Optimizing the NPB MG benchmark for multi-core AMD Opteron microprocessors

Stephen Whalen Cray, Inc.

June 29, 2007

1 Description of MG

1.1 High-level description

MG projects the 3D Poisson problem $\nabla^2 u = v$, with periodic boundary conditions, into a trilinear finite element subspace and solves the discrete problem using a V-cycle multigrid algorithm [1]. The Class D problem uses a uniform $1024 \times 1024 \times 1024$ grid to define the hexahedral elements on the finest grid level [7].

1.2 Implementational Details

The MPI parallel implementation requires that the number of processes be a power of two. The processes are arranged in a 3D grid, starting with a $1 \times 1 \times 1$ -process grid, and successively doubling the number of processes per dimension, first in *z*, then *y*, then *x*, until the grid contains all processes [2].

The trilinear hexahedral finite element space gives rise to a 27-point computational stencil, arranged as a $3 \times 3 \times 3$ cube centered on the current node. This stencil, along with the periodic boundary conditions, requires the augmentation of each process subgrid with two ghost elements per dimension, one in each direction. This results in the local array sizes (for the finest grid level) given in Table 1.

MPI processes	Process grid	Local array size
64	$4 \times 4 \times 4$	$258 \times 258 \times 258$
256	$4 \times 8 \times 8$	$258 \times 130 \times 130$

Table 1: Per-process array	sizes for	decomposed]	MG Class D
----------------------------	-----------	--------------	------------

1.3 Profiles

Portions of function-level sampling profiles are shown in Tables 2 and 3. The resid and psinv subroutines occupy the top two positions in both profiles, together consuming more than 50% of execution time in both cases. Each routine is dominated by a single triply-nested loop, with near-identical structures in the two subroutines. Therefore, we shall limit our attention to resid and psinv.

It is clear upon inspection that these loops are ready candidates for cache tiling, as the arrays involved are too large to fit in cache (a $258 \times 130 \times 130$ -word array consumes over 33 megabytes), and the data is accessed using the aforementioned 27-point stencil [6].

Samp %	Cum.	Samp	Imb.	Imb.	Function
	Samp %		Samp	Samp %	
100.0%	100.0%	1073683			Total
45.6%	45.6%	489779	282.20	3.6%	resid_
20.9%	66.5%	224624	78.25	2.2%	psinv_
9.3%	75.9%	100215	17.14	1.1%	interp_
7.6%	83.5%	81509	42.42	3.3%	rprj3_
5.4%	88.8%	57586	65.22	6.9%	c_mzero8
3.0%	91.8%	32275	138.70	21.9%	PtlEQPeek
2.9%	94.7%	31057	49.73	9.4%	take3_
1.8%	96.5%	19575	48.14	13.8%	give3_

Table 2: CrayPat sampling profile for MG Class D, 64 processes

Samp %	Cum. Samp %	Samp	Imb. Samp	Imb. Samp %	Function
100.0%	100.0%	1289551			Total
38.9%	38.9%	501084	262.64	11.9%	resid_
13.7%	52.6%	176756	42.55	5.8%	psinv_
12.3%	64.8%	158073	103.53	14.4%	c_mzero8
9.7%	74.5%	125411	132.11	21.3%	PtlEQPeek
7.0%	81.6%	90796	15.33	4.2%	interp_
5.0%	86.6%	64998	22.10	8.0%	rprj3_
2.4%	89.0%	31109	54.48	31.1%	PtlEQGet
2.3%	91.3%	29554	31.55	21.5%	take3_
2.1%	93.4%	27004	27.52	20.8%	give3_

Table 3: CrayPat sampling profile for MG Class D, 256 processes

2 Cache Tiling

As the finest level consumes the majority of the computational resources, our optimization efforts will focus only on the array sizes listed in Table 1.

Rivera and Tseng have completed a rather extensive study of the effects of tiling optimizations on the **resid** kernel, showing that automatic tiling and padding transformations can provide substantial speedups [6]. Our approach is much more intuitive than that of Rivera and Tseng, while still creating substantial gains.

While Rivera and Tseng apply cache-tiling transformations to the two innermost loops, creating blocks extending along the z dimension, we tile the outermost loops [4]. Allowing the blocks to extend along the x dimension preserves the spatial locality inherent in the data layout, as each rank-one slice along the array's x dimension is contiguous in memory.

Thus, for both the 64- and 256-process cases, we are creating blocks extending 258 words in the *x* dimension. Let n_y and n_z be the blocks' extents in the *y* and *z* dimensions, respectively. (The variables are named, respectively, BLOCK2 and BLOCK3 in the code fragment shown in Figure 1.) Each block will then contain $258n_yn_z$ words. The Opteron's 1 MB L2 cache holds 131,072 words. Therefore, to fit a single block within L2, it suffices to take

$$n_y n_z \le \left\lfloor \frac{131,072}{258} \right\rfloor = 508.$$

Giving preference to square tiles over rectangular tiles [3,5], we select $n_y = 22$ and $n_z = 23$.

The resulting cod	e transformation	appears in Figure 1.

Reference code	Cache-tiling transformation
	integer i2block, i3block
	integer BLOCK2, BLOCK3
	parameter (BLOCK2 = 22, BLOCK3 = 23)
	do i3block=2,n3-1,BLOCK3
	do i2block=2,n2-1,BLOCK2
do i3=2,n3-1	<pre>do i3=i3block,min(i3block+BLOCK3-1,n3-1)</pre>
do i2=2,n2-1	<pre>do i2=i2block,min(i2block+BLOCK2-1,n2-1)</pre>
do i1=1,n1	do i1=1,n1
[compute intermediate	[compute intermediate
finite differences]	finite differences]
enddo	enddo
do i1=2,n1-1	do i1=2,n1-1
[apply stencil]	[apply stencil]
enddo	enddo
enddo	enddo
enddo	enddo
	enddo
	enddo

Figure 1: Cache tiling the outer two loops of resid and psinv. The inner loops over i1 are unchanged.

3 Results

Performance data were gathered on franklin under Compute Node Linux, with two MPI processes mapped to each node, one process per core. The transformations described in Section 2 provide between 20% and 30% gain in the benchmarks' self-reported Mop/s rates, shown in Table 4.

MPI processes	Reference code	With cache tiling	Speedup
	(Mop/s/process)	(Mop/s/process)	
64	754.30	976.82	29.5%
256	675.02	821.73	21.7%

Table 4: Performance results before and after cache-tiling transformations

Tables 5 and 6 show hardware counter data for runs using reference and transformed code. In this data, we see that the cache-tiling transformations produce lower L2 and D-TLB miss rates, as expected. This results in large reductions in the time spent stalled waiting for the load-store unit, as well as reducing the time that the FPUs are stalled.

Subroutine resid				
	Reference code	With cache tiling		
L1 D-cache accesses	44724242053 ops	44745835841 ops		
L1 D-cache misses that hit in L2	1122583735 refills	1218698984 refills		
L1 D-cache misses that miss in L2	50517790 refills	34236723 refills		
D-TLB misses	16011726 misses	15150023 misses		
HW FP Ops	28135094524 ops	28135498558 ops		
HW FP Ops / User time	893.911 M/sec	1259.13 M/sec		
LD & ST per TLB miss	2793.23 refs/miss	2953.53 refs/miss		
User time	30.481 secs	22.327 secs		
Avg Time FPUs stalled	2.334 secs	1.765 secs		
Avg Time LSs stalled	6.930 secs	3.576 secs		
Subroutine psinv				
Si	ubroutine psinv			
S	ubroutine psinv Reference code	With cache tiling		
St L1 D-cache accesses	ubroutine psinv Reference code 21949621061 ops	With cache tiling 21967337840 ops		
L1 D-cache accesses L1 D-cache misses that hit in L2	ubroutine psinvReference code21949621061 ops476605356 refills	With cache tiling 21967337840 ops 518925270 refills		
L1 D-cache accesses L1 D-cache misses that hit in L2 L1 D-cache misses that miss in L2	ubroutine psinvReference code21949621061 ops476605356 refills26067293 refills	With cache tiling 21967337840 ops 518925270 refills 13499799 refills		
L1 D-cache accesses L1 D-cache misses that hit in L2 L1 D-cache misses that miss in L2 D-TLB misses	Abroutine psinv Reference code 21949621061 ops 476605356 refills 26067293 refills 6049978 misses	With cache tiling 21967337840 ops 518925270 refills 13499799 refills 5770389 misses		
Solution L1 D-cache accesses L1 D-cache misses that hit in L2 L1 D-cache misses that miss in L2 D-TLB misses HW FP Ops	abroutine psinv Reference code 21949621061 ops 476605356 refills 26067293 refills 6049978 misses 15720443122 ops	With cache tiling 21967337840 ops 518925270 refills 13499799 refills 5770389 misses 15718609826 ops		
L1 D-cache accesses L1 D-cache misses that hit in L2 L1 D-cache misses that miss in L2 D-TLB misses HW FP Ops HW FP Ops / User time	abroutine psinv Reference code 21949621061 ops 476605356 refills 26067293 refills 6049978 misses 15720443122 ops 1099.45 M/sec	With cache tiling 21967337840 ops 518925270 refills 13499799 refills 5770389 misses 15718609826 ops 1627.82 M/sec		
L1 D-cache accesses L1 D-cache misses that hit in L2 L1 D-cache misses that miss in L2 D-TLB misses HW FP Ops HW FP Ops / User time LD & ST per TLB miss	abroutine psinv Reference code 21949621061 ops 476605356 refills 26067293 refills 6049978 misses 15720443122 ops 1099.45 M/sec 3628.07 refs/miss	With cache tiling 21967337840 ops 518925270 refills 13499799 refills 5770389 misses 15718609826 ops 1627.82 M/sec 3806.91 refs/miss		
L1 D-cache accesses L1 D-cache misses that hit in L2 L1 D-cache misses that miss in L2 D-TLB misses HW FP Ops HW FP Ops / User time LD & ST per TLB miss User time	abroutine psinv Reference code 21949621061 ops 476605356 refills 26067293 refills 6049978 misses 15720443122 ops 1099.45 M/sec 3628.07 refs/miss 14.299 secs	With cache tiling 21967337840 ops 518925270 refills 13499799 refills 5770389 misses 15718609826 ops 1627.82 M/sec 3806.91 refs/miss 9.656 secs		
L1 D-cache accesses L1 D-cache misses that hit in L2 L1 D-cache misses that miss in L2 D-TLB misses HW FP Ops HW FP Ops / User time LD & ST per TLB miss User time Avg Time FPUs stalled	abroutine psinv Reference code 21949621061 ops 476605356 refills 26067293 refills 6049978 misses 15720443122 ops 1099.45 M/sec 3628.07 refs/miss 14.299 secs 1.995 secs	With cache tiling 21967337840 ops 518925270 refills 13499799 refills 5770389 misses 15718609826 ops 1627.82 M/sec 3806.91 refs/miss 9.656 secs 0.780 secs		

Table 5: Hardware counter data for MG Class D, 64 processes, reported as per-process averages.

Sı	ıbroutine resid	
	Reference code	With cache tiling
L1 D-cache accesses	11182362630 ops	11187063000 ops
L1 D-cache misses that hit in L2	294300679 refills	312142255 refills
L1 D-cache misses that miss in L2	12826933 refills	8914597 refills
D-TLB misses	3481736 misses	3386057 misses
HW FP Ops	7034187710 ops	7034220787 ops
HW FP Ops / User time	932.624 M/sec	1238.65 M/sec
LD & ST per TLB miss	3211.71 refs/miss	3303.87 refs/miss
User time	7.542 secs	5.679 secs
Avg Time FPUs stalled	0.509 secs	0.376 secs
Avg Time LSs stalled	1.933 secs	0.969 secs
Sı	ıbroutine psinv	
	Reference code	With cache tiling
L1 D-cache accesses	5493768020 ops	5499793515 ops
L1 D-cache misses that hit in L2	128865773 refills	
	120003773101115	135603266 refills
L1 D-cache misses that miss in L2	3119244 refills	135603266 refills 3363692 refills
L1 D-cache misses that miss in L2 D-TLB misses	3119244 refills 1230175 misses	135603266 refills 3363692 refills 1246810 misses
L1 D-cache misses that miss in L2 D-TLB misses HW FP Ops	3119244 refills 1230175 misses 3928983156 ops	135603266 refills 3363692 refills 1246810 misses 3928522452 ops
L1 D-cache misses that miss in L2 D-TLB misses HW FP Ops HW FP Ops / User time	3119244 refills 1230175 misses 3928983156 ops 1409.43 M/sec	135603266 refills 3363692 refills 1246810 misses 3928522452 ops 1616.51 M/sec
L1 D-cache misses that miss in L2 D-TLB misses HW FP Ops HW FP Ops / User time LD & ST per TLB miss	3119244 refills 1230175 misses 3928983156 ops 1409.43 M/sec 4465.82 refs/miss	135603266 refills 3363692 refills 1246810 misses 3928522452 ops 1616.51 M/sec 4411.09 refs/miss
L1 D-cache misses that miss in L2 D-TLB misses HW FP Ops HW FP Ops / User time LD & ST per TLB miss User time	3119244 refills 1230175 misses 3928983156 ops 1409.43 M/sec 4465.82 refs/miss 2.788 secs	135603266 refills 3363692 refills 1246810 misses 3928522452 ops 1616.51 M/sec 4411.09 refs/miss 2.430 secs
L1 D-cache misses that miss in L2 D-TLB misses HW FP Ops HW FP Ops / User time LD & ST per TLB miss User time Avg Time FPUs stalled	3119244 refills 1230175 misses 3928983156 ops 1409.43 M/sec 4465.82 refs/miss 2.788 secs 0.316 secs	135603266 refills 3363692 refills 1246810 misses 3928522452 ops 1616.51 M/sec 4411.09 refs/miss 2.430 secs 0.194 secs

Table 6: Hardware counter data for MG Class D, 256 processes. Data is reported as the per-process average.

References

- [1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga. The NAS parallel benchmarks. Report RNR-94-007, NASA Advanced Supercomputing Division, March 1994.
- [2] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice Yarrow. The NAS parallel benchmarks 2.0. RNR Technical Report NAS-95-020, NASA Advanced Supercomputing Division, December 1995.
- [3] S. Coleman and K. S. McKinley. Tile size selection using cache organization and data layout. In *Proceedings of the SIGPLAN '95 Conference on Programming Language Design and Implementation*, La Jolla, CA, June 1995.
- [4] John Levesque, Jeff Larkin, Martyn Foster, Joe Glenski, Gary Geissler, Stephen Whalen, Brian Waldecker, Jonathan Carter, David Skinner, Helen He, Harvey Wasserman, John Shalf, Hongzhang Shan, and Erich Strohmaier. Understanding and mitigating multicore performance issues on the AMD Opteron[™] architecture. Technical Report LBNL-62500, Lawrence Berkeley National Laboratory, March 2007.
- [5] Gabriel Rivera and Chau-Wen Tseng. A comparison of compiler tiling algorithms. In *Proceedings of the 8th International Conference on Compiler Construction (CC'99)*, Amsterdam, Netherlands, March 1999.
- [6] Gabriel Rivera and Chau-Wen Tseng. Tiling optimizations for 3d scientific computations. In *Supercomputing 2000*, Dallas, TX, December 2000.
- [7] Rob van der Wijngaart. NAS parallel benchmarks version 2.4. NAS Technical Report NAS-02-007, NASA Advanced Supercomputing Division, October 2002.