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Abstract— Production security analysis often develop intuition about hostile network activity based on previous experience with
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address spaces immediately surrounding them. By using network scan detection as a judge of intent, the behavioral characteristics
of subnets local to identified scanners can be seen to exhibit activity which can not be explained away by random characteristics or
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neighborhood address, a meaningful increase in hostile behavior detection is achieved.
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1 INTRODUCTION

Recently advances in the way that network connection infor-
mation is analyzed by intrusion detection algorithms have re-
ceived considerable attention from the production computer secu-
rity and research communities. Historically this analysis has been
based on the interpretation of a single IP address' behavior over
some length of time. In this paper we will look at extending the
usefulness of information derived from a single hostile host by in-
ferring that the hosts local subnet can also be considered more
hostile.

To examine this we need to address a number of issues, in-
cluding the how hostile hosts are identified. While there are a
number of characteristics that can be looked at such as connection
volume, timing, or payload, we are asserting that a host is hostile
if it is determined to be scanning the local address space.

While the notion of a network scan is implicitly defined within
it's context of use, on closer examination there is some degree of
ambiguity attached to what makes it up. Differentiating between
active scanning, radiation, worm traffic, interactive and non-inter-
active traffic may seem somewhat arbitrary, but it is possible for a
network scan' to be composed of one or more of these elements.
This becomes important when it is noted that each of these net-
work traffic types has it's own model and connection characteris-
tics. This will be described in more detail in § 2.

The problem of defining what exactly is meant by a scan, as
well as how one goes about identifying and parameterizing such
an event has been gone over in some detail in Jung [8] and Stani-
ford et. al. [23]. In order to provide the best coverage for scan
based events, both the native scan detection algorithm found in
Bro [18] as well as the TRW (Threshold Random Walk) [7] are
used to gather data. Because the native algorithm has advantages
in terms of simplicity as well as general intuitive understanding, it
will be used to illustrate our point.

The number that describes the connection threshold defining
when a host is considered a scanner, can be modified based on
the historical behavior of other hosts within the scanners local
subnet. Changes made to this threshold are directly proportion-
al to the number of hosts identified as scanners within the time
window used for learning. For example, if within a given subnet

three hosts have each been identified as scanners two times dur-
ing the learning period, the threshold for scan determination
might be lowered by six for address' contained within the subnet.
In the case of the prototype software described in § 5, the number
of failed connections determine how a scanner is identified, so
the number of failed connections required would be reduced by
six. The significance of this is that typical benign activity from
non-hostile hosts is unlikely to be interfered with since for such
activities the number of failed connections is typically quite
small.

For this paper, connection data was generated by converting
Bro connection logs from their original ascii format to a binary
representation. From there they were then converted into native
root format and indicies were generated. This was then fed into a
Root [22] instance which has been modified to use FastBit [11]
data indicies. This setup allows for simple programs to be written
which can run dynamic 'what if' scenarios against a large set of
data, while at the same time running faster than traditional pacp
based file applications. For similar analysis tools, we have
worked with data sets on the order of a billion records. Addition-
ally, privacy issues are touched on since there is no additional
data beyond what is clearly defined in the schema. This will be
further described in the 'Dataset and Method' section.

Since large numbers of hosts on the Internet sit behind some
sort of NAT infrastructure [15][14] there are several issues that
need to be addressed. These include the possibility that a single
host can exhibit undue influence over other hosts who share it's
translation address, and that implicit assumption about 1:1 map-
ping between the source of a connection and the IP describing it
built into the scan detection mechanism. We expect to see this
behavior as Casado et all in [4] suggested that addresses sitting
behind NAT mechanisms constituted on the order of 50% of ob-
served Code Red II traffic from the private 192.168/16 address
space. A similar problem to NAT is the 'DHCP Effect described
by Moore in [26]. Like NAT, DHCP abstracts the real source IP
from the one that is permanently associated with an observed
connection. In this case the drift tends to be temporal — there is
no real guarantee that a host will have the same IP day after day.
When combined with NAT, this problem is simply compounded.
This problem will be picked up and addressed in § 4.4 .



Besides NAT effects, false negatives can be created by arbi-
trarily lowering the threshold which identifies scanners for a giv-
en subnet. Given that our analysis is based on lowering scanning
thresholds, we need to show that the newly located addresses are
not purely an artifact of lowering the threshold. This problem is
addressed in § 4.1 and 4.2 where initial results are presented
which show that discovered hosts and the networks around them
exhibit characteristics that are not described by random behavior.

The rest of this paper is structured as follows. In § 2, work
relating to our research is discussed. In § 3, the initial source of
network data is described, as well as a brief overview of the Root
toolkits use of Fastbit data indexing in the data analysis process.
In § 4 an initial analysis of data is presented. This looks at the
distribution of scanning hosts vs. TRW results, the variation in ra-
diation from identified networks, a discussion of NAT as a possi-
ble explanation for the observed results, and the calculation of the
most effective granularity for the subnet attached to the hostile
address. In § 5 operational experience is described, and in § 6,
the conclusion and future work is presented.

2 ReLatep WoRk

Although a general description of the work falls under the
arena of network intrusion detection, the background and empiri-
cal components of the data analysis are more diverse. A greater
emphasis on traffic characterization and modeling is being made
here than would otherwise be expected, since there seems to be
little data on characterizing active scanning — that is scanning
purposefully directed into an address range in a non-random or
accidental manner.

Scan detection provides our foundation for determining mali-
cious intent. For the native Bro [18] scan algorithm (BSA), a host
is allowed to have a set number of failed connection attempts be-
fore they are identified as a scanner. In addition, to the connec-
tion failure threshold, there are a number of filters that can be ap-
plied to this determination such as destination port or service, or
source host/network. These filters are used to ignore services
that are not interesting from a production security perspective,
and to define lists of addresses that are immune to being identi-
fied as scanners. The default number of failed connections from
a source address is set to 100, and the list of ignored services is
defined to be 'ident. Changes to the default configuration are de-
scribed in the Dataset section.

The Threshold Random Walk (TRW) [7] algorithm works by
using an 'oracle’ to determine if a connection will succeed or fail.
A successfully completed connection drives a random walk up-
wards, a failure to connect drives it downwards. By modeling the
benign traffic as having a different (higher) probability of success
than attack traffic, TRW can then make a decision regarding the
likelihood that a particular series of connection attempts from a
given host reflect benign or attack activity, based on how far the
random walk deviates above or below the origin. [25]

A principal tool for the investigation of traffic destined to
routeable, but unused portions of address space is called a Net-
work Telescope. Examples of such traffic include undirected
scanning and worm traffic. These tend to be driven by linear ad-
dress traversal, or random/pseudo-random target address schema's

[5] [15]. As described in [17], observation of traffic is based on
looking at address or packet distribution — when an IP address is
chosen at random, the probability of observation is expressed as a
geometric distribution, while the odds of multiple packet observa-
tion are binomial in nature. Traffic modeling for active scanning
is not independent per packet observed, so while binomial expres-
sions for packet observations work well for wunused address
ranges, there may be issues using the same models for used ad-
dress space.

Traffic characterization is broken up into several classes, Real
(non-radiation/worm) traffic modeling was classically described
by Paxon in [20]. Of significance is that type of traffic described
was completely legitimate (in a TCP sense) and directed. Recent-
ly the idea that connection arrivals for interactive, user driven ac-
tivity are the only successful candidates for Poisson description
was looked at by Karagiannias et al. [9] in terms of appropriate
time scales, aggregate traffic flows and packet inter arrival time
distributions.

Radiation traffic is described as traffic that is the byproduct of
systems that are infected with malicious code, or those that are
somehow mis configured such that network traffic is sent in a
non-directed manner to the local IP space. Barford et al [2] de-
scribes distributions of source addresses for radiation as being
tightly clustered. These measurements include not just unused
address space, but also firewall and intrusion detection data from
the DSHIELD log aggregate in used address space. Hostile ad-
dress space are shown to be both stable and localized. The result
that these hosts are not smoothly distributed across address space
is not only consistent with our observed data, but may lend fur-
ther help in the analysis process here. Pang et al. in [17] look at
issues in active responders and filtering while providing signifi-
cantly more detail on content and specific exploit examples.

3 Dataser ano MeTHOD

Data analysis looking for portability and repeatability will nor-
mally use pcap as a means to store and transport historical net-
work traffic. The dataset and method used in this analysis differs
from most in that raw connection data was gathered using Bro,
then post-processed using Fast Bit indexing for the Root data
analysis toolkit. This allows for the ability to interactively query
the data set in 'what if' scenarios, even when the record count of
the data set becomes enormous. Each component of this will be
described in detail.

3.1 Initial Dataset

The data set consists of one week of complete network con-
nection records originally generated by the Bro intrusion detec-
tion system located at a mid size high performance computing fa-
cility. The facility has a high speed (10 gigabit) Internet connec-
tion, and no firewalls or port blocking relative to the position of
the data collection point. The address distribution of the class-B
space is quite sparse, with approximately 4000 live hosts populat-
ing the space. The week selected for analysis was chosen at ran-
dom from a set of 42 weeks which constituted a data set being
used for other performance measurements described in [3].

The Bro instance used for data collection had a default con-
figuration except that the base scan threshold was set at 50 rather



than 100. In addition, the instance was checkpointed, or restarted
every 24 hours. Scanners were detected via the native Bro algo-
rithm, a modified native with an artificially low threshold (30)
and TRW w/ default values. In addition, the TRW algorithm was
modified to show when it identified a host as being a scanner, as
well as when it determined that a connection was non-hostile.

The raw connection storage data structure provides access to
the following attributes for each of the connections: connection
time, duration; source IP, port, data transfered; destination IP,
port and data transfered as well as a description of the overall di-
rection and state characteristics.

In order to use the connection records with the indexing
schema, each attribute had to be translated into binary form —
each field is converted into its natural unit (for example, ports are
saved as integers, Unix timestamps as doubles etc) and saved in
their own individual file per attribute. These files are then in-
dexed and used as data for the Root interface.

For further discussion, a TCP connection is defined to be
'good' (suspected non-hostile) if the three way handshake com-
pletes and neither side of the connection sends a RST. This rather
liberal notion of a non-hostile connection is used since we are
limited by several factors including missing connection startup
and ending for long lived connections, and the possibility that
packets may get dropped somewhere in the analysis pipeline. We
recognize that a connection may be successful on the TCP layer,
only to provide hostile data to an application, but given the lack
of higher layer protocol data, there is nothing that we can do at
this time to address application layer attacks using this tool.

3.2 Method

This section provides a brief description of the data indexing
mechanism as well as the procedure required to use these tools
for data analysis.

3.2.1 Root and Fastbit Data Indexing

The main tool used for interacting with the converted raw data
is based on ROOT [22], an object-oriented data analysis system
originally developed for processing large volumes of high-energy
physics data. The ROOT system has a comprehensive set of anal-
ysis capability and rudimentary visualization capabilities. ROOT
is straightforward to extend through loadable modules. We take
advantage of this extensibility to extend ROOT so that it can an-
swer multidimensional range queries using FastBit [11].

FastBit is a research code that implements a number of differ-
ent forms of bitmap index compression including WAH - Word
Aligned Hybrid coding [10]. In a basic bitmap index, one bitmap
is allocated for each distinct value of the indexed attribute, where
each bitmap has as many bits as the number of records in the in-
dexed dataset. The size of the index grows linearly with the at-
tribute cardinality and is small only for low cardinality attributes.
A number of strategies have been proposed to reduce the size of a
bitmap index, but WAH compression was shown to keep the in-
dex sizes compact, as well as to significantly reduce the query
processing time compared to other indexing schemes [10].

Interaction with the data sets via this interface requires the use

of an API that can be accessed via C++ code, or a shell like inter-
face built into the ROOT package. For this work, short C++ pro-
grams were used to interact with Root, and shell scripts were used
to drive the programs as well as doing simple data analysis.

3.2.2 Traffic Extraction and Analysis

In traditional data analysis, there are issues not only with pro-
cessing the data, but also in storing and keeping track of it as well
[19]. To combat the processing problem, a two step method is
used. Initially the indexing is used for the extraction of a small,
high value data set from the large general connection pool. This
is normally possible at human interactive speeds, even for ex-
tremely large data sets [3]. A second program can then process
the smaller extracted set in a slower (possibly linear) way without
creating as significant a CPU or memory burden.

An example of this is the generation of scan detection data —
the week of test data is segmented up into 24 hour blocks, which
are broken out into /16 networks. The 24 hour blocks mimic the
restarting of the IDS that normally takes place every 24 hours
(when network connection data is globally reset), while the /16
network chunks allow for a small enough address block to run
analysis against. As addresses are broken out into their individu-
al octet components during initial conversion, it is natural to de-
velop and process queries along a 8-bit boundary to maximize ef-
ficiency. In the second round, this subset of connection data can
be run through known scan algorithms in parallel. This allows
for a high degree of repeatability on tests and for the tuning of
user applications / algorithms.

4 Data AnaLysis

The data Analysis section is broken out into several pieces.
First the general distribution of known hostile addresses and their
respective subnets are examined and compared to the TRW list.
The connection characteristics from the augmented list of ad-
dresses is then compared to randomly selected addresses to see if
they can be differentiated. The question of NAT and DHCP ef-
fects is then examined. Finally, the optimal granularity for the
definition of 'localized subnet' is examined.

4.1 Overview of Data Set

In analyzing connection data, we used four different algo-
rithms to identify scanners. As previously described, the native
BSA was used in two modes: with thresholds set to 50 connec-
tions for a base set of scanners, and 30 connections to test what
an unusually low value would produce relative to the proposed
method. The TRW algorithm was used as an 'oracle' value to
check suspected scanners against, as well as a large pool of high
quality suspect addresses to qualify results against. Finally the
modified BSA with adjustable scan threshold (MBA) is used as
well.

To answer the natural question of just using TRW as a trigger
mechanism, it is worth noting that the TRW algorithm suffers
from a problem of being foo good for some production infrastruc-
tures - the volume of addresses that need to be processed can ex-
ceed the capacity of some CAM/state tables. In addition, it is less
familiar to many analysts and designers so there is resistance to
it's implementation. With that in mind, it will be used only in an



Oracle capacity.

The scan results are summarized in table 1:

Algorithm Number of Identified
Scanners
Bro Scan Algorithm (BSA) 11624
Bro Scan Algorithm — low thresh-
old (BSAL) 14972
Threshold Random Walk (TRW) 56888
Modified Bro Algorithm (MBA) 12695

Table 1: The number of identified scanning hosts per tested algorithm.

One of the things that stands out the most is that the lowered
threshold BSA identified more scanners than MBA. This is ex-
pected behavior. Since MBA starts with the default scan thresh-
old, it will always create fewer identified scanners than BSAL if
the lowered threshold for BSAL is aggressive enough.

The BSAL entry in this case can be thought of as a straw man
in that if the value used is low enough to catch scanners, but high
enough to avoid false positives than it can be used in the base val-
ue for MBA as well. In this test case, the unusually low value (30
failed connections) would likely introduce false positives.

For the MBA algorithm, the scan threshold is lowered for sub-
net by a value that is directly proportional to the number of iden-
tified scanners during the time period used for learning. Looking
at the distribution of these values in table 2, the vast majority of
entries can be explained by background radiation since there is
only one or two identified scanners per subnet during any point in
the week of data. With a modified threshold of 48 or 49, the be-
havior of MBA very closely resembles that of BSA. Therefore
the majority of the high value identifications are done with a fair-
ly small fraction of the total number.

Count Number % of Total
1-2 7836 92.9
3-5 486 5.8
6-10 94 1.1
11-55 15 0.2

Table 2: Distribution of MBA metric counts

For the largest values (those greater than 20, or 5 instances),
several instances of false positives are introduced. For the single
value greater than 50, this produces automatic false positives for
the entire subnet associated with it. In the production version of
the MBA algorithm, a limit is placed on the maximum change
possible to the threshold to avoid this scenario.

4.2 Distribution of Scanning Hosts and Networks

Given that a larger number of scanning hosts are seen with
MBA than with the traditional BSA, it would be useful to get
some indication as to the value of these addresses. If the addi-
tional hosts are better at describing the TRW list (which is treated
as an Oracle) than BSA augmented by random selections from
known connections, then the additional hosts are not the random

byproduct of arbitrarily lowering the threshold. BSA is augment-
ed by known connections in order to minimize the effects of data
set abnormalities.

Judging similarity between the various address lists is a simi-
lar problem to selecting which of two collections of text are most
similar to a control set. A tool kit has been developed which sim-
plifies these calculations called the Ngram Statistics Package
(NSP) [1].

In comparing the various lists (or vectors), the use of Dice Co-
efficients can be used to determine similarity between elements in
each vector. This coefficient yields a number between 0 and 1. A
coefficient of zero implies two documents have no terms in com-
mon, while a coefficient of 1 implies that the sets of terms occur-
ring in each document are identical. It is typically derived by:

D(x,y) = 2|Xﬂ?|/|5f|+|?|

Where the vectors are broken up into a sequence of tokens that
occurs within a window of at least n tokens within the vector. If
the first vector is shorter than the second, the longer is truncated.

S1:10.0.0.1 10.0.0.2 10.0.0.3
S2:10.0.0.1 10.0.0.2 10.0.0.5
C: 10.0.0.1 10.0.0.2 10.0.0.3 10.0.0.4

Here the average value of D(S1,C) = 1.000 and D(S2,C) =
0.8335 indicating (not unexpectedly) that S1 is closer to C than
S2.

For this assessment, the network blocks are broken out into
class A (/8) networks in order to provide a global comparison.
There is no reason not to run this on smaller address lists, except
for brevity. The comparison was run five times in order to reduce
the chance that an unusual selection of random connections
would throw the data. When the values for MBA and BSA are
compared to TRW as the control group, there are several things
that are noticed. This is illustrated in figure 1.
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Figure 1: Average differences between the Dice coefficient for BSA subtract-
ed from the value for MBA. Values above zero indicate that MBA is a closer
match to TRW than BSA.

First is that a significant number of comparisons that favor the



MBA match over the BSA plus random addresses. This indicates
that the additional addresses in MBA represent a better match to
the TRW list than random;y selected addresses,

Another interesting point is that the negative results tended to
be quite stable over multiple runs of random numbers. This is
something that suggests further investigation as some variation
was expected with the selection of different addresses.

4.3 Data Set vs. Random Distribution of Hosts

If there is an association between a scanning IP address and
it's local network, then you would expect to see a difference be-
tween the number of connections seen from the scanner subnet
and with a subnet derived from a randomly selected IP address.
Here the number of connections needs to be corrected for the
original scanning IP address' activity since we are interested in
the overall behavior of the local subnet.

Using the list of scanners described by the BSA, a series of /
24 networks is created. A subnet can appear multiple times if a
scanning source is listed on multiple days, or multiple scanning
sources are seen within the subnet. Hostile connections (as de-
scribed in 3.1) from these /24 networks are extracted minus any
attributed to known scanning addresses. The same process is
done with an equal number of IP addresses randomly selected
from the set of connections that contacted the destination address
space during the sample week. The set is drawn from known ad-
dresses to avoid the possibility that the destination address range
has characteristics that would invalidate a 'normal' random selec-
tion. The set is also checked against known BSA scanners to
avoid duplication. When completed, we have a complete set of
hostile connections from random and BSA identified networks, as
well as values for the number of times we have repeatedly seen
each network.

If a network is seen multiple times in the data set (such as
when a scanner spends several days attacking the local address
space), it will be known as a revisit.

If there is a correlation between hostile hosts and the networks
that they are identified with, there should be a greater number of
connections seen from the 'hostile networks' than from those ran-
domly selected. In addition, as the number of revisits increases,
there should be a growing divergence between the hostile and the
random lines. This is expected since randomly selected subnets
should have on the whole traffic that is not directed, and should
therefore fulfill the binomial distribution described for Network
Telescopes in [16].

As seen in Figure 2, the initial raw data provides a rough view
of the relationship between random and scanner networks since
the numbers tend to be dominated by a small number of outlier
values.
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Figure2: Number of hostile connections per subnet vs. the revisit number.
For the random values, there was no revisit value for 5.

In the random set of networks, we see significantly fewer
failed connections than exhibited by the scanner networks. As
well, the number of revisits seen by random networks is signifi-
cantly smaller as well. This points to the conclusion that the
makeup of traffic surrounding the given address sets can be
viewed as more hostile than arbitrary traffic in terms of network
scanning behavior.

Since the total number of connections for revisits is almost the
same for random as well as scanner networks, it is worth explain-
ing. By plotting the distribution of the number of connection per
subnet vs. how many times that value was seen over the week, the
similarities and differences for each of the revisit counts can be
seen.
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Figure 3: Number of connections per subnet vs. the count for each of those
values.

There is a (not unexpected) divergence between the values for
one and two revisits. Plotting these values in figure 3, we see that
there is reasonably tight matching when the revisit count is one.
As the revisit count increases from one, the two values diverge as
expected. This should indicate that the characteristics of the two
data sets (scanning vs. random) are similar in the instance where



the scanning data most resembles the randomly selected address-
es

4.4 Addressing NAT and DHCP

As already mentioned, there are questions about problems
with NAT shielding one or more subnets behind a set of address
in a subnet as an explanation for the neighborhood behavior de-
scribed above. Additionally, the extensive use of DHCP raises is-
sues of associating malicious behavior with a subnet whose popu-
lation may be transient. These simple questions do not, unfortu-
nately, have a simple answers.

Detecting the existence of a translated address space from em-
pirical data has been looked at in several studies, and is consid-
ered a known hard problem. As discussed in Casado et all in [4],
it was possible to infer the existence of RFC 1918 address space
(192.168.0.0/16) by examining the distribution of source address-
es in Code Red II HTTP GET requests, and adjusting for the
worms preferential scanning of local networks. This is based on
Code Red II selecting a random destination address from the local
/8 half of the time, so disproportional numbers of these addresses
will be seen by sensors in the legitimate 192.0.0.0/8 networks.
Deraison and Gula in [14] discuss monitoring the IP ID field to
detect and identify areas of NAT traffic by tracking reuse and se-
quences. Moore [26] most recently discusses looking at browser
identification strings in order to associate multiple web browsers
to a single IP address — an indicator of possible NAT activity.
Since neither application layer protocol information, nor detailed
IP header data is available via the current data source, these tools
and methods are not useful here.

A variation on the general method used by Moore in [26] is to
look for inconsistencies in the data set of identified scanners. As
previously mentioned, the TRW algorithm was used to identify
both hostile and non-hostile connections. An argument for identi-
fying NAT networks could be developed if there exists an address
in both hostile and non-hostile TRW lists. Since there was no
crossover between the two lists, it can be argued that during the
time period represented by the data set there were no gross exam-
ples of actively hostile and non-hostile actions going on where
there is a single external NAT translation address. This does not
suggest that there were no NAT instances, just none that were in
front of address spaces that would routinely visit the destination
address space.

If the scope is increased to looking at overlap between /24 net-
works in the good and bad TRW lists, there is significantly more
crossover observed. On the other hand, we move from a clear
case of inconsistent with a single address, to a loose inference
from a set of addresses. The results in table 3 are calculated by
describing the most constraining subnet mask that can hold all
addresses identified by TRW as hostile and non-hostile.

Subnet Mask Number Hosts  Count Observed
Allowed by Mask
32 1 0
31 2 0
30 4 1
29 8 1

Subnet Mask Number Hosts  Count Observed
Allowed by Mask
28 16 2
27 32 3
26 64 11
25 128 10
24 256 18
Table 3:

Again, it should be noted that looking at more than one ad-
dress provides only a loose inference (at best) that there might be
some sort of NAT activity. It has been included here for com-
pleteness.

4.5 Optimal Subnet Size

In looking at the appropriate size for subnet granularity, a bal-
ance must be struck between making the neighborhood large
enough to capture traffic from the actual local sources, and not so
large that false positives are generated from artifacts in unrelated
systems. Also, if this algorithm is used to modify the weights for
scan detection, the effects on benign traffic must also be mini-
mized. Up till this point, subnet size has been described in terms
of a class-C or /24 network. The selection for this was initially
based on the smallest typical network described in general works
such as Barford et al. in [2].

To determine the optimal subnet size, traffic from the /16, /24
and /25 networks surrounding addresses identified in the original
BSA run was extracted from the week long sample period. Con-
nections were classified as ‘'hostile’ and 'mot hostile' using the
rules defined in section 3.2. Table 4 shows the percent changes
in hostile and non- hostile connection that result when the defini-
tion of a local subnet is changed from a /16 to a /24, and from a /
24 to a /25.

Connection Type Change in Value Change in
for/16 -> /24 Value /24 -> /25

Not Hostile -63.49% -0.13%

Hostile -58.17% -6.68%

Table 4: Changes in TCP Number of Connections for Changes in Subnet Size

Based on Table 4, the benefit from moving from a /16 subnet
mask to a /24 subnet mask is considerable — particularly in terms
of reducing the effect on successful connections. For moving
from the /24 to a /25, there is a trivial change in the number of
non-hostile connections seen (which is not good), and a non triv-
ial number of reduced hostile connections. The gain (not touch-
ing possibly legitimate connections) is far outpaced by the loss in
hostile traffic.

From this quick analysis, it seems as though a /24 subnet pro-
vides the most benefit at the lowest cost.

5 OperaTIONAL EXPERIENCE

Using a modified scanner detection policy, the 'Bad-Neighbor-



hood' algorithm was put into operational use for a period of seven
months on the same link that the test data was extracted from.
The hostile address list was derived from the previous six month
periods detected scanning hosts and during that time it was used
for modifying scan thresholds, the list was never modified. To
avoid impacting legitimate traffic, the limit to how far the scan
threshold could be adjusted down was set to 15. For this, the sub-
net mask associated with each of the scanning addresses was set
to a /25, as the data presented in 4.3 was not yet available.

Additional factors in this data set include the existence of oth-
er scan detection algorithms that will, in some cases, flag scan-
ners before the traditional BSA.

Based on the proportion and frequency of how hosts are ef-
fected by this, the use and re-use of addresses for attackers can be

illustrated. Looking at Fig 4 we see:
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Figure 4: Number of scanners identified per day, and the number of scanners
that were effected by the MBA algorithm.

From which can be seen several interesting points. First is that
the proportion of traffic that is effected by MBA decreases with
time. The effect is not as pronounced as might be expected if
there were significant churn in the location of hostile address
space. This is consistent with the findings of Barford in [2].

Second, there are several large attacks that take place from ad-
dress space that seems unrelated to the previously learned ranges.
This is particularly evident around day 75. This indicates the
need to be able to dynamically update the list of hostile address-
es/networks.

Finally there seemed to be no identified ill effect from the use
of this algorithm as far as the mis identification of legitimate con-
nections as hostile. Since the drop threshold was the only thing
modified, this is not particularly surprising.

6 ConcLusioN aND Future WoRk

In this paper we looked at the characteristics of traffic origi-
nating from the local subnets of identified scanners. We conclud-
ed that lists of hostile addresses created with the MBA algorithm
more closely resemble the assumed good list of attackers provid-
ed by TRW. In addition, the volume of traffic exhibiting hostile

characteristics is significantly different both in terms of volume
and the number of subnet revisits when subnets are compared be-
tween random and known scanner sources. Finally the optimal
size of the subnet local to the scanner address was calculated.

There are a number of directions that this could be taken. Ini-
tially it would be quite beneficial to show that this behavior is not
specific to the data set used in this analysis. If the thesis holds,
then looking at trying to apply it to newer trends in the 'scanning
landscape' [21] would be beneficial.

Another example of this might be lowering the number of
failed attempts for ssh logins from address space that it identified
as hostile. In addition providing a feedback mechanism to adjust
metrics associated with given networks should be simple. Also,
expanding the idea of what is being measured by adjusting net-
work threshold based on failed logins or http attacks as well as
scanning. This should help draw in active attack spaces as well
as the scanners that are using them
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