONSE?2 to the four data variables contained in the file. Labels can be
entered in upper or lower case, but is always interpreted by Blossom as upper case. bEne num
of variables in the list following the slash (/) of the USE command must matcthyethac

number of columns in the data file. Therefore, for example, to analyze only the first four
variables in a data file containing six variables (columns), all six variables)enust be entered.
(Later, a subset of the variables can be specified within the statisticalacwirime).

To read Data Interchange Format (DIF) and SYSTAT (.SYS and .SYD) datahéemntire
filename including the extension is entered. Blossom assumes a data file i€lhteASile

with a DAT extension if no extension is provided. Variable names from SYSTAT and Data
Interchange Format files are automatically read in by Blossom. The command:

>USE GROUSE.SYS

reads in all variables from the SYSTAT file GROUSE.SYS.
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Data in the USE file are ready for statistical analysis and are aeailatill another USE
command is given.

The command:
>USE

(without a filename specification) provides a list of all files in the localeiol The Console
version prompts for input of the filename to USE. In the Windows version, this abbreviated
command invokes the "Use Data File" dialog box.

In the Console version, a subset of all files is obtained by giving the USE command with a
wildcard specification. For example the command:

>USE *.SYS

provides a list of files with a .SYS extension, and the command:
>USE BIRD*.*

lists files with any extension that begin with "BIRD".

In the Windows version a data file can be USEd by selecting "Use/Submit File®ptisFile"

and interacting with the "Use Data File" dialog box. The F2 Function Key or the "&iasdd'

button on the toolbar also invokes this dialog box. A drop-down selection list for "Files of Type"
lists (all) Data files (files with extensions DAT, SYS, SYD, or DIF),S3AT datasets (files

with extensions SYS or SYD), DIF Files (files with extension (DIF), orilak in the local

folder.

In the Console version of Blossom, a data file can be USEd by giving the filename as an
argument to the CONBLOS.EXE program name at the operating system command prampt. F
example, the following Console version session invokes CONBLOS and USEs the
BGROUSE.DAT data file:

D:\Blossom\MyData\EIPaso>CONBLOS BGROUSE

File being used is BGROUSE.DAT with 21 cases and 3 variables.
The variables are: DIST, ELEV, SEX
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BLOSSOM Version C2001.07u

Midcontinent Ecological Science Center

U.S. Geological Survey

4512 McMurry AV

Fort Collins, CO 80525, USA
http://www.mesc.usgs.gov/products/software/blossom.shtml

>

In addition, a statistical procedure to be performed can be specified with arguortémets t
CONBLOS invocation. For example, the following Console version session invokes
CONBLOS, USEs the BGROUSE.DAT data file, and runs a multiresponse permutation
procedure (MRPP) of variables DIST and ELEV using the grouping variable SEX:

D:\Blossom\MyData\EIPaso>CONBLOS BGROUSE MRPP DIST ELEV * SEX

File being used is BGROUSE.DAT with 21 cases and 3 variables.
The variables are: DIST, ELEV, SEX

BLOSSOM Version C2001.07u

Midcontinent Ecological Science Center

U.S. Geological Survey

4512 McMurry AV

Fort Collins, CO 80525, USA
http://www.mesc.usgs.gov/products/software/blossom.shtml

Multi-Response Permutation Procedure (MRPP)

Data Used
Data File: BGROUSE.DAT
Grouping Variable: SEX
Response Variables: DIST, ELEV

Specification of Analysis
Number of observations: 21
Number of groups: 2
Distance exponent: 1.00000000000000
Weighting factor: n(I)/sum(n(l)) = C(l) = 1

Group Summary

Group Value Group Size Group Distance
3.00000000000000 9 1.07214652525827
4.00000000000000 12 1.39643892970427

Variable Commensuration Summary
Variable Name  Average Distance (Euclidean if V=1)
DIST 9264.76190476191
ELEV 279.228571428571
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Results
Delta Observed = 1.25745647065599
Delta Expected = 1.51256336315532
Delta Variance = 0.270618755524092E-002
Delta Skewness = -2.09758982732985

Standardized test statistic = -4.90391852737653
Probability (Pearson Type IIl) of a
smaller or equal delta = 0.298316800990588E-002

Output was appended to file "BGROUSE.OUT"

>
ECHO Data On Input or Results on Output

The ECHO command is used to control extent of information displayed to the output window (or
console screen). The command line syntax of the ECHO command is:

ECHO DATA=ON|OFF OUTPUT=ON|OFF
- Or -
ECHO DEFAULT

ECHO can be used with either the DATA or OUTPUT specifier, or both, or with the DEFAU
specifier.

Echoing data on input allows inspection of data values read into Blossom when a filssgedcce
with the USE command. Turning this echo off reduces the amount of text scrolled in the output
window (console screen). ECHO DATA=0ON causes data values to be displayed, and ECHO
DATA=0FF stops this display. The default is OFF, as normally a user has no neausfmen-

data values.

Writing statistical results to the output window (console screen) is the diefiaBlbssom. In
some situations, such as the processing of large submit files (Blossom comesnaiifii the
SUBMIT command, the extensive writing of output to the screen may increase progtane.
Turning off the echo of output decreases program runtime by reducing text writtendoethre s
All statistical results are always written to the Blossom output filehes@ tis no problem
recovering results from such a "batch-mode" session.

When engaged in an interactive session with Blossom, a user normally prefers statistveal
results immediately, so the default mode is ECHO OUTPUT=0ON. ECHO OUX¥®BFH stops
screen output of these results. In any case, all statistical resultstiea terian output file.

ECHO DEFAULT sets the echo modes for data and output results to Blossom defaulamdlues
is the same as ECHO DATA=OFF OUTPUT=0ON.

For example,
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>ECHO DATA=0ON
tells Blossom to show values from the USEd data file, and
>ECHO OUTPUT=0OFF DATA=0FF

tells Blossom to stop screen output of statistical results and to not display detasthey are
read. The command:

>ECHO DEFAULT
sets ECHO values to their default, which is the same as.

>ECHO DATA=ON|OFF OUTPUT=ON|OFF

SHELL to DOS

The SHELL command works only in the Console version. The command line syntax of the
SHELL command is simply:

SHELL

The SHELL command allows the user to temporarily "return” to the operatingnsy$teere the
user can issue operating system commands or run other programs. The command:

>SHELL

puts the user at the operating system command prompt. The command EXIT followed by
ENTER returns to Blossom. The SHELL command is useful for editing data fildisoishef
Blossom, edit the file, save, and return to Blossom) and viewing output files or the higteey of
current session in the installed BLOSSOM\LOG\BLOSSOM.LOG file.

This command is a relict of the old DOS version of Blossom where there was no kintitas
capability. It is best to use Windows facilities to accomplish these othentagksBlossom
runs in its own window.

SAVE a Data File as Labeled

The SAVE command saves currently used data from an unlabeled file into a labeldd.data f
The command line syntax of the SAVE command is:
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SAVE labeled filename
wherelabeled filenamés the name of the file to create for saving labeled data. For example,
>SAVE DATAZ2

saves a labeled data file, DATA2.DAT, with the labels being those specified on iwiphe
entered USE command. This command is useful for changing an unlabeled data file into a
labeled one, which in subsequent sessions saves typing the variable list with the W&Hhdom
The name specified in the SAVE command must be different from that of the file indiseast
include a file extension.

OUTPUT Results to Specified File

The OUTPUT command specifies the name of a file to which results of stdtstalyses are to
be written. The command syntax of the OUTPUT command is:

OUTPUTfilename

wherefilenameis the name of the file to which Blossom is to direct statistical results. For
example,

>OUTPUT FISH.OUT

places results to the file FISH.OUT for all analyses specified until soseis terminated or
another OUTPUT command is given. If the output file already exists, resulispemeded to it;
it is not overwritten. If another output file is in use, it is "closed" and the new fiteriecthe
output file.

If no OUTPUT command is given, results are written to a default output file. The nahee of
default output file is the same as the file given with the USE command, but with ari fil@UT
extension. Results are appended to an already existing output file.

If an OUTPUT command is given to name an output file, that file is the output file fasddios
and subsequent USE commands does change the output file name.

Results, besides being written to an output file, are written to the screen & vi&HO
OUTPUT=0OFF command) unless the TERSE option is selected.

The options TERSE and VERBOSE are provided to turn on and off a terse formatting of the
saved output file. The TERSE option also automatically assumes not to ECHO the output to the
screen. The TERSE option is primarily intended to provide a very concise formattatgvaint
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output for multiple runs of the same commands from a submit file (e.g., as would be done in a
large simulation experiment). The format of the TERSE output is one line per comitfatiaew
first column being the Blossom command executed (e.g., LAD), the second column is the USEd
file name, and subsequent columns are relevant parameter estimatesjdess stadP-values
as appropriate to the command. Column variable names are not provided in the output file so it
is important for the user of the TERSE option to know and label these columns appropriately.

>OUTPUT FISH.OUT/TERSE
turns on the terse output which remains in effect until a

>OUTPUT FISH.OUT/VERBOSE
command is given. The default assumes VERBOSE.

TITLE for the Output of Results

The TITLE command gives the opportunity to specify text that is written at thenegjiof each
set of results from statistical procedures. The command line syntax of thE ¢bhhmand is:

TITLE text of title

wheretext of titleis the text to be used as a heading of statistical results. Entering a new TITLE
command changes the title. The entry

>TITLE First Analysis of Storm River Data - 2 groups
places the indicated text at the beginning of each subsequent set of statstiitsvritten by
Blossom. A TITLE command with no text specified causes no title to be written aed ser
cancel a previous TITLE command.
DATE to Screen and Output File
The DATE command writes the current date to the screen and current output filgsifSit dt is
useful for dating results and can be used to time procedures if issued before andadisticals
command. The command line syntax for the DATE command is simply:

DATE

For example, the command:

>DATE
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immediately writes the current date and time to the screen and output file.

RANDOM Specify Random Number Generator

2. Use the RANDOM command to specify the pseudo-random number generator that Blossom
should use. The syntax for the RANDOM command is:

RANDOM = DEFAULT
- Or -
RANDOM = MT
- Or -
RANDOM

By default Blossom uses a multiplicative congruential algorithm. To invoke theMers
Twister algorithm, use the command RANDOM=MT. To reinstate the defaulitalgouse the
command RANDOM=DEFAULT. If the command is given as simply RANDOM, Blossdin wi
display the syntax for the RANDOM statement and display the current random number
generator.

CD Change Directory (Move to New Data Path)

The CD command is used to change the current Data Path (file folder) where Blessom i
operating.

In the Windows version of Blossom, after installation the Data Path is the Idstalle

BLOSSOM\SAMPLES directory. A record is kept by Blossom of subsequent changes of the

Data Path when a CD, USE, or SUBMIT command is used. New Windows Blossom sessions

will begin in the last used Data Path.

In the Console version of Blossom, the initial Data Path is always in the currenbgvorki

directory where the program is invoked. Subsequent CD commands can be used to navigate the

file system. A record is kept of the location of the Data Path. Subsequent Windows Blossom

sessions will begin in the last used Data Path (including Console sessions).

The following CD command changes to the \DATA\OSPREY2K directory on the curreet dri
>CD \DATA\OSPREY2K

The following command moves up one level in the directory structure:

>CD ..

The following command moves to the K: drive:
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>CD K:
The following command moves to the TEAL subdirectory (below the current Data Path:

>CD TEAL

STATUS of BLOSSOM Session

The STATUS command gives information on the current Blossom session. The command line
syntax for the STATUS command is simply:

STATUS

Included in the status report is the name of the current data file being USEd, the nurabes of ¢
the number of variables and variable names, the names of the SAVE and OUTPUfTdrig} (i
the current TITLE text, and the most recent LAD and HYPOTHESIS commands. Ea US
command has not yet been given to specify a data file, a warning message isdlisplsge
included is whether the OUTPUT is VERBOSE or TERSE and the random number generator
currently in use.

Type
>STATUS

to see a the information for the current Blossom session

SUBMIT a Command File

The SUBMIT command causes Blossom to read commands from an input file rather than the
command line. The command line syntax for the SUBMIT command is:

SUBMIT filename
wherefilenameis the filename of the file containing Blossom commands to be executed.
In this way, "programs” can be submitted to Blossom for carrying out long or repatiilyeses
or to exactly repeat an analysis already performed. An ASCII text fileicogany valid

Blossom commands can be submitted. The STATUS and SHELL commands are of little use
with the SUBMIT command, however the comment command (' or ", see below) is useful for
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documenting analyses called for in the submit file. It is possible to copy the BUD.EOSG to
another file, edit it, save it as a submit file, and submit the modified file. The amihma

>SUBMIT SUBWAY

causes Blossom to process the set of commands in submit command file TEST1. If the
submitted file has other than the "SUB" file extension then its complete naméersstcified.
If the file has the default extension (SUB), it need not be specified.

In the Console version, the command SUBMIT without a file specification producegffiliss
with the SUB extension. The desired file can then be specified.

In the Windows version a "Submit Command File" dialog box can be invoked from the Blossom
menu bar selection "Use/Submit Files | Submit Command File", or from the"Submrm&nd

File" button on the toolbar, or with the SHIFT + F2 Function Key. A drop-down selection listing
of submit files (files with the extension SUB) or all files in the local foter be obtained.

Advanced SUBMIT Operations with Program Arguments and DOS Batch Files

Both the Windows and Console versions of Blossom can be invoked from a DOS Batch file. If
the last command of a submitted command file is QUIT, control returns to the bafoh file
further processing.

For example, the two Blossom command submit files:

' File: subl.sub
output subtestl
use bgrouse
mrpp dist elev * sex
quit

and

' File: sub2.sub

output subtestl

use mrbp.dat

mrpp sppl spp2 spp3 * trtmt * block
quit

can be invoked from a batch file called BATWIN.BAT:

REM File: batwin.bat

REM Run two blossom submit files
REM Windows version

blossom submit subl

blossom submit sub?2
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When the BATWIN.BAT is invoked, Blossom starts and the SUB1.SUB file is submitted for
processing. When that is finished, the SUB2.SUB file is submitted for processingol @ontr
then returned to the system. The resultant SUBTEST1.0UT output file looks like this:

Multi-Response Permutation Procedure (MRPP)

Data Used
Data File: BGROUSE.DAT
Grouping Variable: SEX
Response Variables: DIST, ELEV

Specification of Analysis
Number of observations: 21
Number of groups: 2
Distance exponent: 1.00000000000000
Weighting factor: n(l)/sum(n(l)) = C(l) =1

Group Summary

Group Value Group Size Group Distance
3.00000000000000 9 1.07214652525827
4.00000000000000 12 1.39643892970427
Variable Commensuration Summary
Variable Name Average Distance (Euclidean if V=1)
DIST 9264.76190476191
ELEV 279.228571428571
Results

Delta Observed = 1.25745647065599

Delta Expected = 1.51256336315532

Delta Variance = 0.270618755524093E-002
Delta Skewness = -2.09758982733399

Standardized test statistic = -4.90391852737653
Probability (Pearson Type Ill) of a
smaller or equal delta = 0.298316800991671E-002

Multi-Response Permutation Procedure for Blocked Data (MRBP)

Data Used
Data file: MRBP.DAT
Grouping Variable: TRTMT
Blocking Variable: BLOCK
Response Variables: SPP1, SPP2, SPP3

Specification of Analysis
Number of observations: 18
Number of groups: 6
Number of blocks: 3
Distance exponent: 1.00000000000000

Group Summary
Group Value Group Size
1.00000000000000 3
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2.00000000000000
3.00000000000000
4.00000000000000
5.00000000000000
6.00000000000000

WWWww

Block Alignment Summary
Block Value Variable Name Alignment Value
1.00000000000000 SPP1 6.50000000000000
SPP2
3.16500000000000
SPP3
2.17000000000000
2.00000000000000 SPP1 9.91500000000000
SPP2 1.16500000000000
SPP3 2.66500000000000
3.00000000000000 SPP1 6.25000000000000
SPP2 1.91500000000000
SPP3 2.41500000000000
Variable Commensuration Summary
Variable Name Average Euclidean Distance
SPP1 7.60150326797386
SPP2 3.10692810457516
SPP3 0.900588235294119

Results
Delta Observed = 1.78519097155486
Delta Expected = 1.98049119623354
Delta Variance = 0.209317316371645E-001
Delta Skewness = -0.389741935641221

Agreement measure among blocks = 0.986120135500246E-001
Standardized test statistic = -1.34989554442147
Probability (Pearson Type 1lI) of a
smaller or equal delta = 0.949929802101351E-001

In a similar fashion, the DOS batch file BATCON.BAT

REM File: batcon.bat

REM Run two blossom submit files
REM Console version

conblos submit subl

conblos submit sub2

invokes the Console version of Blossom using the same submitted command files as above and
produces identical results.

If the last command in the submitted command file is QUIT, control returns to theilogerat
system prompt. With this in mind, a DOS Batch file can be created that invokes sabendl
files in succession. With the DOS change directory (CD) commands, a session caesd proc
several folders of data by running one Batch file.
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Comments in Log, Data and Submit Files (The Quote Command)

A comment is indicated by a single or double quotation mark (' or ") as the first non-blank
character of a line. The command line syntax of the comment is:

' text of comment
- Or -
" text of comment

wheretext of commens the text of the comment to be inserted in the Blossom history
(BLOSSOM.LOG file). Comments can be entered at the Blossom command line, in agech c
the comment is added to the BLOSSOM.LOG file to help document a session. Comments can
also be used within ASCII text data or submit files to indicate what data are irsedhey

variable names mean, and what analyses are being called for. Blossom skips overtdm@sne

in data or submit files. Comments are useful for annotating steps of analysis thraughout
session. For example, entering:

>'now calculate a quadratic LAD regression on ht versus age
writes the comment line to the current session’s log file.

A data file with comments might look like this:

' Spatial coordinates of young and old birds
' data collected summer 1989
GROUPT X_COORD Y_COORD
' begin group 1 = young
1 4 5
1 3 4
1 4 3
' begin group 2 = old
2 3

NNNN
WWN
NN

Contrast this comment function (which writes to the BLOSSOM.LOG file) witiN(Q& E
command below (which writes to the OUTPUT file).

NOTE to Output File

The NOTE command writes the contents of the command line after "NOTE" to thelQUTP
file. The command line syntax of the NOTE command is:

NOTE text of note

wheretext of notas the text to be included as a note in the OUTPUT file.
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An OUTPUT file must be open for a note to be written, i.e., a USE or OUTPUT command must
have been given in the Blossom session prior to the NOTE command for a note to be written.
This command is useful to annotate the OUTPUT file to document a session.

>NOTE The data for this MRPP is from Uncompagre for May, 2000

Contrast the NOTE command (which writes to the OUTPUT file) with the ' or "r(ent)
command above (which sends a comment to the BLOSSOM.LOG file).

QUIT BLOSSOM Session

The QUIT command ceases execution of the Blossom program. The command line syr@ax of t
QUIT command is simply:

QUIT
- Or -

QU

If the console version of Blossom is running, QUIT returns the user to the operatimg syste
prompt.

Simply type
>QUIT
to quit the Blossom session.
In the Windows version, you can also quit the Blossom session by using the "File | Exit" menu

selection, by clicking on the Windows "X" (Close) button on the top right of the Blossom
window title bar, or by entering the ALT + F4 key.

Windows Version Specific Commands and Functions
The Windows version of Blossom has some Windows graphical user interface features.

The Windows version of Blossom has a menu with five main menu selections. Under these are
submenu selections. The Blossom submenu selections nearly all invoke equivalent general
program functions as discussed in the General Program Functions section. Some farections
unique to the Blossom menu and toolbar and these are explicitly discussed here. The function
invoked by each selection is related here.
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The Blossom toolbar consists of buttons below the Blossom menu. These duplicate some of the
menu functions.

In addition, there are Function Key and keyboard shortcuts (key combinations) that invoke some
Blossom features.

CLS to Clear Blossom Qutput Window

In the Windows version of Blossom the CLS command clears (erases) the contents gfuthe out
window (immediately above the "Blossom Command>" entry field). The command lime synt
(from the "Blossom Command>" entry field is simply:

CLS

This is useful to eliminate any previous output before printing or saving contents of the Output
Screen.

Windows Blossom Menu

The Windows version of Blossom has a menu bar with five main menu selections. Under these
are submenu selections. The Blossom submenu selections nearly all invoke equivateht gene
program functions as discussed in the General Program Functions section. Some farections
unique to the Blossom menu and toolbar and these are explicitly discussed here. The function
invoked by each selection is related here.

File

Print

The "File | Print" menu selection prints the contents of the Blossom Windows version
output window to the Windows printer. A "Page Setup" dialog box appears and the
user can select options for printer output, including selecting the printer and printer
properties. This function may be invoked using the CONTROL + P key combination.

Print Selection

The "File | Print Selection” menu selection invokes the same dialog box as & "Fil
Print" menu selection, but only the text selected (highlighted) by the user in the
Blossom output window is sent to the Windows printer.

Exit

The "File | Exit" menu selection stops the Blossom session and stops the program
execution. This is the same as invoking the QUIT command or by clicking the "X"
(Close) button on far right of the Blossom Windows version program title bar. The
standard Windows ALT + F4 key combination also causes the program to quit.
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Copy

The "Edit | Copy" menu selection copies the text selected (highlighted) byrtihe use
the Blossom Windows version output window into the Windows Clipboard. This text
can then be pasted into other programs. This function may be invoked using the
CONTROL + C key combination if the input cursor focus is in the Blossom Windows
version output window.

Select All

The "Edit | Select All" menu selection selects (highlights) all theietkte Blossom
Windows version output window. The selected text subsequently may be copied into
the Clipboard. This function may be invoked using the CONTROL + A key
combination if the input cursor focus is in the Blossom Windows version output
window.

Find

The "Search | Find" menu selection opens a "Find" dialog box. The user can enter text
for which to search from within the Blossom Windows version output window. This
function may be invoked using the CONTROL + F key combination.

Find Next

The "Search | Find Next" menu selection searches for the next occurrence xif the te
specified in the "Search | Find" selection. A (text) Find search within theoBtoss

output window must have been initiated. Once a search is underway, this function can
be invoked using the F3 Function Key.

Use/Submit File

Use Data File

The "Use/Submit File | Use Data File" menu selection invokes the "Use idta F
dialog box as discussed in the USE command above. This function can be invoked
using the F2 Function Key or by clicking on the "Use Dataset" button on the toolbar.

Submit Command File

The "Use/Submit File | Submit Command File" menu selection invokes the "Submit
Command File" dialog box as discussed in the SUBMIT command above. This
function can be invoked using the SHIFT + F2 Function Key or by clicking on the
"Submit Command.File" button on the toolbar.
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Help
There are several Help selections available. Make a selection based on your needs.

BLOSSOM Help

The "Help | Blossom Help" menu selection invokes a Window Help session with a
Blossom Help file. Normal Windows Help functions are available including Find and
searching for Help Topics within the Blossom Help file. This function may be invoked
with the F1 Function Key or the "Help" button on the toolbar.

BLOSSOM Syntax Help

The "Help | Blossom" Syntax Help menu selection sends a list of commands for which
there is syntax help, just as the HELP command discussed above. The user can use the
"HELP <topic>" command line to obtain syntax help on a topic. This function may be
invoked with the F5 Function Key.

User Manual (L ocal Browser)

The "Help | User Manual (Local Browser)" menu selection invokes the default Web
browser on the user’'s computer and opens an HTML version of the Blossom User
Manual. This function may be invoked with the SHIFT + F5 Function Key.

About BLOSSOM
The "Help | About Blossom" menu selection displays a small dialog box with
information about the Blossom Windows version.

WWW: BLOSSOM Updates on Web

The "Help | WWW: Blossom Updates on Web" menu selection invokes the default
Web browser on the user’'s computer and attempts to open the URL
http://www.fort.usgs.gov/products/software/blossom/blossom.asp and displayeste lat
Blossom Web page. Any updates to Blossom programs can be found there.

WWW: FORT USGS Homepage on Web

The "Help | WWW: FORT USGS Homepage on Web" menu selection invokes the
default Web browser on the user’'s computer and attempts to open the URL
http://www.fort.usgs.gov/ and display the Fort Collins Science Center, U.S. Geblogic
Survey Homepage. This is the institution where Blossom was developed.

Windows Blossom T oolbar

The Blossom toolbar consists of buttons below the Blossom menu. These buttons duplicate some
of the menu functions.

Print Button
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The "Print" button of the Blossom toolbar prints output window contents to the
Windows printer. It has the same function as the "File | Print" menu selectionsd$cus
above and may be invoked with key combination CONTROL + P.

Find Button

The "Find" button of the Blossom toolbar has the same function as the"Search | Find"
menu selection discussed above. It is used to search for text within the Blossom
Windows version output window. It may be invoked with the CONTROL + F key
combination.

Copy Button

The "Copy" button of the Blossom toolbar copies selected (highlighted) text from the
Windows version output window to the Clipboard. It has the same function as the
"Edit | Copy" menu selection and may be invoked with the CONTROL + C key
combination if the input cursor focus is in the Blossom Windows version output
window.

Use Dataset Button

The "Use Dataset" button of the Blossom toolbar has the same function as the simple
"USE" command from the command line and the "Use/Submit Files | Use Data File"
menu selection and the F2 Function Key. It invokes a ">Use Data File" dialog box as
discussed with the USE command above.

Submit Command File Button

The "Submit Command File" button of the Blossom toolbar has the same function as
the simple "SUBMIT" command from the command line and the "Use/Submit Files |
SubmitCommand File" menu selection and the SHIFT + F2 Function Key. It invokes
a "Submit Command File" dialog box as discussed with the SUBMIT command above.

Blossom Help Button

The "BLOSSOM Help" button has the same function as the "Help | Blossom Help"
menu selection and the F1 Function Key. It invokes a Windows Help session with the
Blossom Windows Help file.

Function Keysand Keyboard Shortcutsin Windows Blossom

The Function Keys and Keyboard Shortcuts perform the same functions as the meranselecti
and Command line entries (except for the F4 Function Key, which has a unique function not
accessible from other sources). Standard Windows editing key combinations opériatéhei
"Blossom Command>" entry field.
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F1 Function Key - Blossom Windows Help

The F1 Function Key invokes a Windows Help session with Blossom Help. The same
function can be accessed from the "Help | Blossom Help" menu selection and the
"BLOSSOM Help" button on the toolbar.

F2 Function Key - Use Data File

The F2 Function Key invokes the "Use Data File" dialog box as discussed in the USE
command above. This function can be invoked using the "Use/Submit File | Use Data
File" menu selection or by clicking on the "Use Dataset" button on the toolbar.

SHIFT + F2 Function Key - Submit Command File

The SHIFT + F2 Function Key invokes the "Submit Command File" dialog box as
discussed in the SUBMIT command above. This function can be invoked using the
"Use/Submit File | Submit Command File" menu selection or by clicking on the
"Submit Command.File>" button on the toolbar.

F3 Function Key - Find Next

The F3 Function Key searches for the next occurrence of the text specified in the
"Search | Find" selection. A (text) Find search within the Blossom output window
must have been initiated. Once a search is underway, this function can be invoked
using the "Search | Find Next" menu selection.

F4 Function Key - Command History Popup

When the input cursor is focused within the "Blossom Command>" entry field, the F4
Function Key invokes a popup list selection box with a list of up to 100 previous
commands the user has entered during the current Blossom session. Clicking on
(selecting) a command recalls it to the "Blossom Command>" entry field vimeag

be edited or accepted and then entered (press the ENTER key). The F4 Function Key
is the only way to invoke this operation.

ALT + F4 Function Key - Quit Blossom Session

The standard Windows ALT + F4 Function Key ceases the Blossom session and stops
the program execution. This is the same as invoking the QUIT command or by
clicking the "X" (Close) button on far right of the Blossom Windows version program
title bar. The "File | Exit" menu selection also causes the program to quit.

F5 Function Key - BLSSOM Syntax Help

The F5 Function Key sends a list of commands for which there is syntax help, just as
the HELP command discussed above. The user can use the téjiit’Rrommand

line to obtain syntax help on a topic. This function may be invoked with the "Help |
Blossom" Syntax Help menu selection.
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SHIFT + F5 Function Key - User Manual

The SHIFT + F5 Function Key invokes the default Web browser on the user’s
computer and opens an HTML version of the Blossom User Manual. This function
may be invoked with the "Help | User Manual (Local Browser)" menu selection.

F10 Function Key - Access Menu Bar
The standard Windows F10 Function Key function accesses the Blossom program
menu bar.

CTRL + A Key Combination - Select All

With the input cursor focused in the Blossom Windows version output window, the
CTRL + A key combination selects (highlights) all text in that window. Thisnhext
then be copied to the Windows Clipboard.

CTRL + C Key Combination - Copy (to Clipboard)

With the input cursor focused in the Blossom Windows version output window, the
CTRL + C key combination copies selected (highlighted) text in that window to the
Windows Clipboard.

CTRL + F Key Combination - Find

The CTRL + F key combination opens a "Find" dialog box.The user can enter text for
which to search from within the Blossom Windows version output window. This
function also may be invoked using the "Search | Find" menu selection.

CTRL + P Key Combination - Print

The CTRL + P key combination prints the contents of the Blossom Windows version
output window to the Windows printer. A "Page Setup" dialog box appears and the
user can select options for printer output, including selecting the printer and printer
properties. This function may be invoked using the "File | Print" menu selection.
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Statistical Commands

Blossom currently has six statistical commands, MRPP, SP, MEDQ, LAD, OLS GvdTBe
MRPP command can specify one of three multiresponse permutation procedures.

1) Multiresponse permutation procedures (MRPP)
2) Multiresponse randomized block permutation procedures (MRBP)
3) Permutation tests for matched pairs (PTMP)

These procedures (MRPP, MRBP, and PTMP) are distribution-free techniques flog maki
inferences about grouped data. Their advantages over many classical techniquetheclude
ability to select an analysis space commensurate with the geometry oféalaes gatrceived by

the investigator. Several classical univariate and multivariate pareuaadrrank tests can be
emulated with these procedures as well. The simplest MRPP analysis isfoousisting of

two or more observations on objects in two or more groups. The MRBP and PTMP variants are
for similar data that are blocked or paired.

Since the MRPP command can emulate so many different statistical tesigedHration of the
command line can be quite complex. However, Blossom uses default values, which for routine
analysis makes the command easy to use.

The MEDQ command calculates univariate or multivariate medians and distandtesusitter
by groups specified by a grouping variable or for the entire data file being used. Optians al
you to specify quantiles to report that differ from the default quantiles.

The SP command calculates the multiresponse sequence procedure to tesofolefirst-
autoregressive patterns (serial dependency). The default value produces as iaralydidean
space. A sequencing variable that determines the order of the data can be seldotsdior B
assumes by default that the order in the file is the sequential order of interest.

The LAD command estimates a least absolute deviation regression or an optiond quanti
regression. The model specified in the LAD command line is considered the full farame
alternative model for hypothesis tests. The associated command, HYPOTHEIIS,used to
specify a reduced parameter null model that is tested against the modeédpmcihe LAD
command.

The OLS command estimates an ordinary least squares regression. It hasiatedssoc
HYPOTHESIS command that performs a similar function in testing hypothedes assbciated
HYPOTHESIS command does with the LAD command.
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The COV command provides for testsggdample empirical coverage tests it used with a
grouping variable and related goodness-of-fit tests if specified without a groupiaiglea

The MRPP variants, MRSP, LAD, OLS, and COV are discussed in turn. MEDQ is discussed
with MRPP as it provides descriptive estimates that are useful for integoresults of
hypothesis tests with MRPP.

Multiresponse Permutation Procedure (VIRPP)
MRPP is best introduced with an example. The following is a bivariate examplectrapt
Biondini et al. (1985). A similar example is found in Zimmerman et al. (1985), Biondini et al.

(1988), and a univariate example is given in Slauson (1988).

In Figure 1 the values of two variablesandy, are shown for seven observations in two groups,
A and B.

6 —
5 oAl
4 oA2
°
3 3 °
OI ~ B1X A3
- 2 B2X XB3
1L <B4 Group
oA
0 | | | | | %< B
0 1 2 3 4 5
X_Coord

Figure 1. The observed sample for 2 groups with bivariate response Y _Coord
and X_Coord.

The objects in groups A and B seem to be clustered or concentrated in different parksyof the
plane representing the two response (measured) vaneaiey. One way to determine if the

two groups are so clustered is to measure or calculate the distances betpaies @ilmembers

of each group and calculate an average distance for each group (A = 1.609, B = 1.344). If group
members are clustered together, then the intragroup average distancesmall lmespared to
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cases where the group members are spread out and overlap more with other groups. For
example, Figure 2 shows the same data except that the groups that observations A3 and B2
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Figure 2. One of the possible other 34 permutations of the data in Figure 1.

belong to are switched. In this case the intragroup average distances willtbetgeeafor the
case first shown above (A =2.419, B = 1.717).

The strategy of MRPP is to compare the observed intragroup average distahdhs aierage
distances that would have resulted from all the other possible combinations of the dataeunder
null hypothesis. The test statistic, usually symbolized with a lower casedjédtéhe average of

the observed intragroup distances weighted by relative group size, 3/7 and 4/7 in thisvease. T
observed deltad(,) is compared to the possible deltdsresulting from every permutation of

the above 7 points into 2 groups of 3 and 4 members. If the hypothesis that the two groups are
not different (the null hypothesis) is true, then each of the possible assignmentggpens) is
equally likely. In this example there are 35 permutations possible, each with a 1/35 (1/35 =
0.0286) chance of occurring. Here are the Blossom commands to read in the data file,
EXAMPLEL.DAT, and compute the MRPP results.

>USE EXAMPLE1.DAT / GROUP X_COORD Y_COORD
>MRPP X_COORD Y_COORD * GROUP / NOCOM EXACT

X_COORD and Y_COORD are the 2 response variables, GROUP is the grouping variable, and
the exact version of MRPP is chosen since this is such a small sample. NOG@igssiigat no
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multivariate commensuration is desired. Blossom by default will commensustiplen
variables by the average Euclidean distance for each variable ignoring grougatrdétink of
this as similar to the usual parametric approach of standardizing variableswariamte
(average squared Euclidean distance).

Here are the results:

Exact Multi-Response Permutation Procedure (EMRPP)

Data Used
Data File: Examplel.dat
Grouping Variable: GROUP
Response Variables: X_COORD, Y_COORD

Specification of Analysis
Number of observations: 7
Number of groups: 2
Distance exponent: 1.00000000000000
Weighting factor: n(l)/sum(n(l)) =C(l) = 1

Group Summary

Group Value Group Size
1.00000000000000 3
2.00000000000000 4

Variables are not commensurated

Results
Observed delta = 1.45782245613148
Probability (Exact) of a smaller or equal delta = 0.285714285714286E-001

The probability valueR-value) is 0.0286 which means that the observed delta was the smallest
among the 35 possible deltas.

Use the EXACT option for MRPP with caution for it can take a long time if the sampkeae
greater than about 20, depending on the computer.

By default MRPP does not compute exact probabilities but uses an approximation otthe exa
distribution of the test statistid) to estimate th®-value. The default approximation is based
on the first three exact moments (mean, variance, and skewness) of the permutebatiatis
evaluated as a Pearson type Il distribution (Berry and Mielke 1983, lyer et al. 1983 khell
Berry 2001). The moments approximation avoids the simulation error associated with Monte
Carlo resampling tests (Mielke and Berry 1982; Berry and Mielke 1985). However,ex¢heff
option of approximating the permutation distribution of the test statistic with a Noamte
resampling procedure with the option NPERM. By default NPERM uses 5,000 (4,999 +
observed delta) random samples to approximate the permutation distribution but theyuser ma
specify any desirable number of resamples, e.g., NPERM = 10000. Most examples we’ve
encountered yield simild-values from the Monte Carlo resampling and Pearson type I
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distribution approximations, but it is possible for the Monte Carlo resampling apptmarta
yield better estimates for some problems, e.g., with a large number of distweteclamped in
some region of the data space or if interest is in upper tail probabilitied?(2.§.90) associated
with detecting regularity of spatial data distributions. Further investiyafi these properties is
an open area for research.

The next example shows how to emulate a 2-satvtpl with MRPP. Consider the data for
two groups in Figure 3 (from Mielke 1986). The single response variable is represented on the
horizontal axis and the number of observation on the vertical.

Group 1
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Figure 3. Two-group example from Mielke 1986 (no outliers)
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Group 1 (median = 15.10, mean = 15.09 ) and 2 (median = 15.40, mean = 15.42 ) appear to differ
slightly (0.3) in central tendency. To test for equality of means withtést, USE the data file
EXAMPLE3.DAT, specify a title if desired, and enter the following MRPP command.

>MRPP RESPONSE * GROUP / V=2 C=2

The V = 2 option causes MRPP to compute squared Euclidean distances (V = 1 is the default
value and specifies Euclidean distance). The C = # option specifies how the intragemgedist
are to be averaged. If C = 2 is specified, then the analysis mimics the tClaasacsetrid-test,
where the group distances are weighted by the relative degrees of freedom. Khéhthet
intragroup distances are weighted by relative group size, then averaged tot ateive. aThis is

the default value. In this example, since the group sizes are equal, the choice of C does not
matter. In general choose C =2 and V = 2 to calculate a test that mimics tlealgesametric

t- andF-tests for univariate data and Hotelling‘'square or MANOVA for multivariate data.

Here are the results of the above MRPP command:

Multi-Response Permutation Procedure (MRPP)

Data Used
Data File: Example3.dat
Grouping Variable: GROUP
Response Variables: RESPONSE

Specification of Analysis
Number of observations: 30
Number of groups: 2
Distance exponent: 2.00000000000000
Weighting factor: (n(1)-1)/sum(n(l)-1) = C(l) = 2

Group Summary

Group Value Group Size Group Distance
1.00000000000000 15 0.213333333333333E-001
2.00000000000000 15 0.270476190476190E-001
Results

Delta Observed = 0.241904761904761E-001
Delta Expected = 0.808275862068974E-001
Delta Variance = 0.156341252315437E-004

Delta Skewness = -2.56497266493768

Standardized test statistic = -14.3239993158952
Probability (Pearson Type IlIl) of a
smaller or equal delta = 0.192580769475062E-005

The very smalP-value (0.0000019) indicates that these two samples are unlikely to come from
populations with the same mean, i.e., they are different. The two sataptdased on normal
theory also gives a very loR+value for these data (P < 0.000001).

Now consider the same data, but with one difference, viz, a change in one of the 30 data values
(Fig. 4).
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Figure 4. Two-group example from Mielke 1986 (one outlier in Group 2)

To compare these samples USE the file EXAMPLE4.DAT and issue the followingPMRP
command.

>MRPP RESPONSE * GROUP / V=2 C=2

Here are the results:

Multi-Response Permutation Procedure (MRPP)

Data Used
Data File: EXAMPLE4.DAT
Grouping Variable: GROUP
Response Variables: RESPONSE

Specification of Analysis



Number of observations: 30
Number of groups: 2
Distance exponent: 2.00000000000000
Weighting factor: (n(1)-1)/sum(n(l)-1) = C(l) = 2

Group Summary

Group Value Group Size Group Distance
1.00000000000000 15 0.213333333333333E-001
2.00000000000000 15 1.33561904761905
Results

Delta Observed = 0.678476190476191
Delta Expected = 0.664275862068965
Delta Variance = 0.255788784003516E-003
Delta Skewness = -0.989342490484899

Standardized test statistic = 0.887886882113226
Probability (Pearson Type Ill) of a
smaller or equal delta = 0.814363486267441
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Now theP-value is quite large (0.81) indicating that it is likely that these samplesfcomehe

same population, i.e., there is no difference between the groups. The variances of the 2 groups

differ considerably as evidenced by the average within group distance (when squaishE&ucl

distances are used this value is twice the variance). The medians are still 15.10 and 15.40,
respectively, but the means now are 15.09 and 15.23, respectively. The parametric two-sample
t-test also results in a largevalue (0.54). The reason for the discrepancy in results for data in

which only one value is changed is the use of squared distance. In the squared Euclidean

distance analysis space the distance of the outlier from the bulk of the dategerates

because it is squared. Now compare the results of analyzing the data of Examplpater a s

corresponding to the geometric space of the data itself. Issue the following confteandiag

the data in EXAMPLE4.DAT.

>MRPP RESPONSE * GROUP / V=1 C=1

which, since these are the default values, is equivalent to

>MRPP RESPONSE * GROUP

Here are the results (EXAMPLE4B.OUT).

Multi-Response Permutation Procedure (MRPP)

Data Used
Data File: EXAMPLE4.DAT
Grouping Variable: GROUP
Response Variables: RESPONSE

Specification of Analysis
Number of observations: 30
Number of groups: 2
Distance exponent: 1.00000000000000
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Weighting factor: n(l)/sum(n(l)) = C(l) = 1

Group Summary

Group Value Group Size Group Distance
1.00000000000000 15 0.116190476190476
2.00000000000000 15 0.531428571428572
Results

Delta Observed = 0.323809523809524
Delta Expected = 0.418390804597701
Delta Variance = 0.600024745882859E-004
Delta Skewness = -2.36855793079810

Standardized test statistic = -12.2101390555564
Probability (Pearson Type IIl) of a
smaller or equal delta = 0.626210563713154 E-005

Now the resulting-value (0.0000063) is in line with the results obtained from the data without
the single aberrant value. This is a demonstration of the sensitivity of varignaee

Euclidean distance) based statistics and estimates of means to even a dyigtevalie.
Estimates of medians and statistics based on absolute deviations (Euclidewe déstfar less
sensitive to outlying data observations (Mielke and Berry 2001).

Here is another example of how it is possible to get varying statisticasrbguhethods that
differ in their underlying geometry. The distance and elevation change (in nfetarsle and
female blue grouséendragapus obscurysnigrating from where they were marked on their
breeding range to their winter range are given in the data file BGROUSE.DATeaplbthed in
Figure 5 (data from Cade and Hoffman 1993). Generally the males seem to mitiiateafad
higher than the females and distance moved and elevation change are correl@t@d )

To test gender differences in both distance and elevation, the multivariate partestts

Hotelling'sT 4 which givesP = 0.033 forF = 4.145 withdf = 2, 18, indicating some evidence of

a difference in the bivariate means (males = 13388.9, 493.0; females = 5966.7, 231.66, distance
and elevation respectively). To perform a permutation version of Hotellifyg/ou would issue

the following commands:

>USE BGROUSE.DAT
>MRPP DIST ELEV * SEX/HOT V =2 C =2 EXACT

where the options HOT indicated Hotelling’s variance/covariance standavdiptihe multiple
dependent variables, V = 2 requests squared Euclidean distances, and C = 2 requests that groups
be weighted by their relative degrees of freedom, and EXACT requests a complatration

of all possible permutations for computiRgyalues.
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Figure 5. Migration distance and elevation change for 9 male and 12 female blue grouse
(from Cade and Hoffman 1993). M and F denote bivariate medians for males and females,
respectively.

Here are the results:

Exact Multivariate Hotelling-type Permutation Test

Data Used
Data File: bgrouse.dat
Grouping Variable: SEX
Response Variables: DIST, ELEV

Specification of Analysis
Number of observations: 21
Number of groups: 2
Distance exponent: 2.00000000000000
Weighting factor: (n(1)-1)/sum(n(l)-1) = C(l) = 2

Group Summary

Group Value Group Size
3.00000000000000 9
4.00000000000000 12

Hotelling's Commensuration Applied to Variable Values.

Results
Observed delta = 0.177330608239245
Probability (Exact) of a smaller or equal delta = 0.296295036233117E-001
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Variance/covariance Matrix:
For Variables:
Variable 1: DIST 1412312380.95238 28404633.3333333
Variable 2: ELEV 28404633.3333333 1134020.66666667

Notice that there is little difference between Fealues for the permutation (0.030) and
parametric normal theory (0.033) versions of Hotellifig'$or this data.

Now if we want to analyze these data in the more natural Euclidean distance spear,issue
the following commands:

>MRPP DIST ELEV * SEX/EXACT

which uses the default average Euclidean distance of each variable, ignoring thergouge s

to standardize the variables so that they have an average pairwise Euclideae @isfa= 1.0.
Although distances and elevation changes are in the same units (meters) so tigdittwe m
consider not commensurating the variables (NOCOM option), there is some aomrbéttveen
distance moved and elevation change so that it is possible that commensuration will provide
more powerful hypothesis tests (Mielke and Berry 1999, 2001). Here are the results:

Exact Multi-Response Permutation Procedure (EMRPP)

Data Used
Data File: bgrouse.dat
Grouping Variable: SEX
Response Variables: DIST, ELEV

Specification of Analysis
Number of observations: 21
Number of groups: 2
Distance exponent: 1.00000000000000
Weighting factor: n(l)/sum(n(l)) = C(l) =1

Group Summary

Group Value Group Size
3.00000000000000 9
4.00000000000000 12
Variable Commensuration Summary
Variable Name Average Distance (Euclidean if V=1)
DIST 9264.76190476191
ELEV 279.228571428571
Results

Observed delta = 1.25745647065724
Probability (Exact) of a smaller or equal delta = 0.316742081447964E-002
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The same analysis but without any commensuration (NOCOM option) prodéced £08,

over twice the size of the above analysis with average Euclidean distance conatn@ms

Notice that thd>-value with the MRPP statistic based on Euclidean distances (V = 1) and
average Euclidean distance commensuration is an order of magnitude $ml003) than

for the permutation version of Hotellings (P = 0.030) based on squared Euclidean distances
(V = 2) and the variance/covariance commensuration. There are several contramiong f
Notice, that the bivariate medians for males and females in Figure 5 indicatdeetbantroids

of the groups were shifted in the same direction as the correlation between didt&1geand
elevation change (ELEV). Simulations conducted by Mielke and Berry (1999) demonstetted t
the average Euclidean distance commensuration of bivariate variables providedmrear

than the variance/covariance standardization when the group structure was shaftebtpane
covariance structure of the 2 variables. Furthermore, since the MRPP compartbovisWi
focus on shifts in the bivariate medians which were separated by 9,271.6 m rather than shifts
the bivariate means which were only separated by 7,426.8 m, there was a largéect stifeet
size for the Euclidean distance compared to the squared Euclidean distance. afalytsisse
data, the analysis based on Euclidean distances and bivariate medians was moué\pidverf
greater estimated effect sizes (shift in bivariate medians). Whenoingsgare shifted

orthogonal to the covariance structure of the dependent variables, then MRPP an#iyses wi
Hotelling’s variance/covariance standardization (option HOT) and V = 1 can be mondybowe
The bivariate medians for the blue grouse movements in Figure 5 were estimataddihei
following command:

>MEDQ DIST ELEV*SEX/SAVE

where the SAVE option stores the distance between each observation and its group bivariat
median (column labeled DIST2MVM) into a data file (BGROUSE.MQD) that can leefase
additional analysis or graphing. The output are:

2-Dimensional Median and Distance Quantiles

Data Used
Data File: bgrouse.dat
Grouping Variable: SEX
# Report Variables: 2
Report Variables: DIST, ELEV

Specification of Analysis
Total Number of observations: 21
Number of groups: 2
Results for Group Value: 3.00000000000000
Observations in Group: 9
Iterations to Solution: 90
Solution Tolerance: 0.160000000000000E-010

Within Group Median Coordinates for Variables
Variable Name Multivariate Median Coordinate
DIST 11797.1821746481
ELEV 292.206308872680
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2-Dimensional Distance From Median Quantiles:
Group Average Distance to Multivariate Median: 4260.34011405493

Quantile Distance from Median

0.00 [Minimum] 109.242656674530
0.05000000000000 109.242656674530
0.01000000000000E+01 109.242656674530
0.250000000000000 1238.64360871698
0.50 [Median] 2317.09148213042
0.750000000000000 5401.29701151104
0.900000000000000 17603.3339095665
0.950000000000000 17603.3339095665
1.00 [Maximum] 17603.3339095665

Results for Group Value: 4.00000000000000
Observations in Group: 12
Iterations to Solution: 500
Solution Tolerance: 0.160000000000000E-010

Within Group Median Coordinates for Variables
Variable Name Multivariate Median Coordinate
DIST 2526.84016409665
ELEV 139.368362056321

2-Dimensional Distance From Median Quantiles:
Group Average Distance to Multivariate Median: 5404.58960888227

Quantile Distance from Median

0.00 [Minimum] 1229.04776406248
0.050000000000000 1229.04776406248
0.0100000000000E+01 1732.45504780921
0.250000000000000 1883.84586719683
0.50 [Median] 2429.25301534112
0.750000000000000 6284.57605921377
0.900000000000000 12575.0954898496
0.950000000000000 25480.7192923492
1.00 [Maximum] 25480.7192923492

Distances to multivariate median were written to labelled file "bgrouse.MQD"

The bivariate median coordinates are given for the 2 variables (DIST and ELEV), andrgum
guantiles are provided for the distances between observations and the bivariate medietm for
group. The average distances to the bivariate median differ for males (4,260.3) aed femal
(5,404.6), suggesting that there may be dispersion differences being detected by the MRP
analysis as well as shifts in bivariate medians. It is possible to test féoityeghimultivariate
dispersions using a permutation version of a modification of Van Valen’s (1978) tesdtethe e
of the shift in group centroids removed are made with the multivariate medianghatihére
multivariate means. This is accomplished for the blue grouse movements by perfarming
permutation version of the 2-sampltest on the distances from the bivariate medians (variable
DIST2MVM) by sex in the file saved from the previous command:

>USE BGROUSE.MQD
>MRPP DIST2MVM * SEX/V =2 C =2 EXACT
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The output below suggests there is little statistical support for dispersieredifes.

Exact Multi-Response Permutation Procedure (EMRPP)

Data Used
Data File: bgrouse.MQD
Grouping Variable: SEX
Response Variables: DIST2MVM

Specification of Analysis
Number of observations: 21
Number of groups: 2
Distance exponent: 2.00000000000000
Weighting factor: (n(l1)-1)/sum(n(l)-1) = C(l) = 2

Group Summary

Group Value Group Size

3.00000000000000 9

4.00000000000000 12
Results

Observed delta = 82227845.9603918
Probability (Exact) of a smaller or equal delta = 0.708165209403600

Note that tests for equality of univariate dispersions based on the median modifofati

Levene’s test (Good 2000) can also be performed by requesting the univariate medians be
calculated for each group with MEDQ, saving the distances from the group medians tato a da
file, and then comparing those distances (DIST2MVM) with the permutation versiontdgetie
implemented in MRPP by using the V = 2, C = 2 options. Testing for equality of dispersions
after removing the effect of the estimated medians is one of those spe@alibase tests based
on squared deviations (V = 2) have better statistical performance than using Budisd@aces

(V = 1).

Because the sample size is only 21 for the blue grouse data, all the examples usexhtie opt
EXACT enumeration of all permutations to compute probabilities. This is not ptdotaa

with larger sample sizes and by default MRPP would use the Pearson Type Illl smoment
approximation. The following command yields the default approximation:

>MRPP DIST ELEV * SEX

The output is:

Multi-Response Permutation Procedure (MRPP)

Data Used
Data File: BGROUSE.DAT
Grouping Variable: SEX
Response Variables: DIST, ELEV

Specification of Analysis
Number of observations: 21



48

Number of groups: 2
Distance exponent: 1.00000000000000
Weighting factor: n(l)/sum(n(l)) = C(l) =1

Group Summary

Group Value Group Size Group Distance
3.00000000000000 9 1.07214652525827
4.00000000000000 12 1.39643892970427
Variable Commensuration Summary
Variable Name Average Distance (Euclidean if V=1)
DIST 9264.76190476191
ELEV 279.228571428571
Results

Delta Observed = 1.25745647065599

Delta Expected = 1.51256336315532

Delta Variance = 0.270618755524093E-002
Delta Skewness = -2.09758982733399

Standardized test statistic = -4.90391852737653
Probability (Pearson Type IlIl) of a
smaller or equal delta = 0.298316800991671E-002

Alternatively, we can approximate the probabilities by Monte Carlo resampiihghe
command:

>MRPP DIST ELEV * SEX/NPERM = 10000

where the option NPERM specifies that 9,999 random samples + the 1 observed téseseatist
to be used to approximate the probabilities. The output is (BGROUSEG6.0UT):

Multi-Response Permutation Procedure (MRPP)
With Resampling

Data Used
Data File: BGROUSE.DAT
Grouping Variable: SEX
Response Variables: DIST, ELEV

Specification of Analysis
Number of observations: 21
Number of groups: 2
Distance exponent: 1.00000000000000
Weighting factor: n(l)/sum(n(l)) = C(l) =1
Random Number Seed: 3086554
Number of Samples: 10000

Group Summary

Group Value Group Size Group Distance
3.00000000000000 9 1.07214652525827
4.00000000000000 12 1.39643892970427

Variable Commensuration Summary
Variable Name Average Distance (Euclidean if V=1)
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DIST 9264.76190476191
ELEV 279.228571428571
Results

Delta Observed = 1.25745647065599
Probability (Resample)of a smaller or equal delta = 0.310000000000000E-002

Notice that with these data that the exact, Pearson Type Il approximation, anddddote
resampling approximation all yield very simiRivalues even though sample sizes were oy

9 andn =12.

If the data given to Blossom have been rank transformed (substituting the originalbyeatibes

rank order), then MRPP can be used to emulate some well known nonparametric rank tests.
Using ranks combined with the selection of V = 2 and C = 2 produces these analyses. Analyze
the data from EXAMPLE4.DAT, which have been rank transformed in the file EX4RANK,.DAT
with a permutation versions of the Mann-Whitney-Wilcoxon test as follows.

>USE EX4RANK.DAT
>MRPP RANK * GROUP /V=2 C=2

Multi-Response Permutation Procedure (MRPP)

Data Used
Data File: EX4ARANK.DAT
Grouping Variable: GROUP
Response Variables: RANK

Specification of Analysis
Number of observations: 30
Number of groups: 2
Distance exponent: 2.00000000000000
Weighting factor: (n(1)-1)/sum(n(l)-1) = C(l) = 2

Group Summary

Group Value Group Size Group Distance
1.00000000000000 15 43.2047619047619
2.00000000000000 15 103.133333333333
Results

Delta Observed = 73.1690476190476
Delta Expected = 151.896551724138
Delta Variance = 55.3406453148045
Delta Skewness = -2.57249416778241

Standardized test statistic = -10.5828922341408
Probability (Pearson Type Ill) of a
smaller or equal delta = 0.400568453547526E -004

If there are more than three groups the test is analogous to the Kruskal-Walliayoaealysis
of variance by ranks. Note that both these tests are for univariate data (one respalnsg, var
but MRPP also is able to analyze multivariate data (ranked or unranked) as witig @ffe
generalization of these tests. Further, the approximation used by MRPP is nuioateatb@n the
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normal approximation used by the classical rank tests, since it uses the skevimess of
probability distribution in the Pearson Type lll approximation. Of course, it is alsibleoss
approximate the probabilities with the Monte Carlo resampling option. Since thissese V =

2 and C = 2, they are not congruent with the data space. Use the default values of V and C to
produce a congruent analysis. Thus besides generalizing some standard nonpagatedtic t
multiple dependent variables, MRPP adds congruent Euclidean distance variantsatiistizalst
repertoire.

The TRUNC = # (truncation) option, if given on the MRPP command line, causes the MRPP
analysis to replace interobject distanas)(greater than the truncation value (caB)twith the
truncation value4; ;= A; ;1 A, ; <B; A;; =B:A;; > B). For example,

>MRPP VAR1 VAR2 * GROUP / TRUNC =55

will replace distances greater than 55 with 55 in the permutation calculationgs Uiesul for
detecting pattern and group clustering where one (or more) of the groups itsetsctustere

than one region of the analysis space and another group is distributed uniformly or randomly in
the same space. The truncation value (e.g., 55) specified is the average diameter of t
sub-clusters. Data plotting and experimentation with truncation values are adwiseadpl€s

where truncation is useful include: One kind of archeological artifact may be found in tw
distinct areas of a site while another artifact type is found scattered throtighgite.

Clumping of plants in a homogeneous site or pattern of habitat types within a landscape are
detectable with a truncated MRPP analysis (Reich et al. 1991). For further indorsee

Mielke (1991).

The EXCESS option allows for several comparisons not possible with other sthtistic

procedures. MRPP takes data that, before analysis, are classified into groupsisiraticase

the groups represent comparable levels of classification (e.g., male;feewtiments a, b, and c;

or before and after observations). But in some cases one of the groups may not be comparable to
the other groups of interest. This happens for example when one group is considered
miscellaneous or otherwise contains unclassifiable objects. When such a graui syt in

MRPP, be treated as an excess group. Since the concept of an excess group is ntht dealt wi

most familiar statistical methods, a few examples will help clangyidea.

In a study of the spatial distribution of artifacts in an archeological sitg Beal. (1983) note

that many times artifacts can not readily be classified. A particuitacarnay be anomalous,

lack sufficient defining characteristics, or be broken or too worn to be classifidabt# objects

are definitely artifacts and may contain information, yet treating suclsa@taequal footing

with other well defined artifact classes seems inappropriate. Investigsioally have the

choice of excluding such miscellaneous classes from analysis or including theiskargdias

in results or interpretation. MRPP gives the additional choice of including theseytoep, but
without elevating its status to that of the other groups. The observations of the exupsE'g
treated as background noise, against which the observations on the other groups are analyzed.
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Another example of the use of an excess group concerns the presence of higher lead
concentration in soils near the center of a city (Mielke et al. 1983). The locat@mmdy(spatial
coordinates) of high concentration soil samplesigdian) were compared with the locations of
all samples, low and high concentration, to determine whether higher concentrati@usaséle
associated with the city center.

In the excess group MRPP with a group of sizad an excess group of simean intragroup
average distance is computed for each possible combinatioobservations out of the+ m
possible observations. These values comprise the distribution of the test stigfistjco which
is compared the actual intragroup distance.

The excess group can be implemented in comparisons of used versus available resaurces f
particular organism in a design where a random sample of resources is obtained and then
presence (used) and absence (unused) observed. The used habitats are alike in thetaresy all

the features necessary for the organism's survival. But the unused habitats raay sach a

unitary group, some may be suitable for the organism and just happen not to be used, others may
not be suitable at all, and among these some may not be suitable for lack of one requimr@ment a
others for lack of another requirement.

Here is an example comparing used versus available blue grouse habitat deschbduhbslt
area measurements of four kinds of trees present in stands on winter range (d@adecsnd
Hoffman 1990). Note that thee= 16 forest stands measured are an exhaustive and exclusive
partitioning of the finite population of habitats studied (i.e. no random sampling assumptions

apply).

>USE HABITAT.DAT
>TITLE Basal Area of Douglas Fir, Juniper, Aspen, and Other
>MRPP DFIR JUNIP ASPEN OTHER * USE / EXCESS NOCOM

Here are the results:

Multi-Response Permutation Procedure (MRPP)

Data Used
Data File: HABITAT.DAT
Grouping Variable: USE
Response Variables: DFIR, JUNIP, ASPEN, OTHER

Specification of Analysis
Number of observations: 16
Number of groups: 1
Distance exponent: 1.00000000000000
Weighting factor: n(l)/sum(n(l)) =C(l) =1

Group Summary
Group Value Group Size Group Distance
1.00000000000000 12 9.16824455483135
2.00000000000000* 4*
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* Excess group
Variables are not commensurated

Results
Delta Observed = 9.16824455483135
Delta Expected = 10.0781647461370
Delta Variance = 1.26844531569669
Delta Skewness = -0.531303217124851

Standardized test statistic = -0.807918267201095
Probability (Pearson Type Ill) of a
smaller or equal delta = 0.199433916249275

In this example the used habitats do not seem to differ.200) in tree basal area from the
available (i.e., used plus unused) habitats. NOCOM was selected for no variable
commensuration because tree basal areas were all in the same units (stprafieanand
occurred at the same scale (tens of square meters/ha). However, there isvsoiagon among
the basal areas, so commensurating them with the average Euclidean distabealesaable.
Use of the average Euclidean distance here leads to even less difference wattt Brr€).896.

The ARC =numoption allows an analysis to be conducted on univariate circular data such as
time or compass orientation. This analysis recognizes that there are no endpbats to t
measurement scale. Distances between replicates used in the ARC amalylseshorter of the

2 possible distances around the circular distribution, i.e. minx{land ARC -4 - X|). The

ARC = numspecifies the number of units in the circular distribution so that input data can be
standardized to values on a unit circle. The AR@mcommand submits the standardized data
to an MRPP program configured for circular distributions.

As an example, consider an analysis of the orientation of movements of striped newts
(Notophtalmus peristriatjsmmigrating to and emigrating from Breezeway Pond, Florida in

1985 - 1990 (Dodd and Cade 1998). Figure 6 presents the angular orientation of 585 females
immigrating to and 564 emigrating from the pond that were captured in pitfall buckdétsansl
outside of a drift fence surrounding the pond.

Select the data file and implement the arc-distance analysis with theifiglloemmands.

>USE NPOF.DAT
>MRPP ANGLE * EI/ ARC=360

The grouping variable El has 1's for emigrating and 2's for immigrating fentdére are the
results of this analysis:

Multi-Response Permutation Procedure (MRPP)

Data Used
Data File: NPOF.DAT
Grouping Variable: EI
Response Variables: ANGLE
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Specification of Analysis
Number of observations: 1149
Number of groups: 2
Distance exponent: 1.00000000000000
Weighting factor: n(l)/sum(n(l)) = C(l) =1
ARC distances used: 360.000000000000
Intervals in unit circle

Group Summary

Group Value Group Size Group Distance
1.00000000000000 585 89.1737501463529
2.00000000000000 564 89.5317889220614
Results

Delta Observed = 89.3494976393900

Delta Expected = 89.7432610693134

Delta Variance = 0.417749337172887E-002
Delta Skewness = -1.96939238666513

Standardized test statistic = -6.09224688551458
Probability (Pearson Type IIl) of a

smaller or equal delta = 0.79657683759233 3E -003

The ARC analyses indicated that immigration and emigration orientation ofifrexlstewts
differed P = 0.008). More females immigrated to the northeast and southwest, whereas more
emigrated from the southeast and northwest. The arc-distance analyses wiRrakéRiRely to

be better than the more conventional Watson’s test, especially useful when comipaulag c
distributions that have unequal angular variation or that are multimodal (Mielke aryd2Bet).

The ARC option in Blossom is intended to be used with any univariate cyclical data (angula
orientiation, days of the year, hour of the day); more complicated transformatigussitae for
spherical data and combinations of scalar and circular data (see Mielke 1986, andcahtielke
Berry 2001).

Immigrating Emigrating

270 270

180 180

Figure 6. Pattern of immigration and emigration for female striped newts at Breezeway Pond, Florida, 1985-1990.
Length of the lines indicate number of newts counted in pitfalls (data from Dodd and Cade 1997).
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Multiresponse Randomized Block Procedure (MRBP)

Data from a complete randomized block design or data that can be construed in a ti®atment
block manner can be analyzed by specifying a blocking variable on the MRPP command line.
The following data (Mielke and lyer 1982) are from a mine reclamation study comparing
oven-dried biomass (gm) of 3 species of shrubs in 6 treatments (1 = no fertilizer, 2 = low
fertilizer, 3 = high fertilizer, 4 = mulch and no fertilizer, 5 = mulch and low feeti| and 6 =

mulch and high fertilizer) by 3 blocks (different plots). A complete randomized blocsanizl
done with the following commands:

>USE MRBP.DAT
>MRPP SPP1 SPP2 SPP3 * TRTMT * BLOCK

Here are the results of the MRBP analysis with the default multivariableensuration and
block alignment. Note, the original analysis by Mielke and lyer (1982) did not commermurate
align the data and you can duplicate their analysis by using the options /NOALIGNMOCO

Multi-Response Permutation Procedure for Blocked Data (MRBP)

Data Used
Data file: MRBP.DAT
Grouping Variable: TRTMT
Blocking Variable: BLOCK
Response Variables: SPP1, SPP2, SPP3

Specification of Analysis
Number of observations: 18
Number of groups: 6
Number of blocks: 3
Distance exponent: 1.00000000000000

Group Summary
Group Value Group Size

1.00000000000000 3
2.00000000000000 3
3.00000000000000 3
4.00000000000000 3
5.00000000000000 3
6.00000000000000 3
Block Alignment Summary
Block Value Variable Name Alignment Value
1.00000000000000 SPP1 6.50000000000000
SPP2 3.16500000000000
SPP3 2.17000000000000
2.00000000000000 SPP1 9.91500000000000
SPP2 1.16500000000000
SPP3 2.66500000000000
3.00000000000000 SPP1 6.25000000000000
SPP2 1.91500000000000
SPP3 2.41500000000000

Variable Commensuration Summary
Variable Name Average Euclidean Distance
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SPP1 7.60150326797386

SPP2 3.10692810457516

SPP3 0.900588235294119
Results

Delta Observed = 1.78519097155486

Delta Expected = 1.98049119623354

Delta Variance = 0.209317316371645E-001
Delta Skewness = -0.389741935641221

Agreement measure among blocks = 0.986120135500246E-001
Standardized test statistic = -1.34989554442147
Probability (Pearson Type IIl) of a
smaller or equal delta = 0.94992980210135 1E-001

TheP-value is 0.095, indicating weak evidence to reject the null hypothesis of no treatment
effect. The original analysis without commensurating and aligning variable$ga0.067.
Because of the small number of blocks and treatments it is possible to conduct tisis agaly
complete enumeration of the permutation distribution by using the option EXACT. ThisRields
=0.099. The Monte Carlo resampling approximation also is available for problems gdth lar
block and treatment structure.

The data used in the MRBP test have been aligned so that the median of the blocks aile all equa
The value chosen to align each block is selected to make the block medians all equal fo zero. |
there is more than one response variable then Blossom adjusts or commensurates kgriabl

their average Euclidean distance by default as in MRPP. The block alignment walues a

variable commensuration values are reported.

It is possible to turn off one or both of the alignment and variable commensuration options. The
NOALIGN option given anywhere after the slash (/) of the MRPP command producesyaisanal
without data alignment. The NOCOM option given anywhere after the slash produces an
analysis without multivariate commensuration. These options can be important fal spec
applications of MRBP. Here is an example command line:

>MRPP LENGTH * GROUP * BLOCK / NOALIGN

Of course since only 1 variable, LENGTH, was specified, no variable commensurattmeis

This option is especially useful when the blocked design is used not so much to deteehtreatm
effects but to get a measure of the agreement among blocks. One use for this optionigalnume
model verification. Here blocks contain the predictions of one or more models and one block
contains measured results. See Tucker et al. (1989) for details. Agreemenemeasur

(1 - observed delta/expected delta) based on Euclidean distances are geapsatiz@ohen's

kappa extended to multiple groups, multiple variables, and interval data (Berry akd Miel

1988). The agreement measure based on squared Euclidean distances (V = 2) applied to interva
data is a linear transform of Pearson's correlation coefficient, i.e., a priybeddilie for a

correlation coefficient based on a permutation argument can be obtained.
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Here is an example analysis comparing measures of the proportion of basallz@qadpartion
of canopy cover of lodgepole pinifus contortqin 31 stands of subalpine forest in
Colorado(Fig. 7) (Cade 1997).
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Figure 7. Proportion of basal area and canopy cover for lodgepole pine in 31 stands
(data from Cade 1997). Solid line corresponds to perfect agreement.

The 31 samples plots are specified by the grouping variable STAND and the proportionrof eithe
basal area or canopy cover are specified by the blocking variable METHOD. PC3H@C i
response variable for proportion lodgepole pine.

>USE AGREE2.DAT
>MRPP PCTLCC * STAND * METHOD/ NOALIGN

Here are the results of the analysis:

Multi-Response Permutation Procedure for Blocked Data (MRBP)

Data Used

Data file: AGREE2.DAT
Grouping Variable: STAND
Blocking Variable: METHOD
Response Variables: PCTLCC
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Specification of Analysis
Number of observations: 62
Number of groups: 31
Number of blocks: 2
Distance exponent: 1.00000000000000

Group Summary
Group Value Group Size
1.00000000000000
2.00000000000000
3.00000000000000
4.00000000000000
5.00000000000000
6.00000000000000
7.00000000000000
8.00000000000000
9.00000000000000
10.0000000000000
11.0000000000000
12.0000000000000
13.0000000000000
14.0000000000000
15.0000000000000
16.0000000000000
17.0000000000000
18.0000000000000
19.0000000000000
20.0000000000000
21.0000000000000
22.0000000000000
23.0000000000000
24.0000000000000
25.0000000000000
26.0000000000000
27.0000000000000
28.0000000000000
29.0000000000000
30.0000000000000
31.0000000000000

NNNNNNNNNNNNNNNNNNNNNDNNDNDNDNNNNNN

Data are not aligned within blocks

Results
Delta Observed = 0.943115334584194E-001
Delta Expected = 0.306180938705266
Delta Variance = 0.121939095361522E-002
Delta Skewness = -0.826612374970986E-001

Agreement measure among blocks = 0.691974510701972
Standardized test statistic = -6.06731807413269
Probability (Pearson Type 1lI) of a
smaller or equal delta = 0.865316549394205E-008

The agreement measure in this analysis (0.692) indicates that there is aa esduation in

Euclidean distance between the proportions of basal area and canopy cover that is @% great
than expected by chance and this differs from zero®vit0.0001. The observed delta = 0.094
which indicates that the 2 proportionate measures of lodgepole pine differed on average by 0.094
across all 31 stands (Fig. 7). There was good but not perfect agreement betweessmé#ser
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proportion of basal area and the proportion of canopy cover for characterizing the lodgepole pine
contribution to the forest composition. Additional univariate agreement comparisons for
subalpine fir Abies lasiocarppand Engelmann sprucBi¢eaengelmannijiare given in Cade

(1997). A multivariate measure of agreement that considers all 3 speciessaoudily given in

Cade (1997) is performed with the command:

MRPP PCTSCC PCTFCC PCTLCC * STAND * METHOD/ NOCOM NOALIGN

The results indicate that the average deviation between proportionate measusasarebaand
canopy cover is 0.168 (observed delta) across the 31 stands for the 3 conifer species and the
agreement measure indicates a 62% reduction in the observed deviation over thad bypecte
chance.

Multi-Response Permutation Procedure for Blocked Data (MRBP)

Data Used
Data file: AGREE2.DAT
Grouping Variable: STAND
Blocking Variable: METHOD
Response Variables: PCTSCC, PCTFCC, PCTLCC

Specification of Analysis
Number of observations: 62
Number of groups: 31
Number of blocks: 2
Distance exponent: 1.00000000000000

Group Summary
Group Value Group Size
1.00000000000000
2.00000000000000
3.00000000000000
4.00000000000000
5.00000000000000
6.00000000000000
7.00000000000000
8.00000000000000
9.00000000000000
10.0000000000000
11.0000000000000
12.0000000000000
13.0000000000000
14.0000000000000
15.0000000000000
16.0000000000000
17.0000000000000
18.0000000000000
19.0000000000000
20.0000000000000
21.0000000000000
22.0000000000000
23.0000000000000
24.0000000000000
25.0000000000000
26.0000000000000

NNNNNNNNNNNNNNNNNNNNNNDNDNDNDN
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27.0000000000000
28.0000000000000
29.0000000000000
30.0000000000000
31.0000000000000

NNNNN

Data are not aligned within blocks
Variables are not commensurated

Results
Delta Observed = 0.168138081382156
Delta Expected = 0.440873737189001
Delta Variance = 0.155287201162739E-002
Delta Skewness = -0.876180008760865E-001

Agreement measure among blocks = 0.618625317864930
Standardized test statistic = -6.92108347758165
Probability (Pearson Type IIl) of a
smaller or equal delta = 0.116138823237 641E -009

For information on other ways to align data useful for analyzing incomplete block and Lati
square designs with MRBP see Fawcett (1990), Mielke and lyer (1982), and Hodges and
Lehmann (1962).

If V = 2 is chosen, then the univariate version of this test is a permutation version sfsaofly
variance for complete randomized blocks. Note that when V = 2 is used in an MRBP analysis
that the blocks are self-aligning to a common mean and no alignment is requireccsamelyle

with MRBP and V = 2 and the option NOALIGN should result in identical test statstotiR-

values as when alignment is not turned off. Specification of the C (group averaging method)
parameter has no effect, since group sizes have to be the same. Also the EXCESS ragition i
supported for MRBP and is ignored. The EXACT option is available only for some small block
(<10) and group combinations. The Monte Carlo resampling approximatidnalies is

available with the option /NPERM mum

If ranked data are used and V = 2 is specified, then the test (with one response variable) i
functionally related to Friedman's nonparametric randomized block analysis.

Permutation Tests for Matched Pairs (PTMP)

Matched pair tests can be performed by the MRPP command. Essentially the matshedtpa

is a special case of the randomized block version of MRPP with one or more responsesyariabl
two groups, and a blocking variable identifying pairs. Data of this sort can be analyzed by a
MRPP command specified just like that for performing an MRBP. For example tpéesiata

file PAIRED1.DAT contains one response (RESPONSE), for two groups (GROUP), tand wi
the paired members of each group indicated by a blocking variable (PAIR). Useethisfil
perform a matched pairs test by issuing the following command:

>MRPP RESPONSE * GROUP * PAIR
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Here are the results (PAIRED1.0UT):

Multi-Response Permutation Procedure for Blocked Data (MRBP)

Data Used
Data file: Paired1.dat
Grouping Variable: GROUP
Blocking Variable: PAIR
Response Variables: RESPONSE

Specification of Analysis
Number of observations: 20
Number of groups: 2
Number of blocks: 10
Distance exponent: 1.00000000000000

Group Summary

Group Value Group Size
1.00000000000000 10
2.00000000000000 10
Block Alignment Summary
Block Value Variable Name Alignment Value
1.00000000000000 RESPONSE 4.27500000000000
2.00000000000000 RESPONSE 3.34000000000000
3.00000000000000 RESPONSE 6.54500000000000
4.00000000000000 RESPONSE 3.07000000000000
5.00000000000000 RESPONSE 2.88000000000000
6.00000000000000 RESPONSE 8.19000000000000
7.00000000000000 RESPONSE 6.10500000000000
8.00000000000000 RESPONSE 5.06500000000000
9.00000000000000 RESPONSE 2.69500000000000
10.0000000000000 RESPONSE 0.79000000000000
Results

Delta Observed = 1.21144444444444

Delta Expected = 1.88722222222222

Delta Variance = 0.209924691358025E-001
Delta Skewness = -1.98423908598235

Agreement measure among blocks = 0.358080659405358
Standardized test statistic = -4.66414608785788
Probability (Pearson Type llI) of a
smaller or equal delta = 0.342067401604490 E-002

With one response variable and V = 2 specified on the command line, then this test mimics the
t-test for matched pairs.

Sometimes it is convenient to structure paired data such that the values for each gia&n on
a single line in the data file with a separately named variable for the respdhedidt and of
the second members of each pair. Blossom allows for this different data structartheU
example file PAIRED2.DAT and simply issue the following command:

>MRPP FIRST SECOND /PAIRED
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The PAIRED option signifies that the observations are paired (next to each otherjlatd file.

Thus the pairing is indicated by position not by a blocking variable. Also no grouping variable is
specified because in PTMP there can only be two groups. The univariate observatiocts for ea
group correspond to the columns named FIRST and SECOND. Note, this is a special data file
format useful only for PTMP, which is a univariate, two group, paired comparison, where the
number of blocks equals the number of pairs.

Here are the results of the above command:

Multi-Response Permutation Procedure for Paired Data (PTMP)

Data Used
Data file: PAIRED2.DAT
Response Variables (Treatment Groups): FIRST, SECOND

Specification of Analysis
Number of observed pairs (Blocks): 10
Distance exponent: 1.00000000000000

Results
Delta Observed = 2.42288888889131
Number of non-zero differences = 10
Probability (Exact) of a smaller or equal Delta = 0.390625000000000E-002

Because the number of pairs in this data set is less than Ré/dtee reported was obtained by
exact enumeration of the permutation distribution (and thus differs slightly frorntakie

given in the previous example). With more than 20 pairs an approximation with the Pearson
Type Il distribution is used by default or the Monte Carlo resampling option can be invoked wit
the option /NPERM :aum Notice that the different test statistic structures produce an observed
delta in PTMP that is exactly twice the observed test statistic for tine g@blem in MRBP.

Also, data in PTMP are aligned to a median of O by the structure of the teststatisti

It is possible to do a 1-sample comparison of data with an hypothesized parameterdbr cent
tendency (either median or mean) with PTMP by making one of the column variables equal to
the hypothesized parameter and the other the observed data vector (Mielke and Berry 2001). If
the hypothesized parameter is a median and PTMP is implemented with V = 1 thest thiote

a null hypothesis that the sample comes from a population with median equal to thedspecifie
value. If the hypothesized parameter is a mean and PTMP is implemented with V =Histhen t
test if for a null hypothesis that the sample comes from a population with mean equal to the
specified value.

Mulitvariate extensions of the 1-sample comparison are made by using MRBP ahdrgpte
vector of hypothesized parameters for the multivariate median (mean) as one grobpethed
vector as the second group, for eacmdiflocks comprising the sample. As an example,
consider the data on ring-necked pheadahagianus colchicydabitat selection from

Aebischer et al. (1993: Appendix 1), where the proportion of home ranges in 5 habitat types
(scrub, broadleaf woodlands, conifer woodlands, grasslands, and crops) for 13 radio-marked
birds were compared to the available proportions of these habitat types. Becaudatthase
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compositions with a unit sum constraint, Aebischer et al. (1993) chose to analyze theséhdat

log ratios in a MANOVA. We can perform a similar 1-sample analysis compéengpserved
proportions of the habitat types for the 13 birds with the hypothesized available proportions in
MRBP without resorting to log ratios (which are problematic when you have some zero
proportions). The data file PREFER.DAT has 13 blocks (BIRD) for the grouping USE =1
corresponding to the observations for the 13 birds, and the same 13 block values for the grouping
USE = 2 corresponding to 13 replications of the hypothesized available proportions of the habitat
types. Issue the commands:

>USE PREFER.DAT
>MRPP SCRUB BROAD CONIFER GRASS CROP*USE*BIRD

The following output indicated that the 13 pheasants were not using habitat types in proportion to
their availability. Of course, it is possible to do a permutation version of the 1-sample

MANOVA analysis on log ratios as done by Aebischer et al. (1993), but the Euclideanalistanc
statistics of MRPP avoid concerns about singular matrices with dependent ganembley the

unit sum constraint and ad hoc procedures needed to deal with zero proportions when
transforming to log ratios.

Multi-Response Permutation Procedure for Blocked Data (MRBP)

Data Used
Data file: PREFER.DAT
Grouping Variable: USE
Blocking Variable: BIRD
Response Variables: SCRUB, BROAD, CONIFER, GRASS, CROP

Specification of Analysis
Number of observations: 26
Number of groups: 2
Number of blocks: 13
Distance exponent: 1.00000000000000

Group Summary

Group Value Group Size
0.00000000000000 13
1.00000000000000 13

Block Alignment Summary
Block Value Variable Name
1.00000000000000 SCRUB

Alignment Value
11.4100000000000

BROAD 5.60000000000000
CONIFER 0.36500000000000
GRASS 26.4150000000000
CROP 56.1900000000000

2.00000000000000 SCRUB

11.9000000000000

BROAD 11.9650000000000
CONIFER 0.36500000000000
GRASS 26.6150000000000
CROP 49.1450000000000

3.00000000000000 SCRUB

BROAD
CONIFER
GRASS

5.77000000000000
7.48000000000000
0.36500000000000
55.8650000000000



CROP 30.5050000000000
4.00000000000000 SCRUB 6.00000000000000
BROAD 16.5450000000000
CONIFER 0.36500000000000
GRASS 32.5350000000000
CROP 44.5400000000000
5.00000000000000 SCRUB 3.81500000000000
BROAD 19.7600000000000
CONIFER 5.52500000000000
GRASS 53.9050000000000
CROP 16.9900000000000
6.00000000000000 SCRUB 4.32500000000000
BROAD 19.8750000000000
CONIFER 5.42000000000000
GRASS 53.3850000000000
CROP 16.9900000000000
7.00000000000000 SCRUB 3.78000000000000
BROAD 20.2350000000000
CONIFER 5.87500000000000
GRASS 53.1100000000000
CROP 16.9900000000000
8.00000000000000 SCRUB 5.94000000000000
BROAD 23.9700000000000
CONIFER 0.36500000000000
GRASS 52.7200000000000
CROP 16.9900000000000
9.00000000000000 SCRUB 6.43000000000000
BROAD 31.1950000000000
CONIFER 0.36500000000000
GRASS 45.0000000000000
CROP 16.9900000000000
10.0000000000000 SCRUB 7.47000000000000
BROAD 9.02500000000000
CONIFER 0.36500000000000
GRASS 66.1350000000000
CROP 16.9900000000000
11.0000000000000 SCRUB 8.79000000000000
BROAD 20.8950000000000
CONIFER 0.36500000000000
GRASS 52.9400000000000
CROP 16.9900000000000
12.0000000000000 SCRUB 6.46000000000000
BROAD 10.0900000000000
CONIFER 0.36500000000000
GRASS 66.0800000000000
CROP 16.9900000000000
13.0000000000000 SCRUB 4.37500000000000
BROAD 14.6550000000000
CONIFER 2.42000000000000
GRASS 61.5550000000000
CROP 16.9900000000000
Variable Commensuration Summary
Variable Name Average Euclidean Distance
SCRUB 4.99252307692307
BROAD 11.6876307692308
CONIFER 2.45584615384616
GRASS 15.0708307692308
CROP 18.2146461538461
Results

Delta Observed = 2.23830657082488

63
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Delta Expected = 2.65984307847880
Delta Variance = 0.827598480934282E-002
Delta Skewness = -1.16504990574294

Agreement measure among blocks = 0.158481720619021
Standardized test statistic = -4.63367266419705
Probability (Pearson Type IIl) of a
smaller or equal delta = 0.120922268783399E-002

We can compute the multivariate median for the proportions of the habitat types used by the 13
pheasants to compare with the hypothesized proportions by issuing the command:

>MEDQ SCRUB BROAD CONIFER GRASS CROP * USE

The output (PREFER2.0UT) indicated that the multivariate median vector for the popait
habitats used is shifted towards a much higher proportion of broadleaf woodlands, moderately
higher proportions of scrub and conifer woodlands, much lower proportions of crops, with little
difference in the proportion of grasslands compared to available habitat types. Ntitestha
summary doesn’t recognize the blocked by animal nature of the design and could be made more
appropriate by first taking differences between components of used and availabletyyzstay
animal and then taking the multivariate medians of those differences.

5-Dimensional Median and Distance Quantiles

Data Used
Data File: PREFER.DAT
Grouping Variable: USE
# Report Variables: 5
Report Variables: SCRUB, BROAD, CONIFER, GRASS, CROP

Specification of Analysis
Total Number of observations: 26
Number of groups: 2
Results for Group Value: 0.00000000000000
Observations in Group: 13
Iterations to Solution: 1
Solution Tolerance: 0.160000000000000E-012

Within Group Median Coordinates for Variables
Variable Name Multivariate Median Coordinate
SCRUB  3.22000000000000
BROAD  9.23000000000000
CONIFER 0.730000000000000
GRASS  52.8300000000000
CROP 33.9800000000000

5-Dimensional Distance From Median Quantiles:
Group Average Distance to Multivariate Median: 0.737776405560993E-014
Quantile Distance from Median
0.00 [Minimum] 0.00000000000000
0.500000000000000  0.00000000000000
0.010000000000E+01  0.737776405560993E-014
0.250000000000000  0.737776405560993E-014
0.50 [Median] 0.737776405560993E-014
0.750000000000000  0.737776405560993E-014
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0.900000000000000  0.737776405560993E-014
0.950000000000000  0.737776405560993E-014
1.00 [Maximum] 0.737776405560993E-014

Results for Group Value: 1.00000000000000
Observations in Group: 13
Iterations to Solution: 55
Solution Tolerance: 0.160000000000000E-012

Within Group Median Coordinates for Variables
Variable Name Multivariate Median Coordinate
SCRUB 7.61644708253726
BROAD 28.6767927313389
CONIFER 5.66570731938610
GRASS 54.0419189963013
CROP 3.98762906946345

5-Dimensional Distance From Median Quantiles:
Group Average Distance to Multivariate Median: 33.7412013141642
Quantile Distance from Median
0.00 [Minimum] 6.62127437797105
0.500000000000000 6.62127437797105
0.010000000000E+01 7.16431172595937
0.250000000000000 10.4661422196434
0.50 [Median] 30.5971449683189
0.750000000000000  33.3721790108255
0.900000000000000 83.1369267354442
0.950000000000000 96.6782732275243
1.00 [Maximum] 96.6782732275243

The MRPP Command Syntax

The MRPP command can take different forms depending on the nature of the analysls tfesire
you don't understand MRPP consult the references given at the end of this document before
attempting to change the default values. Here is the complete MRPP command syntax

MRPPvariable list* grouping variable[(num ...)| (num - num))[* blocking variabl¢

[/ V =num| C =num| EXACT | EXCESS# num|| PAIRED | NOCOM | HOT]|
NOALIGN |

TRUNC =num| ARC =num| NPERM [=nun]| SEED =num|

SAVETEST [=file naméd]

Items to be supplied by the user are given in lower case in italics. These angussiatle

names or numbersm). Items in square brackets are optional. Upper case words or letters are
Blossom commands and must be entered exactly as given. The vertical line (|)ezzoh ds"or"

and separates different options that can be specified. They can be specified in affjherder
optional numbersnum) given in parentheses after the grouping variable name specifies either a
list or range of values indicating the groups to be used (these have to be numeric values of the
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grouping variable). If no values or range is specified, the groups correspond to each unique value
of the grouping variable. To analyze blocked data (MRBP) a blocking variable isegecifi

The options specified after the slash (/) control technical details of theian@lys values for V
determine the exponent of the distance function. The default is 1 and values other than V = 2 are
seldom used. Valid values for C are 1, 2, 3, or 4 and determine how intragroup distances are
averaged together. C = 1 is the default and corresponds to relative sample size, @sp2ruds

to relative degrees of freedom, and the options 3 and 4 are seldom used. If the EXCESS option is
specified, the excess group by default corresponds to the cases with the langest trad

grouping variable. This can be changed by adding the appropriate grouping variable value after
the EXCESS option. To analyze paired data (PTMP) the PAIRED option is specified. The
NOALIGN option is for blocked data analysis; the automatic alignment option isTonented.

The NOCOM option turns off default average Euclidean distance commensuration pfanulti
response variables. The HOT options specifies Hotelling's variance/covaranoesnsuration

of multiple response variables. The TRUN@umoption is available for grouped but not

blocked data. The truncation numbeuif) gives the maximum object to object distance to be
used in the analysis. The ARGhamoption provides the units of data in a circular distribution

for standardization to a unit circle and inputs standardized univariate data to astamcedi

MRPP analysis. The NPERM option requests a Monte Carlo resampling approximdion of
values rather than the Pearson Type lll moments approximation. By default NPER S QG4
random samples but any number may be optionally specified by NPERIh=The option

SEED =numallows the user to specify a random number seed rather than using the default
computer clock generated number. The option SAVETESIE nameallows you to save the

Monte Carlo resampled test statistics into a column in the specified fileg wieefirst value is
always the observed test statistic.

Here are some more examples of valid MRPP command lines. They show how to perform an
analysis using a subset or range of the groups indicated by the grouping variable and how to
specify a particular group as the excess group. If not specified the excess gltagyssthe

group with the largest value on the grouping variable.

>MRPP W XY Z* GROUP (2 3 6)/ EXCESS

The groups used are confined to a subset of the values of the grouping variable and group 6 will
be the excess group.

>MRPP VAR1 VAR2 * GP (3-8) / EXCESS =1
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The groups used are confined to a range of group values and the excess group is indicated by its
value (1). The excess group value can be in the grouping variable list or range or not. For
example the following three command lines produce the same analysis.

>MRPP VAR1 VAR2 * GP (3-7) | EXCESS=8

>MRPP VAR1 VAR2 * GP (3-8) / EXCESS

>MRPP VAR1 VAR2 * GP (3-8) / EXCESS=8

Terse output provided by the MRPP command following an OUTPUT /TERSE command
includes the USEd file name, dependent variable names, grouping variable name, number of
groups, blocking variable name (if present), observed test statistiP;\aadde.

Multivariate Medians and Distance Quantiles (MEDQ) Command Syntax

The MEDQ command can estimate multivariate and univariate medians for grouped or

ungrouped data and optionally save the distances between the observations and the medians in a
file. MEDQ is intended to provided summary statistical estimates thatefté s describing

group differences detected by MRPP comparisons.

MEDQ variable list[* grouping variablg/(num ...)| (num - nun])
[/ SAVE | QUANT =num, num, ..., nujm

By default MEDQ estimates the multivariate medians (or univariate) foratti@bles specified

in the list ignoring any group structure. If the optional group variable is specified tBB\QM
computes similar estimates but by each group. Options for selecting subsetsugilaggr

variable work similar as in the MRPP command. If the SAVE option is specified tHemtl
distances between observations and estimated medians are saved to a file ayed wit
filename and the extension .MQD. A column variable named DIST2MVM that is the distanc
multivariate (or univariate) medians is stored, along with the values for varsddexted, and
values of any grouping variables specified for each observation. These values can lieruseful
graphical exploration and for conducting tests of equivalent dispersions. The option QUANT =
num, num, ..., nurallows you to specify values other than the default quantiles (min = 0.0, 0.05,
0.10, 0.25, 0.50, 0.75, 0.90, 0.95, max = 1.0) for summarizing distances to multivariate medians.
Note that when you specify only a single response variable, the QUANT option alsoyallows

to request specific univariate quantiles to be estimated as well as the defiealitate median.



68

Terse output provided by the MEDQ command following an OUTPUT /TERSE command is
identical to the default verbose output.

Multiresponse Sequence Procedure (VIRSP)

The multiresponse sequence procedure command SP initiates a test of firseéatler s
dependency on univariate or multivariate response variables (Mielke 1991). In thissaofalys
ungrouped data, the agreement measuregilerage Euclidean distance between ordered
observations/average Euclidean distance among all possible pairs of obsensatmtajistic
describing first-order serial dependency. Significance of the null hypothesis oftrardier
serial dependency is provided by the Pearson Type lll approximation on the first 3 exact
moments of the permutation distribution by default, optionally by exact enumerationaibr sm
samples, or by a Monte Carlo resampling procedure. In a univariate test, MRSBgsas &b
the Durbin-Watson test. A permutation version of the Durbin-Watson test can bedrbyate
selecting the option V = 2 for squared Euclidean distances. In a bivariate test ¢f anima
locations, where latitude and longitude coordinates are the 2 response variables, MR&R pr
a Euclidean distance analogue of Schoen#r%statistic (Solow 1989), which is a nonmetric
measure based on squared Euclidean distances. A permutation version of Schiertess
can be implemented on bivariate data by specifying the V = 2 and NOCOM options. MRSP
obviously provides the possibility of evaluating first-order serial dependency of p¢éhsss
variables. Blossom will commensurate (standardize) multiple variables tavensge

Euclidean distance by default.

Example data of biweekly grouse locations during November through March (Cade andrHoffma
1993) are in the file BLUE162.DAT and graphed below (Fig. 8), where the numbers correspond
to the temporal order of observations (variable DATE) for the response variablesndAT

LONG. Multiple observations at the same location are indicated by ordered values in
parentheses.

To implement an analysis of first-order serial dependency on these bivarigienialcdata, you
issue the following commands:

>USE BLUE162.DAT

>SP LAT LONG * DATE/ NOCOM
Note that the same analysis on this data set can be implemented without spdwfying
sequencing variable DATE because the data set is ordered by DATE already anthBigss
default assumes the order in the data file is the sequencing variable if nonefisdspeci

Here are the results of this analysis:
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Multi-Response Sequence Permutation Procedures (MRSP)

Data Used
Data File: Blue162.dat
Sequenced by
values of variable: DATE
Response Variables: LAT, LONG

Specification of Analysis
Number of observations: 12
Distance exponent: 1.00000000000000

Variables are not commensurated

Results
Delta Observed = 119.655567412341
Delta Expected = 135.466761860064
Delta Variance = 252.038157171250
Delta Skewness = -0.236316783882059

Standardized test Statistic = -0.995936231356816
Agreement measure = 0.116716412429317

Probability (Pearson Type IIl) of a
smaller or equal delta = 0.159048321416475
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Figure 8. Latitude and longitude coordinates (m) for blue grouse (no. 162) locations on 12 dates
November — March. Numbers next to locations correspond to order of dates for locations (note
multiple dates at same locations).

The agreement measure (0.117) is interpreted as the percent reduction in avdidganEuc
distance between sequentially ordered values (observed delta) over that expéctatany
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order (expected delta). In this analysis there is little evidence of fast-serial pattern and the
null hypothesis of no serial dependency Ras0.159. The expected delta is the average
Euclidean distance among the locations ignoring any serial dependence (135.5 m) and the
observed delta in the average Euclidean distance between sequentially ordeiges|GEEd. 7

m); both these measures are useful summary statistics describing aniraabnges (Cade and
Hoffman 1993). See Mielke and Berry (2001) for descriptions of how to extend the sequence
procedure to higher orders of serial dependence.

The SP Command Syntax

Here is the complete syntax for the SP command.

SPvariable list* [ sequencing variabld/ V = num| NOCOM | EXACT | NPERM [=
num | SEED =num| SAVETEST E file namd]

The variable list is provided by the user and an optional sequencing variable can bedspecifie
place of the grouping variable normally specified in the MRPP command syntax. If no
sequencing variable is given Blossom assumes by default that the order (top to boti@m) of t
data in the file is the sequence desired. The sequencing variable can be a variable from
variable list. The options after the / permit you to select alternative expoaoetite flistance
function and to turn off multivariate commensuration as in the MRPP command. Options for
computingP-values by exact enumeration (EXACT) for small samptes 10) or by Monte

Carlo resampling (NPERM | SEED) are provided just as with the MRPP command. The
SAVETEST =file nameoption allows you to save the Monte Carlo resampled test statistic
values into a column in the specified file, where the first value always is theethsest

statistic value.

Terse output provided by the SP command following an OUTPUT /TERSE command includes
the USEd file name, dependent variable names, sequencing variable name, obseragidtiest st
(delta), agreement, aftdvalue.

Least Absolute Deviation (LAD) and Quantile Regression

LAD regression differs from least squares (OLS) regression in that thefgtmabsolute, not
squared, deviations of the fit from the observed values is minimized to obtain estitrsiies
regression estimates the conditional median (0.5 regression quantile) of the depainalelet

(y) given independent variableX)( and its generalization, regression quantiles, estimate the
conditional quantilew, where O< t <1) ofy givenX. Since LAD does not use squared

distances, it is an obvious companion to the MRPP which emphasizes Euclidean distarices. Bot
LAD and MRPP satisfy the congruence principle (Mielke and Berry 2001). Asymptotic
distributional theory for testing procedures for LAD regression are found in Dodge (1@83) a
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concise, readable implementation is provided by Birkes and Dodge (1993). Cade and Noon
(2003) is a primer on quantile regression for ecologists.

The LAD command is used to compute a fit of one dependent response variable by one or more
independent predictor variables. The parameters in a LAD regression are tastedylay/test
statistic that compares the proportionate reduction in sums of absolute deviations seggn pa
from a reduced to full parameter model (i.e., a test statistic very simg@neraF-tests in OLS
regression). The drop in dispersion test statistjc, equals (sum of absolute deviations for
reduced model sum of absolute deviations for full model) / sum of absolute deviations for full
model (Cade and Richards 1996, Cade 2003, 2005). Large valligsané evidence against the

null hypothesis that the parameter(s) equal(s) zero. If all slope parametested

simultaneously against a reduced parameter model that includes only the inteecefite

reference permutation distribution for the test stati§jjcis obtained by randomly sampling the

n! permutations of the dependent variable to the matrix of independent variables deddscri
Manly (1991) and calculating for each permutation. However, if only a subset of parameters
are being tested (partial model tests), then the reference permutatidiuticsirfor the test
statisticT,,. IS obtained by randomly sampling thiepermutations of residuals from the reduced
model to the matrix of independent variables and calculdtiiog each permutation, following
(Freedman and Lane 1983). Probabilities under the null hypothesis are given by (number of
T.es T 1)/ number of permutations sampled. Extensive power simulations demonstratedséhat the
procedures maintained nominal error rates under the null hypothesis well acrossyaovarror
distributions and design configurations (correlated and uncorrelated independentsjariable
provided the error distributions are independent and identically distributed (Cade and$Richa
1996). Similar conclusions were reached for the same form of the test stagidtiwitisOLS
regression (Kennedy and Cade 1996, Anderson and Legendre 1999). The LAD permutation test
is extended to any selected regression quantile (LAD is just 0.5 regressionejugntgplacing

sums of absolute deviations in the test statistic computation with the appropriatefsum

weighted absolute deviations used in regression quantile estimation (Cade andsRicpagss).

Cade (2003, 2005) and Cade and Richards (In press) found that Type | error rates were improved
when testing subsets of parameters in quantile regression models by delé&tingalingle zero
residual associated with the fitpo- g parameters under the null hypothesis, wipassthe

number of parameters in the full model and the number of parameters being tested. As this
reduces the length of the residual vector so that it no longer conformsts fhmatrix X of

predictors, the corresponding number of rowX @fre randomly deleted at each permutation.

This deletion of zero residuals and random deletion of rowsare done by default for this drop

in dispersion permutation test. In addition, Cade (2003, 2005) and Cade and Richards (In press)
found that anytime the null, reducqul{ ) parameter model was constrained through the origin

(no intercept), Type | error rates were improved by randomly recentering tthealesector since

the residuals from the null model will no longer have zero associated with theespgao#intile

(or mean zero for OLS). This is implemented as a double permutation procedure whese the f
step at each iteration is to randomly recenter the selected quantile of do@lresctor by a

guantity generated as a random binomial for the specified quantile (e.g., 0.90). A similar
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operation is done for OLS regression where the quantile = 0.50 is always used to generate
random binomials. The second step at each iteration then (the doubling of permutations)
permutes these randomly recentered residuals to the Xatiecause it is not always obvious

when a model is constrained through the origin (e.g., some weighted model tests wel ttre@gui

and some won't), we elected to make the double permutation scheme selected by an option of the
hypothesis testing command (HYP/DP).

If error distributions are not identical (heteroscedastic) then they musnbétraed or

weighted to be made approximately identical (homogeneous) (Cade and Richards 1996, Cade
2003, 2005, Cade and Richards In press). Cade and Noon (2003) and Cade et al. (2005a) discuss
two weighting schemes, one where all quantiles have the same weights in a kzalgdoYm

of heterogeneity, and one where the weights must be estimated separatelydiactied s

guantiles in more general models of heterogeneity. When the weights are based aoradtinct

the independent variableX), many of the permutation hypothesis tests will implicitly constrain

the null model through the origin and the double permutation procedure will be required to
maintain correct Type | error rates (Cade 2005, Cade et al. 2005, Cade and Richards In press

As an alternative test for LAD and its generalization to regression quantdgeovide a

guantile rank score statistic that is less sensitive to heterogeneous éritmutaias (Koenker

1994, Cade et al. 1999, Koenker and Machado 1994). The permutation version of the quantile
rank score test (Cade 2003, Cade et al. 2005b) maintains Type | error rates better than the
asymptotic Chi-square distributional approximation (Koenker 1994) at smallet more

extreme quantiles. It is important to note that the rank score test is not immuneftedtseof
heterogeneity and maintaining correct Type | error rates with this testrefjaires weighted
estimates and test statistics just as the drop in dispersion test does (Cade @®@3aC2005a,
Cade et al. 2005b).

We will demonstrate the procedures with an example from Cade (1997), where lodgepole pine
canopy cover was modeled as a function of basal area and density of the trees. Usdilthe data
FRASERF.DAT. Issue the following command for the simple regression of canopy k@@ (

as a linear function of basal area (APICO):

>LAD LCC = CONSTANT + APICO /TEST

The model to be computed is written out algebraically where the dependent varidd(® is L
(lodgepole pine canopy cover) and the single independent variable is APICO (basal area of
lodgepole pine adjusted for slope of terrain). The term "CONSTANT" indicatelsABawvill
estimate an intercept. If "CONSTANT" is left out the fit is forced througtotiggn. The TEST
option indicates that the model is to be compared to a reduced model that is a straight line
parallel to theX axis going through the medigrvalue (LCC). Thus, the reduced model has just
one parameter, the constant. In this test Blossom uses a default sample size of 5,000
permutations (including observed value) to approximate the permutation distribution.
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Here are the results of the above LAD command:

Least Absolute Deviation Regression (LAD)

Data Used
Data file: FRASERF.DAT

LAD Regression:
LCC=CONSTANT+APICO
Results
Number of observations: 31
Dependent Variable: LCC

Independent variables Regression coefficients
CONSTANT 8.78874116689298
APICO 1.05354969353239

Number of iterations: 3
Sum of absolute values of the residuals: 252.851627121547

Solution: SUCCESSFUL

Regression Evaluation:
LAD Model:
LCC=CONSTANT+APICO

Test Summary
Number of permutations: 5000
Random Number Seed: 3198580
P-value of Full Model: 0.200000000000000E-003

Because canopy cover must be zero when basal area is zero, Cade (1997) used LA@hregress
models without an intercept term. Here the following command estimates the inodel a

without an intercept:
LAD LCC = APICO

The output is given below:

Least Absolute Deviation Regression (LAD)

Data Used
Data file: FRASERF.DAT

LAD Regression:
LCC=APICO
Results
Number of observations: 31
Dependent Variable: LCC

Independent variables Regression coefficients
APICO 1.31434040040219

Number of iterations: 1
Sum of absolute values of the residuals: 267.446922457515

Solution: SUCCESSFUL
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A multiple independent variable LAD regression is specified by adding the appropriate
independent variable names to the LAD command. Here we consider the model used by Cade
(1997) with lodgepole pine density (PICOPHA) as an additional explanatory variable:

>LAD LCC = APICO + PICOPHA /SAVE

The added variables are assumed to be in the data file in USE. The SAVE option causes
Blossom to save a labeled data file that includes the variables in the model and tvatunans c
that contain the predictgdvalues (PRED) and the residuals (RESID). The saved file by default
has the name of the file in use but with a ".LAD" file extension. To specify the s&/echéime
follow the save option with a file name e.g., SAVE = MODEL1.0OUT. If the save fdaayr

exists you will be prompted with a choice to overwrite it or not. If a LAD command with the
SAVE option appears in a SUBMIT file any preexisting save file is autorigtmaerwritten.

Here are the results:

Least Absolute Deviation Regression (LAD)

Data Used
Data file: FRASERF.DAT

LAD Regression:
LCC=APICO+PICOPHA
Results
Number of observations: 31
Dependent Variable: LCC

Independent variables Regression coefficients
APICO 0.934738765025370
PICOPHA 0.115723762501552E-001

Number of iterations: 3
Sum of absolute values of the residuals: 127.511282250334
Solution: SUCCESSFUL
Model, predicted, and residual values saved in labelled file: FRASERF.LAD

The regression function, observed values and residuals are plotted in Fig. 9.
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Figure 9. Lodgepole pine canopy cover as a linear function of basal area and tree density
estimated with LAD regression for 31 sample stands.

A polynomial regression on a single independent variable, its square, its cube, and so on can be
performed by including in the data file a column containing the square, cube, and so on of the
independent variable as well as the original independent and dependent variable. Waexpect t
user to have access to a commercial statistical package to perform thdasandgérmations and

graph results outside of Blossom. USE the file FRASERF.DAT and enter the folloiihg
command:

>LAD SCC = APIEN + PIENPHA + APIEN2

to estimate the model used in Cade (1997), where canopy cover of Engelmann spruce id predicte

as a function of basal area (APIEN), basal{&RIEN2), and stem density (PIENPHA). The
results are below and the regression surface is plotted in Fig. 10:

Least Absolute Deviation Regression (LAD)
Data Used
Data file: FRASERF.DAT

LAD Regression:

SCC=APIEN+PIENPHA+APIEN2
Results

Number of observations: 31
Dependent Variable: SCC

Independent variables Regression coefficients
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APIEN 1.58247874202118
PIENPHA 0.842260983423992E-002
APIEN2

-0.301945767106048E-001
Number of iterations: 5

Sum of absolute values of the residuals: 85.8394444292458
Solution: SUCCESSFUL

100

80

Canopy cover %

Figure 10. Engelmann spruce canopy cover as a quadratic function of basal area and linear
function of tree density estimated with LAD regression for 31 sample stands.

Here the quadratic curvature implied by use of basat easebe tested with the HYPOTHESIS
command to test whether the addition of the squared term yielded an improvement in fis. This
equivalent to testing the full model specified above against a reduced model thatidoksi€t

the term (APIEN2) for basal areaThis is done by algebraically specifying the reduced

parameter null model in the HYPOTHESIS command after the LAD command for the full
parameter alternative model has been specified:

>HYPOTHESIS SCC = APIEN + PIENPHA / DP NPERM = 10000

Here are the results for the HYPOTHESIS command where we optionally hastedd¢te

double permutation scheme because our null hypothesized model is constrained through the
origin:
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Least Absolute Deviation Regression (LAD)
Hypothesis test, drop p - q - 1 zero residuals, with double permutation

Data Used
Data file: FRASERF.DAT

HYPOTHESIS Regression:
SCC=APIEN+PIENPHA
Results
Number of observations: 31
Dependent Variable: SCC

Independent variables Regression coefficients
APIEN 0.613499653715770
PIENPHA 0.135282877749337E-001

Number of iterations: 3
Sum of absolute values of the residuals: 99.3797889162779
Solution: SUCCESSFUL

Regression Evaluation:
LAD Model:
SCC=APIEN+PIENPHA+APIEN2
Versus Hypothesis Model:
SCC=APIEN+PIENPHA

Test Summary
Number of permutations: 10000
Random Number Seed: 3211532
Observed Test Statistic: 0.157740355579689
P-value of variables in full model but not in reduced model:
0.0140000000000000

The results indicate that the coefficient for the quadratic basal area tira flom zero with

P =0.014. Here both double permutation and dropping of all but 1 of the zero residuals under
the null model were implemented because the null model includes 2 parameters but ejtinterc

If we had not used the double permutation option (/DP) and not deleted one of the zero residuals
associated with the 2 parameters fit under the null model, then the P-value would he slight
smaller (0.0091) as in Cade (1997). The double permutation and dropping of zero residuals
usually will increase the size of P-values slightly.

A goodness-of-fit measure for regression models is often a useful summiaticstais possible
to compute a LAD coefficient of determination for the full model with referencen® seduced
model (usually that specifies just an intercept term) by estimating theddkl and obtaining

the sums of absolute deviation (calbihF), then estimating the reduced parameter model and
obtaining its sum of absolute deviations (caBAR, and computing the coefficient of
determinatiorR'= 1 - (SAFSAR (Cade and Richards 1996, Cade 1997). This can be extended
to any selected regression quantile by replacing the sums of absolute deviatiorierimulee
above with the sum of weighted absolute deviations minimized by regression quaridakéK
and Machado 1999). We've already obtained the sums for the full parameter model, SCC =
APIEN + PIENPHA + APIEN2 aSAF =85.839, so to obtain them for the reduced parameter
model:
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LAD SCC = CONSTANT

Least Absolute Deviation Regression (LAD)

Data Used
Data file: FRASERF.DAT

LAD Regression:
SCC=CONSTANT
Results
Number of observations: 31
Dependent Variable: SCC

Independent variables Regression coefficients
CONSTANT 10.0000000000000

Number of iterations: 1
Sum of absolute values of the residuals: 230.000000000000
Solution: SUCCESSFUL

yields a sumSAR= 230.0 for and, thus, the coefficient of determinaRbr 1 - (85.839 /
230.000) = 0.627. This is interpreted as the model with variables APIEN, PIENPHA, and
APIEN2 yield estimates of conditional medians of LCC with a 63% reduction in sum ofitgbsol
deviations compared to the model that is just a simple estimate of the median of LCC.

It is possible to specify greater or fewer permutations for calculating phtieatby specifying
number of permutations as an option after either the test option for LAD command or as an
option after HYPOTHESIS command. For example:

>USE FRASERF.DAT
>LAD LCC = APICO + PICOPHA / TEST NPERM = 10000 SEED = 123456

will test all slope parameters equal to zero using 10,000 permutatigndvainly (1991)
summarizes recommendations on number of permutations to use in Monte Carlo sampling
procedures. More is better but comes at increased computational cost. Specifyang dine
number seed is done with the SEERumoption.

It is important to recognize that the LAD regression model (and generalizatiegression
guantiles discussed below) can be extended to any linear model design that mightdiedsti
with OLS regression, including various variable transformations, and mixtures wfumrsg
independent variables with indicator variables for categorical predictorsndisdexamples are
in Mielke and Berry (2001). Indeed it is possible to use LAD regression for linear model
analyses of multifactorial experimental designs, where the focus is omatstjrohanges in
conditional medians rather than estimating changes in conditional means a$/tgpioalwith
OLS regression (Cade and Richards 1996, Mielke and Berry 2001).
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As an example, consider the soap production example from Cade and Richards (1996), where
soap scrapy] is modeled as a linear function of production line sp&gdand an indicator
variableX,= 1 for production line 1 and,= 0 for production line 2 (Fig 11). We are interested

in testing whether the rates of change in soap sgyas @ function of line speel,j differs by
production line X,), which requires that we estimate a model with an interaction ¥¢rix, .
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Figure 11. Soap scrap as a linear function of production speed for line1 (open circles) and
line 2 (solid circles). Circled solid circle is an outlying value. Solid lines are LAD estimates
and dashed lines are OLS estimates.

Open the data file NETER365.DAT and estimate the full parameter model witheteetian
term specified

LAD SOAP = CONSTANT + SPEED + LINE + LXS

where the LXS is a column variable created by multiplying SPEED times LdNissall
observations. Here are the results:

Least Absolute Deviation Regression (LAD)

Data Used
Data file: NETER365.DAT

LAD Regression:
SOAP = CONSTANT + SPEED + LINE + LXS
Results
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Number of observations: 27
Dependent Variable: SOAP

Independent variables Regression coefficients
CONSTANT -0.319744231092045E-013
SPEED 1.33333333333333

LINE 107.615384615385

LXS -0.210256410256411

Number of iterations: 5
Sum of absolute values of the residuals: 389.435897435897
Solution: SUCCESSFUL

Interpretation of the parameter estimates is identical to the interpnefiait linear models

estimated by OLS regression: the CONSTANT term is the intercept and B&EDSBrm K)), is

the slope for the regression of soap scrap on line speed for line 2, the LINXfeisrtt{e

difference between intercepts for the regressions for line 1 and line 2, and the &p&Stion

term (X,X,) is the difference between slopes for the regressions for lines 1 and 2. We want to tes
the null hypothesis that the estimated interaction term is equal to zero, i.eendiéf®in slopes

equals zero, by specifying the reduced parameter null model in the HYPOTHESI&mdmm

HYPOTHESIS SOAP = CONSTANT + SPEED + LINE/ NPERM = 10000

The results below indicated that there was moderate evidenc®.046) that the estimated
difference in slopes of -0.21 for the interaction term LXS was not equal to zero. Note that
without dropping 2 of the 3 zero residuals in the null hypothesized modeiakie would be
slightly smaller aP = 0.031.

Least Absolute Deviation Regression (LAD)
Hypothesis test, drop p - g - 1 zero residuals

Data Used
Data file: NETER365.DAT

HYPOTHESIS Regression:
SOAP =CONSTANT + SPEED + LINE
Results
Number of observations: 27
Dependent Variable: SOAP

Independent variables Regression coefficients
CONSTANT 39.2500000000000
SPEED 1.18333333333333

LINE 60.4166666666667

Number of iterations: 6
Sum of absolute values of the residuals: 451.750000000000
Solution: NON-UNIQUE

Regression Evaluation:
LAD Model:
SOAP = CONSTANT + SPEED + LINE + LXS
Versus Hypothesis Model:
SOAP =CONSTANT + SPEED + LINE

Test Summary
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Number of permutations: 10000
Random Number Seed: 3231063
Observed Test Statistic: 0.160011193047143
P-value of variables in full model but not in reduced model:
0.045500000000000

Confidence intervals on parameters in a LAD regression model can be constructedtimginve
the hypothesis testing process in an iterative fashion. This is accomplished byziagabat
testing for nonzero values of parameters in null hypotheses only requires a lingfartmation

of the dependent variablg, For example, for the $4f3, = A, whereA is some hypothesized

value of the parameter, you transfoyno, sayz, byz=y - AX;. The transformed values of the
dependent variable, are then substituted fgrin the regression model and estimation and
hypothesis testing of the null,H3, = 0 proceed as before. Cade and Richards (1996) describe in
more general matrix notation how you accomplish this linear transformation fapleault
parameters. Note that the formula defaults to what is done automatically whest wellt
hypotheses that parametextsequal zero. The complication that arises in implementing this
procedure for a (2 )% confidence interval is that you must iterate through many possible
values ofA to define the bounds on the set of values wfith P >« for Hy: f; =A. This can
require many transformations yfestimation with LAD, and testing the null hypothesis with the
HYPOTHESIS command.

As an example of constructing confidence intervals, return to the model of lodgepolenuipg ca
cover as a function of pine basal area and stem density (Cade 1997). Endpoints of the 95%
confidence interval for the basal area paraméter 0.935) were given as 0.81 - 1.05 in Cade
(1997). This means that the transformations LLOL81(APICO), call iZ81, and LCC-

1.05(APICO), call it Z105, should have approximate 0.05 when Z81 and105 are

substituted for LCC in the regression model that includes APICO (basal arediCayfeHA

(tree density) as predictors for the partial model hypothesis of APICO. Anjotraasion of

LCC by values between 0.81 and 1.05 ought to Wetd0.05 and any outside of this interval

ought to yieldP < 0.05. Minor discrepancies can occur, of course, because of the resampling
variation inherent in Monte Carlo procedures and because of discreteness in the jpermutat
distribution. We try and make the resampling error as small as possible by usgeyrautaber

of permutations (NPERM 10,000). The file FRASERF.DAT includes the transformaticfiis

and Z105, as well as Z90 = LCC0.90(APICO) and zZ50 = LCE 0.50(APICO). Here we

know that the interval presented in Cade (1997) is slightly narrower than expected winenehe
recently developed double permutation scheme (Cade 2005, Cade and Richards In press) is used
because the null model is constrained through the origin. To run the hypothesis test
corresponding to the null model that the parameter for APICO equals 0.81, issue the commands:

>USE FRASERF.DAT
>LAD Z81 = APICO + PICOPHA
>HYPOTHESIS 781 = PICOPHA/ NPERM = 10000 DP
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The output indicateB = 0.0562, well within the Monte Carlo resampling variation of 0.05 as it
should be and only slightly larger thBr= 0.0523 obtained without the double permutation
scheme.

Least Absolute Deviation Regression (LAD)

Data Used
Data file: FRASERF.DAT

LAD Regression:
Z81=APICO+PICOPHA
Results
Number of observations: 31
Dependent Variable: Z81

Independent variables Regression coefficients
APICO 0.124738765015896
PICOPHA 0.115723762503457E-001

Number of iterations: 4
Sum of absolute values of the residuals: 127.511282247993
Solution: SUCCESSFUL

Least Absolute Deviation Regression (LAD)
Hypothesis test with double permutation

Data Used
Data file: FRASERF.DAT

HYPOTHESIS Regression:
Z81=PICOPHA
Results
Number of observations: 31
Dependent Variable: 281

Independent variables Regression coefficients
PICOPHA 0.128218706607143E-001

Number of iterations: 1
Sum of absolute values of the residuals: 139.983715196277
Solution: SUCCESSFUL

Regression Evaluation:
LAD Model:
Z81=APICO+PICOPHA
Versus Hypothesis Model:
Z81=PICOPHA

Test Summary
Number of permutations: 10000
Random Number Seed: 3245102
Observed Test Statistic: 0.978143480984412E-001
P-value of variables in full model but not in reduced model:
0.05620000000000
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Similarly, we can run the hypothesis test corresponding to the null that the pafamaiCO
equals 0.50 by issuing the commands:

>USE FRASERF.DAT
>LAD Z50 = APICO + PICOPHA
>HYPOTHESIS Z50 = PICOPHA/ NPERM = 10000 DP

The output here indicates the null hypothesis that the parameter equals ®P59has01,
much smaller than 0.05 so that this hypothesized parameter value must be outside the 95%
confidence interval.

Least Absolute Deviation Regression (LAD)

Data Used
Data file: FRASERF.DAT

LAD Regression:
Z50=APICO+PICOPHA
Results
Number of observations: 31
Dependent Variable: Z50

Independent variables Regression coefficients
APICO 0.434738765013986
PICOPHA 0.115723762499917E-001

Number of iterations: 4
Sum of absolute values of the residuals: 127.511282246895
Solution: SUCCESSFUL

Least Absolute Deviation Regression (LAD)
Hypothesis test with double permutation

Data Used
Data file: FRASERF.DAT

HYPOTHESIS Regression:
Z50=PICOPHA
Results
Number of observations: 31
Dependent Variable: Z50

Independent variables Regression coefficients
PICOPHA 0.156154562384342E-001

Number of iterations: 1
Sum of absolute values of the residuals: 211.176442288515
Solution: SUCCESSFUL

Regression Evaluation:
LAD Model:
Z50=APICO+PICOPHA
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Versus Hypothesis Model:
Z50=PICOPHA

Test Summary
Number of permutations: 10000
Random Number Seed: 3254170
Observed Test Statistic: 0.656139273069367
P-value of variables in full model but not in reduced model:
0.100000000000000E-003

Presently, hypothesized values of the parameter and their transformations madebe m
iteratively by successive approximation, i.e., guess at values, comp&tedhees, and then

based on the size of tievalue successively move towards larger or lower values until you have
values withP = o, which define the confidence interval endpoints. This can require 20 or more
iterations depending on how close your initial choice of hypothesized parameter valtethar
final values. It is possible to use asymptotic procedures described in Birkes and TB8R)ad

help pick initial values for confidence interval endpoints that might be close to thoseedtigi

the iterative permutation testing process.

Regression Quantiles

The QUANT =num| ALL option of the LAD regression command fits any specified conditional
quantile as a linear regression model. LAD regression is the 0.5@&&entile) regression
quantile. Various regression quantiles, e.g, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95 {@., 5
25", 78", 90" and 9% percentiles ), can be estimated to examine linear trends in a dependent
variable ) as a function of one or more independent variab{s $electing QUANT = ALL

will yield all possible quantile regression estimates. If there is irdtiation in the errors across
the independent variables (homogeneous errors), the regression quantiles will iHavsl|sipes

but different intercepts. However, if the errors are heterogeneous across thadedépe
variables, then slopes and intercepts can differ greatly (Cade and Richards 1%9i6etTadrr

1996, Cade et al. 1999 Koenker and Machado 1999). Regression quantiles, thus, provide a way
of modeling rates of change associated with heterogeneous variation in linear withaels

having to specify a functional link between conditional measures of means and and variances
Regression quantiles are especially useful when the consequences of over and untien predic
differ in a linear model. Cade and Noon (2003) present a primer on quantile regression for
ecologists.

In studies of ecological limiting factors it is often expected that importaasored processes
operate as constraints on the response distributjan(l, thus, we may focus on estimating
regression quantiles associated with the upper percentiles (e.g.,"9®f 8% dependent

variable, i.e., rates of change estimated are along the upper boundary of the distribttion as
changes across the independent variables (Terrell et al. 1996, Cade et al. 1999, HaDo&t a
Cade and Guo 2000). Rates of change in the responses below the boundary constraint may be
lower because of the impact of unmeasured processes (Cade et al. 1999). Many ecological
processes can be considered constraints on responses, where rates of change witimat
regression quantiles for upper percentiles might yield new insights. Examglesei animal
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responses to habitat, self-thinning in plants, algal productivity as a function afdgmittrients,
animal abundance and body size relations in macroecology, comparisons of local and regional
species diversity, plant productivity as a function of species diversity, and coompiid
experiments. Estimating rates of change for endpoints of some interval of quamiles®

and 90 percentiles) also provides a flexible way to estimate prediction inteoraissponses
without resorting to untenable distributional assumptions.

Returning to the soap production example, after USEing the file NETER365.DAT, issue the
following command:

>LAD SOAP = CONSTANT + SPEED + LINE + LXS/QUANT = 0.50

The output indicates that the coefficients estimated are identical to those athoue the

QUANT = 0.5 option, because the 0.5 quantile is LAD regression. Notice also that both the sum
of absolute deviations minimized in LAD regression and the sum of weighted absolut®dsvia
minimized in regression quantiles are reported. The weights used when minirainisgfs

absolute deviations in regression quantilesteo positive residuals and-1t for zero and

negative residuals, where<Or < 1 is the selected quantile with QUANTham Thus, in this

example the sum of weighted absolute deviations is exactly half the sum of absahitierde

Quantile Regression

Data Used
Data file: NETER365.DAT

0.50 Quantile Regression:
SOAP = CONSTANT + SPEED + LINE +LXS
Results
Number of observations: 27
Dependent Variable: SOAP

For Quantile = 0.50

Independent variables Regression coefficients
CONSTANT -0.319744231092045E-013
SPEED 1.33333333333333

LINE 107.615384615385

LXS -0.210256410256411

Number of iterations: 5

Sum of absolute values of the residuals: 389.435897435897

Weighted sum of the absolute deviations: 194.717948717949
Solution: SUCCESSFUL

It is possible to test a full versus a reduced parameter regression quantilewtiotiet default

TEST and HYPOTHESIS options as in the LAD regression command, where thetistst &a
identical in computation as for LAD except that the simple sum of absolute deviatons a
replaced with the sum of weighted absolute deviations (Cade 2005, Cade and Richard¥. In Press
Validity of hypothesis tests for regression quantiles using this testistegguires the same
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assumption of independent, identical error distributions as for LAD regression. Hpwever
expect most applications of regression quantiles to be made when it is unreasorssme a
homogeneous variation across the independent variables, i.e., the identical erroridrstribut
assumption is violated. Therefore, we have included the regression quantile ranksscore te
(Koenker 1994, Koenker and Machado 1999), its asym@et@lue approximation with a Chi-
square distribution , and a permutation approximation that makes use of the permutdion test
OLS regression. Type | errors of the regression quantile rank score tessarerisitive to
heterogeneous error distributions because the statistic is based on the signsaduhés ieom

the reduced parameter null model and not their size. However, as Cade (2003) and Cade et al.
(2005b) make abundantly clear, valid Type | error rates often will require appropeigteed
estimates and test statistics. This quantile rank score test is impenetiit the option /
RANKSCORE given with the HYPOTHESIS command.

As an example, consider the acorn production data as related Querksspp) forest
characteristics (Schroeder and Vangilder 1997) as analyzed with regressidiegbsir@ade et

al. (1999). We will estimate 0.10 and 0.90'{add 9¢' percentiles) regression quantiles of
annual acorn biomass (kg/ha) as a function of a forest suitability index based on canopy cover
and number of oak species (Schroeder and Vangilder 1997). USE the data file ACORN.DAT
and issue the command for a 0.10 regression quantile:

>LAD WTPERHA = CONSTANT + OAKCCSI/ QUANT =0.10

The command then is issued to test the hypothesis that the slope for the 0.10 quantile equals zer
with the rank score test:

>HYPOTHESIS WTPERHA = CONSTANT/ RANKSCORE NPERM = 10000

The output indicates that the estimated slope for the 0.10 regression quantile (21.8)ffdasly
from zero P = 0.012).

Quantile Regression

Data Used
Data file: ACORN.DAT

0.10 Quantile Regression:
WTPERHA=CONSTANT+OAKCCSI
Results
Number of observations: 43
Dependent Variable: WTPERHA

For Quantile =0.10

Independent variables Regression coefficients
CONSTANT 2.44020411434225
OAKCCSI 21.7718847844891

Number of iterations: 2

Sum of absolute values of the residuals: 1526.32980484628

Weighted sum of the absolute deviations: 173.730348688158
Solution: SUCCESSFUL
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Quantile Regression
Hypothesis test of Rank Score

Data Used
Data file: ACORN.DAT

0.10 Quantile HYPOTHESIS Regression:
WTPERHA=CONSTANT
Results
Number of observations: 43
Dependent Variable: WTPERHA

For Quantile =0.10
Independent variables Regression coefficients
CONSTANT 12.8247400000000

Number of iterations: 1

Sum of absolute values of the residuals: 1737.33740600000

Weighted sum of the absolute deviations: 194.228089400000
Solution: SUCCESSFUL

Regression Evaluation:
0.10 Quantile Regression Model:
WTPERHA=CONSTANT+OAKCCSI
Versus Hypothesis Model at Quantile 0.10:
WTPERHA=CONSTANT

Test Summary
Number of permutations: 10000
Random Number Seed: 3274240
Observed Rank Score Test Statistic: 0.184214175628134
P-value of Rank Score Test: 0.960000000000000E-002
Asymptotic Rank Score Statistic: 6.32603175145283
(Distributed as Chi-square with degrees of
freedom equal to difference in number of
parameters between full and reduced models.)
P-Value of Asymptotic RS Stat: 0.118978245412483E-001

Similarly, we can estimate the 0.90 regression quantile for the same funatiatiahrby issuing
the command:

>LAD WTPERHA = CONSTANT + OAKCCSI/ QUANT =0.90
followed by the command:
>HYPOTHESIS WTPERHA = CONSTANT/ RANKSCORE NPERM = 10000

The output for the 0.90 regression quantile indicates that the rate of change of acorn biomass
with the suitability index is 5 times greater (102.3) at tHe@#®centile of the distribution
compared to the 1percentile of the distribution (Fig 12). Clearly, there is heterogeneous
variation in the acorn biomass changes across the acorn suitability index, withrgery la
biomass occurring at higher values of the suitability index. The estimated slbge0c®®
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regression quantile also likely differs from zelRo=0.040). Here because of the heterogeneity,
improved Type | error rates could be obtained by using weighted estimates with theorank s

tests.

Quantile Regression

Data Used
Data file: ACORN.DAT

0.90 Quantile Regression:
WTPERHA=CONSTANT+OAKCCSI
Results
Number of observations: 43
Dependent Variable: WTPERHA

For Quantile = 0.90

Independent variables Regression coefficients
CONSTANT 14.4485704551128
OAKCCSI 102.338029544887

Number of iterations: 3
Sum of absolute values of the residuals: 1722.33277425585
Weighted sum of the absolute deviations: 268.539600522219

Solution: SUCCESSFUL

Quantile Regression
Hypothesis test of Rank Score

Data Used
Data file: ACORN.DAT

0.90 Quantile HYPOTHESIS Regression:
WTPERHA=CONSTANT
Results
Number of observations: 43
Dependent Variable: WTPERHA

For Quantile = 0.90
Independent variables Regression coefficients
CONSTANT 89.9235100000000

Number of iterations: 1

Sum of absolute values of the residuals: 1951.43425600000

Weighted sum of the absolute deviations: 324.058897600000
Solution: SUCCESSFUL

Regression Evaluation:
0.90 Quantile Regression Model:
WTPERHA=CONSTANT+OAKCCSI
Versus Hypothesis Model at Quantile 0.90:
WTPERHA=CONSTANT

Test Summary
Number of permutations: 10000
Random Number Seed: 3288861
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Observed Rank Score Test Statistic: 0.115100869658327
P-value of Rank Score Test: 0.352000000000000E-001
Asymptotic Rank Score Statistic: 4.19761909151131
(Distributed as Chi-square with degrees of
freedom equal to difference in number of
parameters between full and reduced models.)
P-Value of Asymptotic RS Stat: 0.404807769147461E-001
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Figure 12. Average annual biomass of acorns and acorn suitability indices based on oak
forest characteristics in 43 0.2-ha sample plots in Missouri. Solid lines are estimates
for 6 selected regression quantiles.

Estimates for other regression quantiles can be obtained by changing the value useptiorthe
QUANT =num Note that thé-values approximated by the permutation evaluation of the rank
score tests are similar to those produced by the asymptotic Chi-square distaibuti
approximation (uses a Chi-square distribution with degrees of freedom equal enddfar
number of parameters in full versus reduced models). Although the perm&atadues are
slightly smaller than those for the asymptotic Chi-square approximation, teeeddés may be
attributable just to the resampling error associated with the Monte Carlo apatioxi.

Simulation research in Cade (2003) and Cade et al. (2005b) established that the permutation
version of the rank score test maintains valid Type | error rates at more @xpuamtiles 1)

with smaller than does the Chi-square distributional approximation.

Confidence intervals based on the regression quantile rank score statistic cameloebfpa
process identical to that described above for LAD regression. However, if you wanthe use
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asymptotic Chi-square approximationRs¥alues for computing confidence intervals, there are
fast implementations in linear programming algorithms available for S-RJwsd SAS
(Koenker 1994, Cade et al. 1999, Koenker and Machado 1999).

A multiple regression quantile example is provided by Cade et al. (1999), where Igiacie
(Erythronium grandiflorurpseedlings are linearly related to the number of flowers and an index
of rockiness im = 256 contiguous 2 x 2 m quadrats (Fig. 13).

To estimate the 95regression quantile model issue the following commands:

>USE LILY.DAT
>LAD SEEDLINGS = CONSTANT + FLOWERS + ROCKINESS/ QUANT = 0.95

and obtain the following output:

Quantile Regression

Data Used
Data file: lily.dat

0.95 Quantile Regression:
SEEDLINGS = CONSTANT + FLOWERS +ROCKINESS
Results
Number of observations: 256
Dependent Variable: SEEDLINGS

For Quantile = 0.95

Independent variables Regression coefficients
CONSTANT 20.2991556091677
FLOWERS 0.850422195416164E-001
ROCKINESS -0.898673100120627E-001

Number of iterations: 5

Sum of absolute values of the residuals: 3800.25995174910

Weighted sum of the absolute deviations: 272.780971049457
Solution: SUCCESSFUL



91

w
o

Number of Seedlings
N
o

Figure 13. Glacier lily seedling counts, lily flower numbers, and rockiness index for 256 2 x 2 m quadrats

in subalpine meadow of western Colorado. Surfaces are for selected regression quantile estimates
(1 outlying count of 72 seedlings is not plotted).

The estimates indicate a 0.085 increase in seedling numbers with each increaser in f

numbers at a given level of rockiness, and a decrease of 0.090 of seedling numbers with each
increase in unit of the rockiness index. We can test that these parametersijeintipal to zero

by comparing the full parameter model above with the reduced parameter model haang just
intercept by the command:

>HYPOTHESIS SEEDLINGS = CONSTANT/ RANKSCORE NPERM = 10000

The output indicates some evidence that at least one of the parameters is unliyedy rew P
= 0.030 for asymptotic approximation aRd: 0.028 for permutation approximation).

Quantile Regression
Hypothesis test of Rank Score

Data Used
Data file: lily.dat



0.95 Quantile HYPOTHESIS Regression:
SEEDLINGS = CONSTANT
Results
Number of observations: 256
Dependent Variable: SEEDLINGS

For Quantile = 0.95
Independent variables Regression coefficients
CONSTANT 16.0000000000000

Number of iterations: 1

Sum of absolute values of the residuals: 3377.00000000000

Weighted sum of the absolute deviations: 301.150000000001
Solution: SUCCESSFUL

Regression Evaluation:
0.95 Quantile Regression Model:
SEEDLINGS = CONSTANT + FLOWERS +ROCKINESS
Versus Hypothesis Model at Quantile 0.95:
SEEDLINGS = CONSTANT

Test Summary
Number of permutations: 10000
Random Number Seed: 3314138

Observed Rank Score Test Statistic: 0.285678029923178E-001

P-value of Rank Score Test: 0.278000000000000E-001
Asymptotic Rank Score Statistic: 7.01667809940338
(Distributed as Chi-square with degrees of
freedom equal to difference in number of
parameters between full and reduced models.)
P-Value of Asymptotic RS Stat: 0.299466129878649E-001

We can test each of the parameters individually by issuing the series of commands:

>HYPOTHESIS SEEDLINGS = CONSTANT + FLOWERS / RANKSCORE

NPERM = 10000

>HYPOTHESIS SEEDLINGS = CONSTANT + ROCKINESS/ RANKSCORE

NPERM = 10000
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The output indicates stronger evidence that the parameter for ROCKINESS does no¢requa

(P =0.041) than for the parameter for FLOWERS=(0.079).

Quantile Regression
Hypothesis test of Rank Score

Data Used
Data file: lily.dat

0.95 Quantile HYPOTHESIS Regression:
SEEDLINGS = CONSTANT+FLOWERS
Results
Number of observations: 256
Dependent Variable: SEEDLINGS



For Quantile = 0.95

Independent variables Regression coefficients
CONSTANT 18.5818181818182
FLOWERS -0.727272727272729E-001

Number of iterations: 4

Sum of absolute values of the residuals: 3460.49090909091

Weighted sum of the absolute deviations: 296.062727272727
Solution: SUCCESSFUL

Regression Evaluation:
0.95 Quantile Regression Model:
SEEDLINGS = CONSTANT + FLOWERS +ROCKINESS
Versus Hypothesis Model at Quantile 0.95:
SEEDLINGS = CONSTANT+FLOWERS

Test Summary

Number of permutations: 10000

Random Number Seed: 3325381
Observed Rank Score Test Statistic: 0.171472162215515E-001

P-value of Rank Score Test: 0.365000000000000E-001

Asymptotic Rank Score Statistic: 4.16986218022584
(Distributed as Chi-square with degrees of
freedom equal to difference in number of
parameters between full and reduced models.)

P-Value of Asymptotic RS Stat: 0.411491467475027E-001

Quantile Regression
Hypothesis test of Rank Score

Data Used
Data file: lily.dat

0.95 Quantile HYPOTHESIS Regression:
SEEDLINGS = CONSTANT+ROCKINESS
Results
Number of observations: 256
Dependent Variable: SEEDLINGS

For Quantile = 0.95

Independent variables Regression coefficients
CONSTANT 22.0000000000000
ROCKINESS -0.652173913043478E-001

Number of iterations: 4

Sum of absolute values of the residuals: 3918.43478260870

Weighted sum of the absolute deviations: 278.565217391304
Solution: SUCCESSFUL

Regression Evaluation:
0.95 Quantile Regression Model:
SEEDLINGS = CONSTANT + FLOWERS +ROCKINESS
Versus Hypothesis Model at Quantile 0.95:
SEEDLINGS = CONSTANT+ROCKINESS

Test Summary
Number of permutations: 10000
Random Number Seed: 3330654
Observed Rank Score Test Statistic: 0.125367654441921E-001
P-value of Rank Score Test: 0.765000000000000E-001
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Asymptotic Rank Score Statistic: 3.09446818237270
(Distributed as Chi-square with degrees of
freedom equal to difference in number of
parameters between full and reduced models.)
P-Value of Asymptotic RS Stat: 0.785588175421340E-001

Both P-values are consistent with the 90% confidence intervals given in Cade et al. (1999) that
did not overlap zero for either variable. Note that the permutBtvalues are slightly smaller

than the Chi-square distribution approximation. The confidence intervals in Cade et al. (1999)
were based on inverting the asymptotic Chi-square distribution approximation of theaesk s
statistic as part of the linear programming solution for regression quahttesre available for
S-Plus (see Ecological Archives E080-001 for these routines). Because of theemetigyog
evident in this model, confidence intervals and rank score testing would be better based on
weighted estimates (Cade et al. 2005b)

The use of all quantile regression estimates and weighting is provided for anexelatpig

Lahontan cutthroat trouQncorhynchus clarki henshawiumbers per meter of stream to stream
width:depth ratio fon = 71 observations of streams across years in Nevada (Dunham et al. 2002,
Cade 2005, Cade et al. 2005b). The scatter plot in Figure 14 (A) indicate moderate hetgrogenei
and some nonlinearity in the relationship. Dunham et al. (2002) chose to use a nonlinegr model
= exp(l, + B X, + &) estimated in the linear scale by taking natural logarithms of both sides of the
equation. Cade (2005), Cade et al. (2005b), and Cade and Richards (In press) also used weighted
estimates, where the coefficients of the weight funation(1.310-0.001%,) ! were estimated

from the average pairwise differences (by using expected value obtained fraraspatise

sequence procedure) between all possible quantile regression estimggestbfor, obtained

by using the QUANT = ALL option:

USE LAHONTAN.DAT
LAD LNLCTM = CONSTANT +WIDRAT/ QUANT = ALL SAVE=ALLTROUTL1.TXT

All Quantile Regressions

Data Used
Data file: lahontan.dat

All Quantile Regressions From Command:
LNLCTM=CONSTANT + WIDRAT

Dependent Variable: LNLCTM
Independent Variables:
CONSTANT
WIDRAT
Number of Observations: 71
Number of Model Parameters: 2
Number of Solutions: 77
Solution Result Was: SUCCESSFUL

Full solution results are written to file lahontan.OUT
Output was appended to file "lahontan.OQUT"
All quantile solutions saved in file: ALLTROUT1.TXT
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Figure 14. (A) Lahontan cutthroat trout m" and width:depth ratios for small streams sampled 1993 to 1999

(n = 71); exponentiated estimates for 0.90, 0.50, and 0.10 regression quantiles for the weighted model

win ) = W8, + BX, + () + yiX)e), w = (1.310 — 1.017X,)™". Solid lines in (B) and (C) are step functions
for estimates of /3 and £, by T O [0, 1] and dashed lines connect pointwise 90% confidence intervals for

T 0 {0.05, 0.10, 0.15, ..., 0.95} based on inverting the double permutation test.

The file ALLTROUTL1.TXT contains a row for each unique interval of quantiles, with golum
variables specifying the upper endpoint of the quantile inteQeahile ), the objective

function minimized QbjFuncSol

is weighted sum of absolute deviations), the predicted value

for that quantile at the mean of the independent variablesy( xbar ), and the parameter
estimates (heré,_CONSTANT and b_WIDRAT). Plots of the parameter estimates by quantile
suggested the linear location-scale (in log scale) form of heterogensity igasonable
approximation so that a single weight function could reasonably be applied to all quartiges
empirical distribution plots for each parameter estimate by quantile in Figui and C) were
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made from the weighted estimates by connecting the point estimates with an appsipp
function (Figure 14 B and C). The weighted estimates were made by multiplyingaiiles
(LNLCTM, a column of 1's for the intercept, and WIDRAT) by the weights (WT) to fben t
variables WTLNLCTM, WT, and WTWIDRAT. The model was estimated as:

USE LAHONTAN.DAT
LAD WTLNLCTM = WT + WTWIDRAT/QUANT = ALL SAVE=ALLTROUT2.TXT

All Quantile Regressions

Data Used
Data file: lahontan.dat

All Quantile Regressions From Command:
WTLNLCTM=WT + WTWIDRAT

Dependent Variable: WTLNLCTM
Independent Variables:
WT
WTWIDRAT

Number of Observations: 71
Number of Model Parameters: 2
Number of Solutions: 79
Solution Result Was: SUCCESSFUL

Full solution results are written to file lahontan.OUT
Output was appended to file "lahontan.OQUT"
All quantile solutions saved in file: ALLTROUT2.TXT

Note that the variable WT (=1 x WT) replaces the usual CONSTANT term bdbause
weighted model requires that weights are multiplied by all independent variadileding the
column of 1's for the constant. The confidence intervals formed around the parametgegstim
by quantiles in Figure 14 (B and C) were made by using the drop in dispersion permutation test
with double permutation (because null models for weighted estimates were oeastnaough

the origin). Cade and Richards (In press) formed 90% confidence intervals at quabilgs =
0.10, 0.15 ... 0.90, 0.95 by successive iteration of hypothesized values as explained for LAD
regression starting on page 82. These intervals were only slightly narrowertdraals formed
by inverting the permutation version or Chi-square distributional approximation of thectaek s
test (Cade et al. 2005b). Here, we provide an example of the hypothesis tests forhtexweig
0.90 quantile regression estimates:

LAD WTLNLCTM = WT + WTWIDRAT/QUANT=0.90
HYP WTLNLCTM = WT/NPERM=100000 DP
HYP WTLNLCTM = WTWIDRAT/NPERM = 100000 DP



Quantile Regression

Data Used
Data file: lahontan.dat

0.90 Quantile Regression:
WTLNLCTM=WT + WTWIDRAT
Results
Number of observations: 71
Dependent Variable: WTLNLCTM

For Quantile = 0.90

Independent variables Regression coefficients
WT 0.05762007758715407
WTWIDRAT -0.02154147781141880

Number of iterations: 2
Sum of absolute values of the residuals: 82.41461016146272
Weighted sum of the absolute deviations: 8.796595654366030
Solution: SUCCESSFUL
Output was appended to file "lahontan.OUT"

>HYP WTLNLCTM=Wt/NPERM=100000 DP

Quantile Regression
Hypothesis Test with Double Permutation

Data Used
Data file: lahontan.dat

0.90 Quantile HYPOTHESIS Regression:
WTLNLCTM=WT
Results
Number of observations: 71
Dependent Variable: WTLNLCTM

For Quantile = 0.90
Independent variables Regression coefficients
WT -0.6763883967527673

Number of iterations: 1

Sum of absolute values of the residuals: 80.29814001870930

Weighted sum of the absolute deviations: 9.831009518510045
Solution: SUCCESSFUL

Regression Evaluation:
0.90 Quantile Regression Model:
WTLNLCTM=WT + WTWIDRAT
Versus Hypothesis Model at Quantile 0.90:
WTLNLCTM=WT

Test Summary
Number of permutations: 100000
Random Number Seed: 46188336
Observed Test Statistic: 0.1175925215603838
P-value of variables in full model but not in reduced model:
0.002360000000000000
Output was appended to file "lahontan.OQUT"

>HYP WTLNLCTM=WTWIDRAT/NPERM=100000 DP
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Quantile Regression
Hypothesis Test with Double Permutation

Data Used
Data file: lahontan.dat

0.90 Quantile HYPOTHESIS Regression:
WTLNLCTM=WTWIDRAT
Results
Number of observations: 71
Dependent Variable: WTLNLCTM

For Quantile = 0.90
Independent variables Regression coefficients
WTWIDRAT -0.02022132436065866

Number of iterations: 1

Sum of absolute values of the residuals: 81.25775342749679

Weighted sum of the absolute deviations: 8.807900858607981
Solution: SUCCESSFUL

Regression Evaluation:
0.90 Quantile Regression Model:
WTLNLCTM=WT + WTWIDRAT
Versus Hypothesis Model at Quantile 0.90:
WTLNLCTM=WTWIDRAT

Test Summary
Number of permutations: 100000
Random Number Seed: 46230889
Observed Test Statistic: 0.001285179481489562
P-value of variables in full model but not in reduced model:
0.7816900000000000
Output was appended to file "lahontan.OUT"

Note that both null hypothesized models above do not include a CONSTANT for a column of 1's
because of the weighting scheme, so that the double permutation option DP was used to provide
better Type | error rates. The output indicates a strong, nonzero slope but an intercept tha
doesn't differ from zero (in the log scale) for the 0.90 regression quantile. Notitkaba

results are consistent with the 90% CI which indicate nonzero slopes for quar@i&sand

nonzero intercepts for quantiles0.70

The LAD Command Syntax

The LAD command can be used to fit a variety of least absolute deviation regressiens. T
HYPOTHESIS command allows the specification of reduced parameter LA&sségn model
to compare with the full parameter regression model specified in the main LARDawn The
regressions are run and the tests performed upon entering the LAD and HYPOTHESIS
commands. If the QUANT aumoption is specified, all subsequent testing is done on the
specified conditional quantile.
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LAD dep. var= [CONSTANT +]ind. varl + ind. var2 + ...

[[TEST | NPERM =num SEED =num| SAVE E file namg
| QUANT =num | ALY

HYPOTHESISdep. var= [CONSTANT +]ind. varl + ind. var2 + ...

[/[NPERM =num| DP | SEED :num| RANKSCORE |
SAVETEST E file namd]

Items to be supplied by the user are given in lower case in italics. Items in sqc&etdare
optional. The vertical line (]) can be read as "or" and separates different optiaratba
specified. They can be specified in any order. The single variable named on the left of the
equal sign is the dependent variable. The independent variables are listed and separated by
plus signs to indicate the form of the regression model. If the model is to include atonsta
(intercept term) the term CONSTANT must be placed right after the egual si

LAD options follow the slash (/) character. The TEST option causes the defaoftaést

slope parameters equal to zero. The NPERM option allows the user to specify maser or fe
permutations than the default of 5,000 used in approximating probabilities. The SEED

option allows the user to specify a random number seed; by default the program uses a value
from the computer clock. The SAVE option specifies that predicted values, residuals, and
model variables are to be saved to a file with the name of the file in use but with afileAD
extension. The SAVEd file can also be named by supplying a file name.

The QUANT =num | ALLoption specifies a regression quantile, where the number specified
must be greater than 0.0 and less than 1.0. Specifying QUANT = ALL yields all quantile
regression estimates and when combined with a SAYIE rame the parameter estimates

by quantile are saved in a file with estimates (column variables) by quardiles.(r

The HYPOTHESIS command is used to specify a reduced parameter null model against
which to test the regression given by the current LAD (/QUANUR) command. Note

that it is not possible to test a HYPOTHESIS when all quantiles were sklathbethe
LAD/QUANT = ALL option. The dependent variable should be the same as that on the most
recent LAD command line and a reduced number of the same independent variables used in
the LAD command must be given. The syntax of HYPOTHESIS is similar to LAD with
NPERM and SEED options. The TEST option need not be given on the LAD command line
if a HYPOTHESIS is specified. The RANKSCORE option bases hypothesis tests on a
scoring function of the sign of the residuals for the reduced parameter model dg®cifie
HYPOTHESIS . Asymptotic Chi-square distributional and permutation approximatiéhs
values are both provided. The DP option provides double permutation for null models that
are constrained through the origins, for either the drop in dispersion permutation test or the
RANKSCORE test option. The SAVETEST fite nameoption allows the Monte Carlo
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resampled test statistics to be saved into a single column variable in theedgéejfwhere
the first value is always the observed test statistic value.

Terse output provided following an OUTPUT/TERSE command is the USEd file name,
dependent variable name, estimated coefficients for intercephtiependent variables,
observed test statistic (if HYP command), &dalue.

Ordinary Least Squares Regression (OLS)

Estimation and permutation testing alternatives for the familiar ordinasy $guares

regression are available with the OLS command. OLS regression estiatesesfrchange in
conditional means. The permutation testing approaches are identical to those usddl for LA
regression, and are described in Kennedy and Cade (1996) and Anderson and Legendre
(1999). The test statistic is similar in structure to that for LAD regresekcept for OLS
T.,sequals (sum of squared residuals for reduced parameter medei of squared residuals

for full parameter model) / sum of squared residuals for full model. Large valligsare
evidence against the null hypothesis that the parameter(s) equal(s) zero.t atisgis is
equivalent to affr statistic without the degrees of freedaff),(which are not necessary
because they are invariant under permutatify, x (df full model/df reduced- df full

model)) =F statistic with numerataif equal todf reduced- df full model and denominator

df equal todf full model. For testing all slope parameters equal zero, the dependent variable
is permuted against the matrix of independent variables, and for testing partiéd mode
(subhypotheses) involving some subset of parameters, residuals from the reducetéparame
null model are permuted to the matrix of independent variables. The benefits and validity of
these permutation schemes are described in Kennedy and Cade (1996) and Anderson and
Legendre (1999).

We will demonstrate the OLS permutation procedure by returning to the soap scrgpeexam
previously analyzed with LAD regression (Fig. 11). Issue the following commands:

>USE NETER365.DAT
>0LS SOAP = CONSTANT + SPEED + LINE + LXS

We see in the output below that the estimate for the parameters differ Shgimtiihose
estimated with LAD regression. In particular, notice that the estimatieganteraction term
of line speed and production line number @176 for OLS compared t60.210 for LAD
regression.

Ordinary Least Squares Regression
Data Used
Data file: NETER365.DAT
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OLS Regression:
SOAP = CONSTANT + SPEED + LINE +LXS
Results
Number of observations: 27
Dependent Variable: SOAP

Independent variables Regression coefficients
CONSTANT 7.57446455254740
SPEED 1.32204881288395

LINE 90.3908632348866

LXS -0.176661427733713

Sum of squares of the residuals: 9904.05692279731

We can test that the interaction coefficient for LXS equals zero by using th@ HYESIS
command after the OLS command similar to what was done for LAD regression:

>HYPOTHESIS SOAP = CONSTANT + SPEED + LINE/ NPERM = 10000

The output indicates that there is little evidence to believe that the interaectio(LXS)
differs from zero withP = 0.1828.

Ordinary Least Squares Regression

Data Used

Data file: NETER365.DAT
HYPOTHESIS Regression:

SOAP = CONSTANT + SPEED + LINE

Results

Number of observations: 27

Dependent Variable: SOAP

Independent variables Regression coefficients
CONSTANT 27.2817939708983
SPEED 1.23074072291476

LINE 53.1291973496333

Sum of squares of the residuals: 10713.6795013717

Regression Evaluation:
Ordinary Least Squares:
SOAP = CONSTANT + SPEED + LINE +LXS
Versus Hypothesis Model:
SOAP = CONSTANT + SPEED + LINE

Test Summary
Number of permutations: 10000
Random Number Seed: 3338701
Observed Test Statistic: 0.817465595043978E-001
P-value of variables in full model but not in reduced model:
0.182800000000000

The normal theory test of the same estimate yiéldg= 1.88 withP = 0.184, indicating the
similarity of the permutation and normal theory probabilities for this examplmeRéer,
that the LAD regression estimate (-0.21) and permutation test suggestedrithatathsome
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evidence that the interaction term differed from zero With0.046. As explained in Cade

and Richards (1996), the one outlying value for line 2 (circled value in Fig. 11) has a
studentized residual of 3.18, and though not a large outlier, has enough impact on the OLS
regression estimate to reduce the magnitude of the LXS interaction term aasénttre
standard error of the estimate. If this outlier is deleted, the OLS estonéte finteraction

term LXS becomes -0.23 with, ,;= 3.70 and® = 0.068, much more similar to the LAD
estimate and test results. Minor outliers such as this one (Fig. 11) are likelynissee or
ignored in many analyses made with OLS regression and, thus, not detect nonzero effects
with as much power as possible. LAD regression estimates and their permutitaoe far

less sensitive to the impacts of one or a few outliers (Cade and Richards 1996, Mielke and
Berry 2001).

The OLS Command Syntax

The OLS command can be used to fit a variety of least squares regressions. The
HYPOTHESIS command allows the specification of a reduced parameter QkSsieg
model to compare with the full parameter regression model specified in the nfain OL
command. The double permutation option for null models constrained through the origin
also is provided by using a quantile = 0.50 for the binomial random sampling to randomly
recenter the residuals. The regressions are run and the tests performed uportleai@Liitg
and HYPOTHESIS commands.

OLSdep. var= [CONSTANT +]ind. varl + ind. var2 + ...
[/TEST | NPERM =um| SEED =num| SAVE [ file namg

HYPOTHESISdep. var= [CONSTANT +]ind. varl + ind. var2 + ...
[/[NPERM =num| SEED =num| DP | SAVETEST# file namg

Items to be supplied by the user are given in lower case in italics. Items in sqe&etdare
optional. The vertical line (]) can be read as "or" and separates different optiaantbe
specified. They can be specified in any order. The single variable named on the leéqfahe
sign is the dependent variable. The independent variables are listed and separateddng plus s
to indicate the form of the regression model. If the model is to include a constantr@@pite
term) the term CONSTANT must be placed right after the equal sign.

OLS options follow the slash (/) character. The TEST option causes the defanfiaiestope
parameters equal to zero. The NPERM option allows the user to specify more or fewer
permutations than the default of 5,000 used in approximating probabilities. The SEED option
allows the user to specify a random number seed; by default the program uses a value from
computer clock. The SAVE option specifies that predicted values, residuals, and medd¢sari
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are to be saved to a file with the name of the file in use but with a "OLS" file mxtenkhe
SAVEd file can also be named by supplying a file name.

The HYPOTHESIS command is used to specify a reduced parameter null modehabaihgo

test the regression given by the current OLS command. The dependent variable should be the
same as that on the most recent OLS command line and a reduced number of the same
independent variables used in the OLS command must be given. The syntax of HYPOTHESIS is
similar to OLS with NPERM and SEED options. The TEST option need not be given on the

OLS command line if a HYPOTHESIS is specified. The DP option provides double peomutati

for null models constrained through the origin. The SAVETEST option allows the Monte Carlo
generated random sample of test statistics to be saved to a single column inifiee $iesc

where the first value is the observed test statistic.

Terse output provided following an OUTPUT/TERSE command is the same as for LAD
regression.

Gsample and 1-sample Goodness-of-fit Coverage Tests (COV)

Theg-sample and 1-sample goodness-of-fit variants of the empirical coveraggdtiette and

Yao 1988, 1990; Mielke and Berry 2001) are alternatives to the Kolmogorov-Smirnov family of
tests for comparing cumulative distribution functions of continuous variateg; <f.. <x,,; are
then, order statistics of theh samplei(= 1, ...,g), N = sum of they, fromi = 1 tog, andF(x) =
(number of observed values among khpooled values which arex)/(N + 1), then, + 1

coverages associated with the@bserved values of thth samplei(= 1, ...,g) are denoted by

Cyi =Fu(%1) - Fa(%_4). Consider an example with 2 groups of 4 and 3 observations with order
statisticsXy, ; <Xy 1 <Xg/ 1 <Xyp <Xyq1 <Xy,<Xy, TheN+ 1 =8 empirical coverages &g, =
c,.=¢C;,=C,,=1/8,C,,=C,,,=2/8,C;,, = 3/8, andC,,, = 4/8, e.gC,,,= 5/8 ((the number

of observations: x,,,)/8) - 3/8 ((the number of observation,, ,)/8) = 2/8. The coverage test
statistic is a function of the absolute value of the difference between the observeges( )

and their expected valug, ¢ 1)* raised to some exponent The 1-sample goodness-of-fit
coverage test implemented here is based on raising the absolute value of the stvenage
exponent of 1, and is equivalent to the test described by Sherman (1950). A special variant of
this goodness-of-fit test for circular distributions is equivalent to Rao’s (197€éngdast for a
uniform circular distribution. Probabilities under the null hypothesis are provided bysoiPea
type Il approximation based on the exact mean, variance, and skewness for the 1-sample
goodness-of-fit test and based on Monte Carlo resampling approximati@asaiomple tests.

We will examine a 2 group example of the coverage test by returning to the blue grouse
migration example given for MRPP. Here we will examine just the migratstandies (DIST)
since the coverage test is limited to univariate comparisons. Quantile plotgicftémees are
given in Figure 15.
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The commands to compare these data are:

>USE BGROUSE.DAT
>COVERAGE DIST * SEX/ NPERM = 10000

and the output is:
Univariate G-Sample Empirical Coverage Test

Data Used
Data File: BGROUSE.DAT
Grouping Variable: SEX
Cover Variable: DIST

Specification of Analysis
Number of observations: 21
Number of groups: 2
Distance exponent: 1.00000000000000
Number of iterations: 10000
Random number seed: 3351888

Group Summary

Group Value Group Size

3.00000000000000 9

4.00000000000000 12
Results

Observed coverage statistic = 1.12167832167720

Mean of coverage statistic = 0.981818181818185
Estimated variance of coverage statistic = 0.299072126265342E-001
Standard deviation of coverage statistic = 0.405406128993705E-003

Observed standardized coverage statistic = 0.808734535074275
Skewness of observerd coverage statistic = 0.455334416246216E-001
Probability (Pearson Type lll) of a larger

or equal coverage statistic = 0.208567689286554
Probability (Resampled) of a larger

or equal coverage statistic = 0.193000000000000

The option NPERM = 10000 requested that we use 10,000 resamples for the Monte Carlo
approximation of thé&-values. Two probabilities are reported from this approximation, one
which is the standard Monte Carlo approach of referencing the observed test statistse
generated by the resampling, and a second which uses the resampled statisiticatotbe
variance and skewness of the sampling distribution to be evaluated with the Pearsibn type |
curve. Note their similarity here. We obtairfed 0.193 (Monte Carlo resampling
approximation), which suggests that there is little evidence to conclude that thiatbuenm
distributions of male and female blue grouse migration distances differ. Isgleesible to get
an exact enumeration of all possible permutations of the data for the coveratgistist for
small sample sizesik 24) by using the option /EXACT, which give®a 0.204 for the data in
Figure 15. Interestingly, comparisons made with MRPPvand yield P = 0.008 (exact
enumeration)and with MRPP ard:= 2, c = 2 (permutation version oftest) yieldP = 0.040



105

(exact enumeration), both which suggest greater evidence that male and fegretierm
distances differ.
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Figure 15. Quantile plots of migration distances for 9 male and 12 female blue grouse (data from
Cade and Hoffman 1993).

Consider now the univariate comparisons of elevation changes (ELEV) made by malaaled fe
blue grouse in migration (Fig. 16).
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Figure 16. Quantile plots of elevation changes (m) made by 9 male and12 female blue grouse
when migrating from breeding to winter areas (data from Cade and Hoffman 1993).
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We can compare these distributions with the coverage statistic by issuing thardsn
>COVERAGE ELEV * SEX/ EXACT

Here theP = 0.019 yields similar evidence of differences in movements as does MRPP-with
2,c=2 (P =0.010, exact), whereas MRPP wite 1(P = 0.004, exact) yields slightly stronger
evidence of differences.

Exact Univariate G-Sample Empirical Coverage Test

Data Used
Data File: BGROUSE.DAT
Grouping Variable: SEX
Cover Variable: ELEV

Specification of Analysis
Number of observations: 21
Number of groups: 2
Distance exponent: 1.00000000000000

Group Summary
Group Value Group Size
3.00000000000000 9
4.00000000000000 12

Results
Observed coverage statistic = 1.34755244755110
Probability (Exact) of a larger
or equal coverage statistic = 0.188378185282210E-001

The power characteristics to detect nonzero differences between the grodpsliffeaamong
these various test statistics. Mielke and Berry (2001) give other examplesashelusions
differ greatly for coverages tests compared to MRPP comparisons. Moreexsmailation
research is needed to better characterize the types of distributionahdéfeteetter detected by
the coverage tests relative to MRPP. Simple location shifts (change in megtipear to be
detected with greater power by MRPP than by the coverage tests.

The 1-sample goodness-of-fit coverage tests are of the Kendall-Sherman igike @vid Berry

2001). Given an observed set of univariate data with order stakistios < ..., <, fori = 1 to

n these values must be transformed to the cumulative probability of the distributionriu{gji
specified under the null hypothesi#j) = F(x) fori = 1 ton. ThesdJ(i) are then the probability
integral transformed values used in the coverage test. For example, consider ties §ivah

by Bradley (1968:301-302) that were hypothesized to come from a normal distribution with mean
of 3 and standard deviation of 2; -0.311, -0.078, 0.555, 1.462, and 5.711. The file
BRAD302.DAT has these 5 values (X) and the 5 transformed cumulative probabilities from a
normal distribution with a mean of 3 and standard deviation of 2 for these values (FX). The 1-
sample goodness-of-fit test for these data are implemented by issuing thencemma



107

>USE BRAD302.DAT
>COVERAGE FX

The output below yiel® = 0.031, which suggests that there is some evidence to support the
belief that these 5 observations did not come from a population with a normal distribution having
a mean of 3 and standard deviation of 2, similar to conclusions reached with the Kolmogorov-
Smirnov goodness-of-fit test (Bradley 1968: 301-302).

Kendall-Sherman Goodness of Fit Test

Data Used
Data File: BRAD302.DAT
Cover Variable: FX

Specification of Analysis
Number of observations: 5
Number of intervals: 5

Results
Observed Statistic T = 1.04951504724667
Expected Statistic T = 0.669795953360768
Variance of Statistic T = 0.375457304598154E-001
Standardized statistic T = 1.95966644723580
Skewness of statistic T = 0.246650473925624
P-value of observed statistic,
P(Expected >= Observed) = 0.313549281522170E-001

Because there are so many possible distributions that might be hypothesized andhued wit
1-sample goodness-of-fit coverage test, we have not implemented any specifiatoemul
distribution function transformations in Blossom. We expect the user to make such
transformations on the data with another statistics package prior to conductingyais amal

Blossom. There is one special cumulative distribution function transformationdoifiere

Blossom because it is not commonly available in other statistical packagess Wwhatansform

the data to a cumulative uniform random distribution on the unit circle to test the null hygpothes
that the sample came from a population with a uniform random circular distribution.sThis i

done with the COVERAGE test option / ARGam where the number provided tells the test

how many units describe the circular units of measure recorded (e.g., ARC = 360 would be used
for angular orientations recorded in degrees). When these transformed valustedreith the
coverage test, it performs a goodness-of-fit test equivalent to Rao’s (1976) patiog

uniformity of circular distributions. We will consider the example given by Rao (187 &)é
compass orientation at which 10 homing pigeons departed when released 25 km west of their
loft: 20, 35, 350, 120, 85, 345, 80, 320, 280, and 85 degrees. Use the data in the file RAO.DAT.

USE RAO.DAT
COVERAGE ANGLE/ ARC = 360

The output below ha8 = 0.328 for an observed test statistic = 0.7611. This observed test
statistic is related to Raot$ by T, x 360/2 =U. Rao obtainetll,, = 137 degrees.
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Kendall-Sherman Goodness of Fit Test

Data Used
Data File: RAO.DAT
Cover Variable: ANGLE

Specification of Analysis
Number of observations: 10
Number of intervals: 9
ARC distances used
Intervals in unit circle: 360.000000000000

Results
Observed Statistic T=0.761111111111111
Expected Statistic T = 0.697356880200000
Variance of Statistic T = 0.230444018049956E-001
Standardized statistic T = 0.419977758737600
Skewness of statistic T = 0.188757491268075
P-value of observed statistic,
P(Expected >= Observed) = 0.327828419659248

It is important to point out that the coverage tests assume continuous data with no ted value
The grouse examples above for ghgample coverage tests had 2 tied values for both distances
and elevations. This is only a minor violation of the assumption of continuity that likely has
minimal impact on the analysis. At this point in time it is difficult to say whapqution of a
sample comprised of tied observations constitutes a serious violation of the continuity
assumption of the coverage tests. Beware of tied values.

COVERAGE Command Syntax:

The coverage command fits univarigtsample empirical coverage tests if the optional grouping
variable is specified or 1-sample goodness-of-fit coverage tests if no groupaigesare
specified. The goodness-of-fit applications require that the user transform theedlzgta to

be tested to the appropriate probability points from the cumulative distribution function
hypothesized under the null. The exception for this rule is when the test is for a hypdthesize
uniform random circular distribution, where the program computes the appropriate ptpbabili
integral transform based on the value selected with the option / ARG=

COVERAGEVvariable* [grouping variablg/(num ...)| (num - num) [/ EXACT |
NPERM [E num|| SEED =num| ARC =num| SAVETEST E file namd]

A single dependent variable is supplied by the user as indicated in italics. An optoupahgr
variable is specified second. The option EXACT allows for complete enumeration of the
permutation sampling distribution for smaller sampies 24) and the NPERM option allows

the user to select a number of resamples other than the default of 4,000 for Monte Carlo
approximations of probabilities. The SEED options allows the user to specify a randont numbe
seed. The option ARC is only used for 1-sample goodness-of-fit tests where the uséo want
test for uniform random circular distribution. The number specified with the ARC optioa is
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number of units for the circular distribution (e.g., 360 degrees) to convert to a unit cinele. T
SAVETEST option allows the Monte Carlo generated random test statisticsaedakisto a
single column in the specified file, where the first value is always the obsestesidtistic.

Terse output provided by the COVERAGE command after an OUTPUT/TERSE command
includes the USEd file name, dependent variable name, grouping variable name, number of
groups, observed test statistic, dhdalue.
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Appendix A - Common Statistical Tests Embraced by the MRPP Command

Multiresponse permutation procedures (MRPP) can duplicate many common ataéstg(the
parametric tests listed below are all permutation versions).

Two-samplé-test

One-way analysis of variance

Multivariate analysis of variance

Hotelling'sT ?

Median test (2 arklsample)

Wilcoxon-Mann-Whitney test

Kruskal-Wallis test

Goodman and Kruskal contingency table tests of association
(tau-a, tau-b)

Generalized runs tests (including Wald-Walfowitz runs test)

Durbin-Watson for univariate first-order autoregression

Schoenerg/r? for bivariate first-order autoregression

The multiresponse permutation procedures for randomized block data (MRBP) and penmutati

tests for matched pairs (PTMP) can duplicate the following tests (the pacaess listed
below are all permutation versions).

Matched pairs and 1-sampitest

Analysis of variance for complete randomized blocks
Sign test

Wilcoxon signed rank test

Pearson correlation coefficient

Spearman rank correlation

Kendall tau (correlation)

Friedman's test for randomized blocks
Spearman's footrule and multi-block extension
Cochran'€ and McNematr's tests

Cohen's kappa

Other less familiar tests are also known to be special cases of MRPP and BBRBRare, too,
that many of the above tests are strictly univariate or bivariate, but MRPP ani bffeB
generalize to the multivariate case as well. Further, most of the abovedsttedde the square
of Euclidean distance in the definition of the test statistic, whereas MRPP aBB NHYe the
option of choosing a distance measure commensurate with the data space. Theagneraliz
distance function in MRPP yields alternative, often more powerful versions of #s¢se t
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Appendix B - Blossom Statistics Program Installation, Configuration, Requirements

The README files included with Blossom has the latest information for configariag
installing Blossom as well as descriptions of recent program updates and impntszefiiee
Blossom website at http://www.fort.usgs.gov/products/software/blossom/bl@sgohas the
latest information and releases of the program.

Blossom Installation Program

The Blossom installation program gives basic instructions that should be easgwo fohe

default installation folder will be in the "Program Files" folder of the fostl drive (hard disk
directory). An alternate installation path can be provided. The installation progratesca
"Blossom" folder and installs files and folders needed to run Blossom. If the folelzd\alr

exists, you can overwrite it. This is an easy way to update Blossom software og\labal

appears asking to add programs to the Windows Start menu and to add environment variables.
Blossom will need the environment variables for proper operation. Once done, the computer
may need to be re-booted to run Blossom.

Some versions of Windows use the Windows registry. Appropriate paths for an environment
variable called "BLOSSDIR" are added to the registry as well as an additioa TPATH"

variable to the Blossom installation folder. Other versions of Windows find environment
variables set in the "AUTOEXEC.BAT" file, and appropriate lines will be addduhtdite so

that Blossom will run.

Blossom Configuration
Two Blossom programs

Blossom is installed with two executable programs, a Console version (CONBXD)Sakd a
Windows version (BLOSSOM.EXE). The Console version runs best from a Command Prompt
window configured as described below. It appears as a "glass teletype" and opens no true
windows. All interaction with the Console version is from the command line. The Windows
version of Blossom has some Windows functionality, but it also can interact with tHeonser
command line data entry window. Aside from the user interface, both programs usalidentic
code so results should be identical.

The Console version of Blossom does not have additional Windows overhead and so runs
slightly faster. It does use Windows for virtual memory management, so thalelaizef

limitations depend on how much Windows Virtual Memory is available. The Console version is
more amenable to processing very large Blossom "submit” files (ASCfilesscxof Blossom
commands). This makes it particularly well suited for batch processing of mdysesnaf

many data sets (as in a simulation study).
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The Windows version of Blossom runs nearly as quickly as the Console version, yet has
additional Windows functionality for accessing files, obtaining Windows help for @&osand
selecting, clipping and printing output. This version is best suited for interactsrersewhere
most of the time is spent considering what needs to be done next and inspecting resedis. Acc
to the file system is simplified through interaction with file access diadogs. The Windows
version also processes Blossom (submit) command files.

Windows version configuration

The Windows version of Blossom is installed to run from the Windows Start Programs menu.
This may be copied and pasted as a shortcut onto the Windows Desktop. No further
configuration is necessary. When first installed, Windows Blossom program i®nurhie
installation BLOSSOM\BIN folder and accesses files from the ingtailat
BLOSSOM\SAMPLES folder. Sample files in that folder can be accessedwithSE and
SUBMIT commands to follow the examples in this manual (see SUBMIT a Commanahll
USE a Data File in the General Program Functions section, above). Once this gestaaed,
you can change folders to use data files or submit command files. Accessing le datsutbmit
command file (without specifying the name) initiates a file access dialothhoallows
navigation within the file system. Blossom keeps track of the current folder aads@sthe
last working folder of the previous session.

When Blossom is run, a small entry field opens at the bottom of the Blossom window. This is
the "Blossom Command>" or Blossom command prompt window. Commands to Blossom are
entered here. The last 100 commands of a session are kept by Blossom. Pressing thei3 functi
key and highlighting the command to access recalls previous commands. A command can be
edited in the Blossom command prompt window using normal Windows editing functions.
When editing is done, press the ENTER key to send the command to Blossom for processing.

The Windows version of Blossom can be started with optional operating system command line
arguments. The properties of a shortcut on the Windows Desktop (right click on it and select
Properties), can be edited to provide a data file for Blossom to use, followed by the Blossom
command to perform a statistical analysis. Blossom starts up, uses theedatadfjperforms the
analysis. Alternatively, a SUBMIT command can be added (see SUBMIT a Comneaind Fi

this document). To the invocation of the Blossom program, append the arguments "SUBMIT"
and then the name of the file to submit. Blossom starts up and processes commands in the
command file. Another, possibly more useful way to do this is to invoke the Windows version of
Blossom with command line arguments from a Windows Command Prompt window (sometimes
called a "DOS Box" or DOS Window). Operating system command line argumergsuss#d

in the following section. The BLOSSOM.EXE program can be invoked in the same way as
CONBLOS.EXE from a "DOS prompt".
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Console version configuration

After installation, the Console version of Blossom can be run from the Windows Start menu. A
access to Blossom is through the Blossom command line, entered at the Blossom command
prompt, which is a "greater than sign" or "right angle bracket" (">").

As a Console program, this version of Blossom has access to files in the local fudderitis
invoked, the "Start In" folder in Windows terminology. The Console program resides in the
installation BLOSSOM\BIN folder and no data are there, so not much can be done. If 8soperti
of the Console program shortcut are accessed (right-click on the program titleStarthmenu

and select "Properties"), the "Start In" folder can be modified to where datartalyeea can be
found. It is instructive to first set this to the installation BLOSSOM\SAM®&lder. When
Console Blossom is run; then access is to data and Blossom SUBMIT) commandtfées tha
discussed in this manual. Change the "Start In" folder of the shortcut propertiess® atber
folders where data are to be analyzed.

The Console Blossom shortcut from Windows Start menu can be copied to the Windows
Desktop. Changing the "Start In" folder of a shortcut makes a separate shortchtdataac
folder. Multiple shortcuts can be consolidated within a folder on Windows Desktop.

An alternate and flexible way to run the Console version of Blossom is to set up a Command
Prompt Window (sometimes called a "DOS Box" or DOS Window). The usual Windows icon
for this is a stylized "MSDOS". Depending on the version of Windows, this invokes a session of
COMMAND.COM or CMD.EXE. Access to the file system and other DOS commanitsns f

the Command Prompt Window as well as CONBLOS.EXE (the Console Blossom).

Properties of the Command Prompt Window can be modified. Depending on Windows version,
the number of lines displayed can be altered (something like "Properties, Layout, Vgindpw
height" may be adjusted). The screen can be adjusted to a scrollable window (with any numbe
of lines in the virtual screen size). This adjustment can be made by accessitigrgplike
"Properties, Layout, Screen Buffer size, height". As in all Command Prompt Windhenes are
methods available to copy and paste using the Windows Clipboard. This is useful for pasting
repetitive or complicated commands or lists of variable names. Windows documeritatitth s

be consulted for specific information about changing the properties of a Command Prompt
Window.

The Console version of Blossom can be run with operating system command line arguments, i.e
additional information can be sent to the Blossom program to begin processing. For example
from the Windows Command Prompt Window’s prompt (the "DOS prompt"), the command

C:\PROGRA~1\Blossom\samples>CONBLOS MRBP.DAT
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invokes Console Blossom and accesses MRBP.DAT data file, just as the USE commaind woul
Moreover, a statistical command can be added to the command line and the progranessll acc
the data file and execute the statistical command, so:

C:\PROGRA~1\Blossom\samples>CONBLOS MRBP.DAT MRPP SPP1 SPP2
SPP3*TRTMT*BLOCK

runs Console Blossom, USEs data file MRBP.DAT, and performs a multiresponse rattomiz
block procedure.

Blossom programs can process Blossom (SUBMIT) command files invoked from the "DOS
prompt". The command:

C:\PROGRA~1\Blossom\samples>CONBLOS SUBMIT SUBWAY.SUB
runs Console Blossom and SUBMITs the Blossom command file SUBWAY.SUB.

Details about USE and SUBMIT as well as operating system command line atg@aresgiven
in theGeneral Program Functions section of this manual (s&BMIT a Command File,
USE a Data File, andAdvanced SUBMIT Operationswith Program Argumentsand DOS
Batch Files sections).

Blossom Requirements and Program Limits

Blossom is compiled to run in a 32-bit Windows environment. Both the Console and Windows
Blossom should run under Windows versions XP and 2000. The program is not guaranteed to run
under Windows 95, 98, ME, or NT as these operating systems are no longer supported in our
environment. Development and testing was done originally under Windows 98 and NT but for

the last few years we have used only Windows 2000 and XP. Both Blossom versions are

Window programs, including the Console version (despite its user interface), and depend on
Windows for various functions, including virtual memory management. No Real Mode virtual
memory manager is bound into Blossom, so the programs are not expected to operate in true
DOS mode, although the Console readily runs in a "DOS Window" (also known as "DOS Box"

or Command Prompt Window) opened from Windows.

Blossom installation takes approximately 6 Megabytes of disk space, includingmsagr
documentation, help and support files, and sample datasets.

During operation, Blossom creates a copy of any data file USEd in a unique Blossamnfde f
This file (TEMP-DAT.$$$) contains values of numeric data from the USEd data fi@ary

format. The size (in bytes) of this file can be computed approximately by multj@ybyte

number of observations by the number of variables. Space should be available on disk for this
file to exist (plus space for output files and the Blossom history file). For ezxamfile with
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3450 observations and 14 variables takes approximately 386400 bytes (actually it takes 386512
bytes due to some system-dependent formatting overhead). If there are misssgvadiie

used, a duplicate temporary file may be created with appropriate records droppeciaiyhis,

so the space requirement is doubled. With multiresponse randomized block procedures (MRBP)
a file may be created as a subset of the original file with the grouping a blockictgrgts of the
variables used. The maximum temporary MRBP space requirement is the diee for t

non-missing data.

Blossom allocates virtual memory space dynamically at runtime. This niediibe amount of

memory required by Blossom depends on the program analyses being run and the size of the data
and associated internal storage required for the analysis. If this exceedsstbal ftgndom

Access Memory (RAM) available, Blossom uses Windows virtual memory maeageithis

runtime memory required cannot exceed the paging file size (swap spacd)lavailindows.
Documentation to Windows virtual memory management should be consulted.

In the Windows version of Blossom, part of the (virtual) memory used includes space used by the
output screen where the commands are echoed and results of the statisticad aralysiégten

by default. This can be minimized by using the ECHO OUTPUT=0FF command (which stops
statistical results being written to screen) and can be temporarily re@drhy issuing the CLS

(clear output screen) command.

Internally, Blossom has some limits on the amount of data it can support. The total amount of
memory the program and dynamically allocated array space can occupy is abobytegiga
Here are some limits within Blossom:

* Number of elements in a Blossom command: 1024 (command plus all variables and options
and delimiters).

» Maximum single command element length in ASCII representation: 25 bytes

» Maximum size of Blossom command: 8192 bytes

* Number of variables: 1024

* Number of observations: about 2 billion (depends on humber of variables, total memory
limited to about 2GB)

* Number of quantiles in a Median and Quantile (MEDQ) analysis: 250,000,000

* Number of observations in a MEDQ: 250,000,000

* Number of groups in one MEDQ: 250,000,000

» Maximum group size in MEDQ: 250,000,000

* Maximum number of variables in a MEDQ analysis: 255

» Maximum number of blocks in an Exact Multiresponse Randomize Block Procedure: 9

* Data file size: Limit of Windows Virtual Memory (depends on associated meemurired
for an analysis)

* Filename size: 25 bytes

* Variable name size: 25 bytes (12 characters for SYSTAT files)

* Title length (optional, for labeling statistical results output): 80 bytes

« Maximum significant digits of double precision numbers: about 15
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» Missing value internal representation: 0.10 X 10-37 (no datum within a data file should have
this value)

Note that there may be other, smaller limits depending on the combination of af factor
considered.

Some specific Blossom statistical analyses require minimum numbersnaingse

* Minimum number of observations for Multi-Response Permutation Procedure (MRPP): 6
¢ Minimum number of groups for MRPP: 2

e Minimum group size for MRPP: 2

* Minimum number of observations for Exact MRPP: 3

e Minimum number of groups for an Exact MRPP: 2

* Minimum group size for Exact MRPP: 2

* Minimum number of groups for Multiresponse Randomized Block Procedure (MRBP): 2
¢ Minimum number of groups for an MRBP: 2

* Minimum number of blocks for Exact MRBP: 2

* Minimum number of cases for Permutation Test for Matched Pairs (PTMP): 3

» Minimum number of observations for Multi-Response Sequence Procedure (MRSP): 6
* Minimum number of observations for Exact MRSP: 2
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Appendix C - Blossom Development and Testing

We consider Blossom to be a platform for supporting research into various statimepts. It
provides for data access and display of results for statistical functions weestgating. We
don't consider it to be a general purpose statistical package, nor do we make aoypsisdernit
its ease of use or efficacy for statistical computing.

Blossom is written in Fortran. The current version is in Fortran 95, using the Lahesy/FEHD5
Version 7.1.2 compiler (Win32 Professional Language System), from Lahey Compu&nsys
Inc.

Blossom access to Microsoft Windows is made possible with the WinteractemFaxtGUI
Toolset from Interactive Software Services, Ltd.

Blossom can use either of two pseudo random number generators (PRNG). By defaultGhe PRN
used in Blossom is provided by the Lahey/Fujitsu Fortran compiler. This pseudorandom number
generator technology is based on Lehmer's pure multiplicative congruentiahatg(yadkin

and Hamiltion 1997). Alternatively, upon user specification, Blossom uses the Mersester Tw
(MT) PRNG (Matsumoto and Nishimura 1998). Matsumoto and Nishimura describe Mersenne
Twister as a twisted generalized feedback shift register sequenc8R)@kgorithm.

Hundreds of hours of testing have gone into this (and previous) version of Blossom since
development was initiated in 1989. We have done everything possible to ensure that our
modifications of the principal computing routines for the MRPP family of statistitained

from Paul. W. Mielke, Jr., yield numerical results identical to the original rautiée made
comparisons with published and other known results, and had Dr. Mielke compare some of his
original analyses with our program. Similar comparisons of numerical output \aeeefor the
regression quantile and rank score tests made with programs provided by Roger Koenker. No
doubt, some errors remain undetected and we urge you to report any obvious or suspicious errors
to us. The README file provides a list of pertinent information to provide us in an errot.repor
We recommend running analyses on the datasets provided with the Blossom softwaife to see
your computer duplicates the output in the User Manual and output files.

The Blossom software we provide has been scanned for computer viruses using the latest
versions of Symantec anti-virus scanning programs. As far as we are ablertorggtBlossom
software as distributed from us is virus-free and there are no malware comporiess®mBs
not, we are sure, free of bugs. The authors welcome reports of errors.



124
Appendix D - Acknowledgements

We would like to acknowledge the continual interest and support provided by Drs. Mielke and
Koenker, and the testing work done on previous versions by Dr. David R. Smith. We thank Dr.
William L. Slauson for initiating the first version of the Blossom User’s Mathalthis one
replaces.



