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Abstract

In this paper we investigate the role of input-out data source
in the regional econometric input-output models.  While there has
been a great deal of experimentation focused on the accuracy of
alternative methods for estimating regional input-output
coefficients, little attention has been directed to the role of
accuracy when the input-output system is nested within a broader
accounting framework.  The issued of accuracy were considered in
two contexts, forecasting and impact analysis focusing on a model
developed for the Chicago Region.  We experimented with three
input-output data sources:  observed regional data, national input-
output, and randomly generated input-output coefficients.  The
effects of different sources of input-output data on regional
econometric input-output model revealed that there are significant
differences in results obtained in impact analyses.  However, the
adjustment processes inherent in the econometric input-output
system seem to mute the initial differences in input-output data
when the model is used for forecasting.  Since applications of
these types of models involve both impact and forecasting
exercises, there would still seem to be a strong motivation for
basing the system on the most accurate set of input-output
accounts.
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Econometric Models
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I. INTRODUCTION

In the early developments of regional input-out tables,

discussion centered on the costs of survey versus nonsurvey data

collection (see Hewings and Jensen, 1986 and Round 1983 for a

thorough discussion).  These debates, enjoined in earnest in the

1960s, continued for almost two decades without any apparent

resolution; Jensen's (1980) distinction between holistic and

partitive accuracy seems to have produced a sense of agreement

about the ways in which input-output tables produced under a

variety of different procedures could be compared.

However, this discussion did not address the issue of survey

versus nonsurvey methods (or any combination) in the context of the

development of models in which the input-output tables were nested

within a broader framework.  In this context, one could consider

the imbedding of input-output tables in social accounting systems

(a modest extension of the simple input-output model) or within

general equilibrium models; does the source of the input-output

data matter when the modeling system is more extensive?  The

purpose of this paper is to contribute to this new perspective by

examining the implications on model output when three different

input-output tables are embedded in a regional econometric-input-

output model [REIM].  The REIM may be considered as a general

equilibrium model, although not as fully specified as more

traditional CGE models (se Kraybill, 1991; Harrigan et al. 1991).

In this paper we focus specifically on the behavior of the input-



     This input-output block differs from conventional1

input-output and CGE models, as explained later in Section 4.
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output block, which we detach from the rest of the model.1

Empirical results are drawn from the Chicago input-output table

constructed for 1982.

The rest of the paper is organized as follows.  In Section 2

we discuss the effect of input-output tables on regional static

input-output models.  Section 3 is devoted to measuring the effect

of input-output tables on regional econometric input-output models.

Section 4 describes experiments conducted for three input-output

tables constructed using different techniques and data sources.

[An appendix provides a description of the Chicago-observed input-

output table (CIO)].  Section 5 concludes the paper.

II. EFFECT OF INPUT-OUTPUT TABLES ON REGIONAL STATIC INPUT-OUTPUT

MODELS

Input-output tables can be constructed by using a variety of

different methods and data sources; with limited funds available

for survey-based table construction, attention has been focused on

appropriate hybrid methods.  In this context, the analyst is faced

with the problem of allocating scarce resources to those components

of the table that are deemed analytically important.  Now assume

that the input-output table is but one part of a broader modeling

system; would the decision-rules adopted in the allocation of

survey resources for the construction of an input-output table
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alone also apply for the case of a more complete modeling system?

With the exception of some work by Harrigan et al. (1991) in

comparing simple input-output and CGE systems, these issued have

not been addressed formally.  Even in the Harrigan et al. (1991)

paper, the explicit focus was not on the accuracy of the input-

output tables (since the same tables were used for the comparison).

Some earlier work by Hewings (1977; 1984) provided the basis

for the type of assessment adopted in this present paper.

Essentially, in one case, two sets of regional input coefficients

obtained from two survey based tables for two states were exchanged

under a variety of assumptions; a further set of input coefficients

was obtained from a random number generator.  The results indicated

that no matter what the source of the coefficients, it would be

possible to approximate the observed regional column multipliers

given appropriate margin information.  however, when attention was

focused on the separate, partial multipliers (i.e., the individual

elements of the Leontief inverse), the exchange procedures produced

very unsatisfactory results.  Hewings (1984) reviewed research

which identified analytically important coefficients (the set of

coefficients whose correct estimation is deemed critical in

generating accurate results) and the issue of analytical importance

in more extensive, social accounting systems.  The general

conclusions were that (i) as economies evolve, the set of

analytically important coefficients changes and (ii) the importance

of interindustry transactions seems to decrease when the input-
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output tables are embedded in social accounting systems  Are these

findings likely to be generalizable to modeling systems of the REIM

type?

Regional input-output tables have even wider potential for

variation in respect to sources and methods of construction.

Analysts often compare input-output multipliers as a measure of

differences between methods and data sources.  In general, input-

output tables generated by different methods with column sums being

constrained to the same vector will produce very similar

multipliers (Katz and Burford 1985; Phibbs and Holsman 1981).

However, coefficients for both the input-output tables and the

Leontief inverse will vary with each method of construction.   This

distinction can be expressed as follows, by noting that the input-

output multiplier is a total derivative composed of a sum of the

Leontief inverse elements:

(2.1)

where m  is a multiplier, and m  and Leontief inverse elements,i ij

X = [x ] is the output vector, x = E  x ,i i i

Y = [y ] is the final demand vector, y = E  y ,i j j

Earlier studies would argue, correctly, that m  are largelyi

independent of the input-output table components and determined
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row-sum of the Leontief inverse.
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mostly by the column-sum of input-output coefficients.  For

example, Drake (1976) proposed an approximation for the multiplier

based entirely on the column-sum of the input-output table:

where a  are regional input-output coefficients, a  = E a  and ij i i ij

is a mean value of a .i

Therefore, if the purpose of a study is to determine

multipliers only, then it makes little difference how regional

input-output tables are constructed, as long as the coefficient

column-sum is determined correctly.  In other words, in order to

predict output for a given vector Y, methods of regional input-

output table construction play no significant role.  However, in

order to answer questions related to the decomposition of

multipliers, we have to look at the detailed input-output table.

For example, if a single component of the final demand vector (say,

food consumption) increases, then the multiplier for the food

industry will provide the change in overall economic output.  In

order to determine the change in demand for intermediate products,

we would need a full input-output table .  In the next section we2

show that REIM-type models require information from a full input-
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output table, and thus the column sums of a table (a ) are noti

sufficient.

III. EFFECT OF INPUT-OUTPUT TABLES ON REGIONAL ECONOMETRIC INPUT-

OUTPUT MODELS

In the recent literature on CGE (see Kraybill, 1991) and

regional econometric input-output models (see Conway, 1990, Treyz

and Stevens, 1985, Treyz, 1993), there has been limited discussion

about how differently constructed input-output tables affect model

outcomes.  In this paper, we address this issue by analyzing the

twofold role that input-output tables lay in such models, namely,

that of a forecasting tool and a policy impact analysis tool.  To

illustrate, we concentrate on regional econometric input-output

models - REIM (see for example, Conway, 1990, Israilevich and

Mahidhara, 1991).

Input-output tables enter REIM twice.  First, as a

deterministic linear predictor of output:

(3.1)

where f  is a normalized regional purchase coefficient in the finalij

demand matrix,

Y = y  is the final demand vector consisting of the followingj

components: personal consumption elements, investment, government

expenditures and net exports,
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N = n  is a vector of variables exogenous to the regional economyj

(such as GNP, national industrial production indices and other

national data),

E = e  is a vector of normalized regional gross exports,i

Z = z  are predicted output values,i

t indicates year.  For brevity we omit this superscript in the rest

of this paper.

To turn this model into an econometric forecasting model

vector, Z has to be stochastically related to the observed vector

X, that is, input-output coefficients enter for a second time the

set of equations in REIM.  The corresponding set of regression

equations where the actual output is a function of expected output,

time and, in some cases, autoregressive terms, is as follows:

(3.2)

where " and $ are estimated parameter vectors,

X is the observed output vector,

F (L; Z) is a function of variables L (such as time dummies) and

expected output Z,

, is a matrix of random errors.

Equation 3.2 assigns a set of regression coefficients to each row

of the input-output table, weighted by annually observed outputs,

in the nonlinear fashion.  This means that input-output column-sums

would not provide enough information for system 3.2.  Therefore
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the remaining components of REIM related to input-output.
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Drake's short-cut cannot be used in REIM.  We will concentrate only

on Equation 3.1 which treats input-output coefficients as a linear

operator that predicts output for a given year (Equations 3.1 enter

REIM as an identity).  Equations 3.1 represent the first step of

input-output implementation into the REIM system.  Further analysis

of other parts of REIM is necessary for the full understanding of

input-output effect on the entire system.3

The crucial difference between traditional input-output (IM)

approach and Equation 3.1 are the weights assigned by 3.1 to each

of input-output coefficients.  These weights are expressed as

outputs, X, for each time period.  In order to formalize the

difference between IM approach and Equation 3.1, we rewrite

Equation 3.1 in matrix form:

Z  = AX + Y (3.3)REIM

where A is the input-output matrix and Y is a vector of aggregated

final demand, all variables change in time, but we omit the time

parameter to simplify exposition.  The estimated output, Z, should

be as close as possible to the observed output X; denote the

difference between the observed and estimated outputs as ) = Z -

X.  Then equation 3.1 can be presented as:

Z  = ) + X = AX + Y (3.4)REIM

If the IM approach is used then:

Z  = (I - A) Y (3.5)IM
-1



     If ) elements are positive (negative) then IM approach4

would consistently over (under) predict estimated output Z
relative to equation 3.1, as it is determined in 3.6.  For
example if the value added vector is increasing in time, then the
A coefficients would be overestimated, making ) positive and
increasin with time, then Z  - X > Z  - X, i.e. 3.1 estimatesIM REIM

are better than IM
estimates.  This is true because input-ouput multipliers are
greater than unity.  However, empirical investigation of IM
performance vs. 3.1 prediction is beyond the scope of this paper.
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Since, (I  A) is not an identity matrix Z  is different from Z .IM REIM

Expressing this in terms of ), one can identify the difference

beween Equation 3.1 and the IM approach4

Z  = (I - A)  ) + X = (I - A)  Y (3.6)IM
-1 -1

Another distinction between 3.1 and IM approach is in the

treatment of impact.  In the IM approach impact is entered through

vector Y, while in 3.1 this impact can be entered through X as

well.  An impact that is entered through Y in system 3.1 is

different from the IM impact.  We will illustrate this as follows:

identify a diagonal matrix '̂  that relates predicted and estimated

vectors as Z = '̂ X, then 3.1 can be expressed as:

Z  = '̂ X = AX + Y (3.7)REIM

and

X = ('̂  - A)  Y (3.8)-1

This is the simplified REIM multiplier, where ' varies over time.

This simplification essentially involves the closure of the system

3.1, while in the full REIM system 3.2, several other relationships

are incorporated into the multiplier effect.  If the observed Y is

inserted into 3.8, then estimated output will be equal to the
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observed output.   To conclude, the initial effect of the input-5

output table on REIM forecast is derived with system 3.1;

similarly, the impact of changing elements in X can be traved with

system 3.1.  The impact of final demand on the system is determined

with Equation 3.8.

IV. THREE INPUT-OUTPUT TABLE EXPERIMENTS

Input-output (models (IM), social accounting matrices (SAM)

and regional econometric input-output models (REIM) differ in the

information they use in calculating output.  IMs treat final demand

as a exogenous vector, while SAMs endogenize many of the final

demand components.  Neither modeling system, however, uses

information on national variable.s  REIMs, on the other hand,

utilize all the information present in the detailed final demand

matrix, including national variables.  All three approaches (IM,

SAM and REIM) incorporate direct and indirect effects.  However

REIM does not calculate the Leontief inverse explicitly; instead it

runs a system of simultaneous equations (including (3.1) and (3.2))

in a time-recursive fashion, thereby measuring impact in a dynamic

sense.
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In REIM, there is only one input-output table on which all

historical estimates and forecasting values are based.  For the

year (base year) corresponding to the input-output table:

Z / X

for all other years, this identity does not hold.  This base year

identity is achieved by either assuming export as a residual or

allowing some adjustment procedure to balance rows only of the

input-output table.  In other words, instead of using a column

constrained approach as in IM or SAM, REIM imposes a row constraint

for the base year.

REIM is used for two purposes:  forecast and impact analysis.

Accordingly, in our investigation we analyze the forecasting

ability of the input-output model and its impact analysis features.

While the forecasting ability of input-output is not of great

interest in itself, we investigate it as it is a building block in

REIM-type models.  We thus analyze how differently constructed

input-output tables affect its forecasting ability.  In other

words, Equation 3.2 transforms input-output into a forecasting

tool, but, in order to understand the role of the construction

method of input-output in the forecasting system, we start our

analysis with Equation 3.1 and ignore Equation 3.2 in this paper.

A second aspect of REIM is in its role in impact analysis; in a

this respect, REIM is similar to IM.  Both models lack an observed

figure against which the performance of the model can be judged,

since no one knows what the "true" impact is.  In the following two



     A brief description of the CIO construction is provided6

in the appendix.
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subsections, we test both the forecasting performance and the

impact performance of input-output.

For the tests, we consider the input-output portion of the

Chicago REIM (CREIM).  We consider three tables which are balanced

for 1982, according to Equation (3.1).  The Chicago-observed input-

output table (CIO) is constructed from observed (Manufacturing

Census) data combined with regionalized data from the national

input-output table and other sources.   The second table is6

referred to as the Chicago-national input-output table (NIO) and is

constructed directly from the national input-output table using

location quotients for the regionalization procedure.  Finally, in

the spirit of earlier work by Hewings (1977), a third table is

constructed; the Chicago-random input-output (RIO) table consists

of randomly generated input-output coefficients.  All three tables

have the same normalized final demand matrix f ; some variationsij

in this final demand matrix are the result of construction

procedures explained in the appendix.  All three tables are

balanced to the same total outputs.  The export vector is

determined as a residual and, therefore, varies for each of the

input-output tables.

4.1 Forecast Experiments

In order to estimate the Z variables of Equation 3.1, we allow

vectors X, Y and N to vary over time using three different sets of



     Weighted MAPE is defined as following:7

where t is time, w  share of output i in total output.t
i
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input-output coefficients:  CIO, NIO and RIO.  We find that none of

the above three input-output tables is a consistently superior

predictor for the observed output vector X.  We measure differences

between three predictions using two sets of measures.

First, we measure forecasting error as mean absolute percent

errors (MAPE), weighted by each sector's share of total

output.  This measure represents variations over time.

Weighted MAPEs for the years 1969-1990 are presented in Graph

1.7.  All three forecasts derived from the three tables are

very similar, as observed in Graph 1 .  For example, forecasts7

errors derived with CIO are only 0.9 percent higher than that

of NIO and 5.4 percent lower than RIO for 1990.  This is an

average measure of forecasting error and it does not reflect

variations in forecasting errors across time.

Secondly, we measure variations across time for each sector

weighted by the sector's share in total output.  This is done

by regressing the vector Z derived from CIO, NIO and RIO for

each sector on the observed vector x.  The resultant R  are2

multiplied by a time varying weight matrix, where the elements

are each sectors' share of total output in a given year.  The



     The R  in Table 1 is a weighted average of 36 sectors. 8 2

Components of this measure related to an individual sector - R2

for each sector - are similar for all three tables.  Results are
available upon request.

14

results are presented in Table 1; indeed, all three tables can

explain variations in X fairly well.  CIO fits the observed

data the best but the difference between results from CIO and

NIO are negligible; even RIO yields a very good fit.8

These results suggest that while there may be other reasons

for choosing one input-output table over another, there is no clear

choice as far as forecasting accuracy is concerned.

4.2 Impact Analysis

The second set of experiments is devoted to impact analyses.

There are two types of impact analysis that can be performed within

the framework of REIM.  First, we consider changes in the exogenous

variables, which represent changes in one vector of final demand;

this impact effect is similar to the traditional Leontief

multiplier.  The second type of impact is the effect of changes in

the X vector on the Z vector; this type of impact is not considered

in the traditional input-output approach.  However, this effect is

important for REIM because the Z vector represents forecasted

output which enters Equation 3.2, and, in turn, determines all

other forecasting variables.  In this part of analysis, there is no

observed forecast against which we can compare derived results (as

it was the case in the forecasting section).  Hence, our analysis

compares results derived from each of the three tables.  For
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comparison, we form two sets of pairs:  the first pair NIO and CIO,

and the second pair is RIO and CIO.

First, we consider the case where a change is introduced in

the exogenous vector N.  For this experiment, values of all

variables in the final demand were allowed to vary in time with

only vector N fixed at its 1982 value.  We then compute the three

vectors of expected output (for CIO, NIO and RIO) based on Equation

3.8  Thus, our experiment generates an expected output vector,

assuming that elements of vector N (exogenous variable such as GNP,

FRB index or other national variables) are fixed at their 1982

level.  The expected output vector Z is then compared with the

actual base year output vector X .  In other words, each of theB
9

three tables estimates the effect of assuming the national economy

remaining at the 1982 level for all observed periods.

To describe the results of experiments, we present two types

of comparisons for each of the three tables (CIO, NIO and RIO).

First, the derived Z was compared with the base output of 1982.

For that purpose, we defined the percentage change (call it v) of

expected output Z relative to the base output X  as .B

These percent changes (v ) are computed for each of the threei

tables.  Then we construct weighted MAPEs using these three

variables.  Therefore, for each year we have three weighted MAPE
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sectors.  Similar results for other sectors are available upon
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measures presented in Graph 2.  Here, we observe substantial

differences between results derived with each of the three tables.

For example, the difference between output changes estimated with

CIO is 20 percent higher than the same results estimated with NIO

and 30 percent lower than that estimated with RIO.

The overall effect derived in Graph 2 may mask some of the

sectoral differences.  With that in mind, we regressed v  derivedi

with NIO on v  derived with CIO, and then repeated the regressioni

for RIO and CIO.  These regressions indicate how much the

variations in output change derived by one table can explain

variations derived with another table.  Therefore, our main

interest is in R , which is reported in Table 2.  As we can see,2

variations among sectoral changes derived with CIO and NIO are not

significant and similar to variations between CIO and RIO.

Therefore, if one would measure the effect of the exogenous

variables with the three tables, one would find that derived

averages are significantly different.  However, variations around

the average are not substantially different between outputs derived

with the three tables.

In the second set of impact experiments, we consider the

effect of the changes in X vector on Z.  We introduced shocks to

the system 3.1 through sectors 8 (Lumber and Wood Products) and 17

(Primary Metals)   The shock was introduced as follows, output for10
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sector 8 (x ) was fixed at its 1982 level, while all other8

variables in equations 3.1 were fixed at 1990 levels.  Solving

equations 3.1 for Z values, we determine the effect of the shock

from changing output in sector 8 on all other estimated outputs Z.

This was repeated for all three input-output tables.  Then, the

derived three sets of Z were compared with the base 1982 output

vector, X .  The percent difference between Z and X  derived withB B

NIO on that derived with CIO and then repeated the exercise for RIO

on CIO.  Results of regressions are presented in Tables 3 and 4 for

both sectors 8 and 17.

For both sectors, the R-squared derived for the NIO and CIO

pair, is higher than for the case of RIO and CIO pair.  In general,

the R-squared for all cases are fairly low, thereby suggesting that

variations in the expected output as a result of the shock

introduced to X elements are fairly strong.  This reinforces the

results obtained in the first impact experiment.  Hence, it would

appear that impact analysis is fairly sensitive to the methods of

construction of input-output tables, within REIM framework, a

finding similar to an earlier result for IM by Hewings (1977), and

reinforced by Harrigan (1982).

V. CONCLUSION
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In this paper, we have attempted to extend some of the earlier

discussions on the role of input-output coefficient estimation in

the applications of the underlying model.  Our work uses a regional

econometric input-output model as the basis for the comparison; in

the model, the input-output tables are nested within a larger

analytical framework.  Three alternative specifications of the

input-output tables are used; one contains the most survey-based

information, one uses adjusted national coefficients and one uses

no local information at all (relying on random numbers).  The

results indicate that when the system is used in a forecast mode,

there would appear to be only minimal differences; however, a word

of caution should be interjected here.  In the full version of

REIM, the forecasts are derived from a complex set of equations,

many of which have lag structures.  Hence, it is likely that even

small differences in the observed predictive power of the input-

output tables might translate into significant cumulative

differences over time.

The differences in the partial, static multipliers associated

with impact analysis reveal more significant variations.  In this

regard, the results parallel most strongly the earlier experiments

by Hewings (1977).  Taken together, the results suggest that the

debate in this context remains unresolved.  The next step would be

to promote a similar inquiry in a full forecasting context and to

link this work with some of the new developments proposed by Sonis

and Hewings (1989, 1992) in the context of the specification of a
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field of influence of change.  Finally, the analysis needs to be

extended to other general equilibrium formulations to ensure that

the conclusions derived here are not merely an artifact of the

specific model.
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APPENDIX:

Chicago-observed input-output table (CIO)

The data employed in this analysis combine National BEA Input-

Output table for 1982 and the Census of Manufacturers.  Census of

Manufacturers allowed us to construct the manufacturing sub block

of the technological matrix of the Chicago input-output table (SIC

20 through 39).  In the second part of CIO construction we

determine the regional purchase coefficients (RPC) .  To determine11

the observed shares of inflow of goods from the rest of the world,

we again use the Census of Manufacturers.  The Census collects

information on a very disaggregated level.  Our data are based on

the 6-digit Standard Industrial Codes (SIC).  At this

disaggregation level, we were able to determine that a great number

of items that were consumed in Chicago were not produced there.

This information enabled us to determine a matrix of noncompetitive

imports.  Clearly, the matrix of noncompetitive imports will

determine a higher bound on the RPC.  Using non-competitive imports

information we construct a new type of RPC.  Denote this matrix of

RPC as A R which is constructed as follows:r

(4A1)
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In this setting A  - REAL RPC - assumes noncompetitive importrR

coefficients as a substitute for LQ coefficients if LQ coefficient

(l ) had failed to exceed the noncompetitive import coefficientif

(m ).  The nonmanufacturing sub block of CIO is adopted from theij

national input-output, however, further modification to this sub-

block is applied.  This and other modifications are due to the

treatment of net export.

The most important feature of REIM is to link input-output

variables to the available time series.  GSP series provides net

export figures on the annual basis.  CREIM adjusts input-output

data to this figure.  It is done on the proration basis for the

base year as follows.  First define net export as:

(A2)

where ne; e and m are net export, export and import respective 

scalar,

X  and Y  are intermediate and final regional transaction flows,ÿr ÿr

M  and M  are intermediate and final import flows.ÿl ÿF

Equation 5.2 can be written as:

(A3)

Therefore,

(A4)

As a result, the adjustment for the ne are made before
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regionalizing transaction flows.  This means that the matrix of

intermediate and final transaction flows is multiplied by a scalar:

(A5)

where is a matrix of adjusted transaction flows.  This

adjustment was applied to all three matrices CIO, NIO and RIO.

After the ne adjustment, RPC procedures were applied to the

adjusted matrix, and a vector of gross exports was computed as a

residual.
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