
Optimizing the NPB MG benchmark for multi-core
AMD Opteron microprocessors

Stephen Whalen
Cray, Inc.

June 29, 2007

1 Description of MG

1.1 High-level description
MG projects the 3D Poisson problem ∇2u = v, with periodic boundary conditions, into a trilinear
finite element subspace and solves the discrete problem using a V-cycle multigrid algorithm [1].
The Class D problem uses a uniform 1024 × 1024 × 1024 grid to define the hexahedral elements
on the finest grid level [7].

1.2 Implementational Details
The MPI parallel implementation requires that the number of processes be a power of two. The
processes are arranged in a 3D grid, starting with a 1×1×1-process grid, and successively doubling
the number of processes per dimension, first in z, then y, then x, until the grid contains all processes
[2].

The trilinear hexahedral finite element space gives rise to a 27-point computational stencil,
arranged as a 3 × 3 × 3 cube centered on the current node. This stencil, along with the periodic
boundary conditions, requires the augmentation of each process subgrid with two ghost elements
per dimension, one in each direction. This results in the local array sizes (for the finest grid level)
given in Table 1.

MPI processes Process grid Local array size

64 4 × 4 × 4 258 × 258 × 258
256 4 × 8 × 8 258 × 130 × 130

Table 1: Per-process array sizes for decomposed MG Class D

1.3 Profiles
Portions of function-level sampling profiles are shown in Tables 2 and 3. The resid and psinv
subroutines occupy the top two positions in both profiles, together consuming more than 50% of
execution time in both cases. Each routine is dominated by a single triply-nested loop, with near-
identical structures in the two subroutines. Therefore, we shall limit our attention to resid and
psinv.

It is clear upon inspection that these loops are ready candidates for cache tiling, as the arrays
involved are too large to fit in cache (a 258× 130× 130-word array consumes over 33 megabytes),
and the data is accessed using the aforementioned 27-point stencil [6].

Samp % Cum.

Samp %

Samp Imb.

Samp

Imb.

Samp %

Function

100.0% 100.0% 1073683 -- -- Total

45.6% 45.6% 489779 282.20 3.6% resid_

20.9% 66.5% 224624 78.25 2.2% psinv_

9.3% 75.9% 100215 17.14 1.1% interp_

7.6% 83.5% 81509 42.42 3.3% rprj3_

5.4% 88.8% 57586 65.22 6.9% __c_mzero8

3.0% 91.8% 32275 138.70 21.9% PtlEQPeek

2.9% 94.7% 31057 49.73 9.4% take3_

1.8% 96.5% 19575 48.14 13.8% give3_

Table 2: CrayPat sampling profile for MG Class D, 64 processes

Samp % Cum.

Samp %

Samp Imb.

Samp

Imb.

Samp %

Function

100.0% 100.0% 1289551 -- -- Total

38.9% 38.9% 501084 262.64 11.9% resid_

13.7% 52.6% 176756 42.55 5.8% psinv_

12.3% 64.8% 158073 103.53 14.4% __c_mzero8

9.7% 74.5% 125411 132.11 21.3% PtlEQPeek

7.0% 81.6% 90796 15.33 4.2% interp_

5.0% 86.6% 64998 22.10 8.0% rprj3_

2.4% 89.0% 31109 54.48 31.1% PtlEQGet

2.3% 91.3% 29554 31.55 21.5% take3_

2.1% 93.4% 27004 27.52 20.8% give3_

Table 3: CrayPat sampling profile for MG Class D, 256 processes

2

2 Cache Tiling
As the finest level consumes the majority of the computational resources, our optimization efforts
will focus only on the array sizes listed in Table 1.

Rivera and Tseng have completed a rather extensive study of the effects of tiling optimizations
on the resid kernel, showing that automatic tiling and padding transformations can provide sub-
stantial speedups [6]. Our approach is much more intuitive than that of Rivera and Tseng, while
still creating substantial gains.

While Rivera and Tseng apply cache-tiling transformations to the two innermost loops, creating
blocks extending along the z dimension, we tile the outermost loops [4]. Allowing the blocks to
extend along the x dimension preserves the spatial locality inherent in the data layout, as each
rank-one slice along the array’s x dimension is contiguous in memory.

Thus, for both the 64- and 256-process cases, we are creating blocks extending 258 words in
the x dimension. Let ny and nz be the blocks’ extents in the y and z dimensions, respectively. (The
variables are named, respectively, BLOCK2 and BLOCK3 in the code fragment shown in Figure 1.)
Each block will then contain 258nynz words. The Opteron’s 1 MB L2 cache holds 131,072 words.
Therefore, to fit a single block within L2, it suffices to take

nynz ≤

⌊
131,072

258

⌋
= 508.

Giving preference to square tiles over rectangular tiles [3, 5], we select ny = 22 and nz = 23.
The resulting code transformation appears in Figure 1.

Reference code Cache-tiling transformation

integer i2block, i3block

integer BLOCK2, BLOCK3

parameter (BLOCK2 = 22, BLOCK3 = 23)

do i3block=2,n3-1,BLOCK3

do i2block=2,n2-1,BLOCK2

do i3=2,n3-1 do i3=i3block,min(i3block+BLOCK3-1,n3-1)

do i2=2,n2-1 do i2=i2block,min(i2block+BLOCK2-1,n2-1)

do i1=1,n1 do i1=1,n1

[compute intermediate [compute intermediate
finite differences] finite differences]

enddo enddo

do i1=2,n1-1 do i1=2,n1-1

[apply stencil] [apply stencil]
enddo enddo

enddo enddo

enddo enddo

enddo

enddo

Figure 1: Cache tiling the outer two loops of resid and psinv. The inner loops over i1 are
unchanged.

3

3 Results
Performance data were gathered on franklin under Compute Node Linux, with two MPI processes
mapped to each node, one process per core. The transformations described in Section 2 provide
between 20% and 30% gain in the benchmarks’ self-reported Mop/s rates, shown in Table 4.

MPI processes Reference code With cache tiling Speedup
(Mop/s/process) (Mop/s/process)

64 754.30 976.82 29.5%
256 675.02 821.73 21.7%

Table 4: Performance results before and after cache-tiling transformations

Tables 5 and 6 show hardware counter data for runs using reference and transformed code. In
this data, we see that the cache-tiling transformations produce lower L2 and D-TLB miss rates, as
expected. This results in large reductions in the time spent stalled waiting for the load-store unit,
as well as reducing the time that the FPUs are stalled.

Subroutine resid

Reference code With cache tiling

L1 D-cache accesses 44724242053 ops 44745835841 ops
L1 D-cache misses that hit in L2 1122583735 refills 1218698984 refills
L1 D-cache misses that miss in L2 50517790 refills 34236723 refills
D-TLB misses 16011726 misses 15150023 misses
HW FP Ops 28135094524 ops 28135498558 ops
HW FP Ops / User time 893.911 M/sec 1259.13 M/sec
LD & ST per TLB miss 2793.23 refs/miss 2953.53 refs/miss
User time 30.481 secs 22.327 secs
Avg Time FPUs stalled 2.334 secs 1.765 secs
Avg Time LSs stalled 6.930 secs 3.576 secs

Subroutine psinv

Reference code With cache tiling

L1 D-cache accesses 21949621061 ops 21967337840 ops
L1 D-cache misses that hit in L2 476605356 refills 518925270 refills
L1 D-cache misses that miss in L2 26067293 refills 13499799 refills
D-TLB misses 6049978 misses 5770389 misses
HW FP Ops 15720443122 ops 15718609826 ops
HW FP Ops / User time 1099.45 M/sec 1627.82 M/sec
LD & ST per TLB miss 3628.07 refs/miss 3806.91 refs/miss
User time 14.299 secs 9.656 secs
Avg Time FPUs stalled 1.995 secs 0.780 secs
Avg Time LSs stalled 2.925 secs 1.622 secs

Table 5: Hardware counter data for MG Class D, 64 processes, reported as per-process averages.

4

Subroutine resid

Reference code With cache tiling

L1 D-cache accesses 11182362630 ops 11187063000 ops
L1 D-cache misses that hit in L2 294300679 refills 312142255 refills
L1 D-cache misses that miss in L2 12826933 refills 8914597 refills
D-TLB misses 3481736 misses 3386057 misses
HW FP Ops 7034187710 ops 7034220787 ops
HW FP Ops / User time 932.624 M/sec 1238.65 M/sec
LD & ST per TLB miss 3211.71 refs/miss 3303.87 refs/miss
User time 7.542 secs 5.679 secs
Avg Time FPUs stalled 0.509 secs 0.376 secs
Avg Time LSs stalled 1.933 secs 0.969 secs

Subroutine psinv

Reference code With cache tiling

L1 D-cache accesses 5493768020 ops 5499793515 ops
L1 D-cache misses that hit in L2 128865773 refills 135603266 refills
L1 D-cache misses that miss in L2 3119244 refills 3363692 refills
D-TLB misses 1230175 misses 1246810 misses
HW FP Ops 3928983156 ops 3928522452 ops
HW FP Ops / User time 1409.43 M/sec 1616.51 M/sec
LD & ST per TLB miss 4465.82 refs/miss 4411.09 refs/miss
User time 2.788 secs 2.430 secs
Avg Time FPUs stalled 0.316 secs 0.194 secs
Avg Time LSs stalled 0.470 secs 0.402 secs

Table 6: Hardware counter data for MG Class D, 256 processes. Data is reported as the per-process
average.

5

References
[1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,

P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga.
The NAS parallel benchmarks. Report RNR-94-007, NASA Advanced Supercomputing Divi-
sion, March 1994.

[2] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice
Yarrow. The NAS parallel benchmarks 2.0. RNR Technical Report NAS-95-020, NASA
Advanced Supercomputing Division, December 1995.

[3] S. Coleman and K. S. McKinley. Tile size selection using cache organization and data lay-
out. In Proceedings of the SIGPLAN ’95 Conference on Programming Language Design and
Implementation, La Jolla, CA, June 1995.

[4] John Levesque, Jeff Larkin, Martyn Foster, Joe Glenski, Gary Geissler, Stephen Whalen,
Brian Waldecker, Jonathan Carter, David Skinner, Helen He, Harvey Wasserman, John Shalf,
Hongzhang Shan, and Erich Strohmaier. Understanding and mitigating multicore performance
issues on the AMD OpteronTM architecture. Technical Report LBNL-62500, Lawrence Berke-
ley National Laboratory, March 2007.

[5] Gabriel Rivera and Chau-Wen Tseng. A comparison of compiler tiling algorithms. In Pro-
ceedings of the 8th International Conference on Compiler Construction (CC’99), Amsterdam,
Netherlands, March 1999.

[6] Gabriel Rivera and Chau-Wen Tseng. Tiling optimizations for 3d scientific computations. In
Supercomputing 2000, Dallas, TX, December 2000.

[7] Rob van der Wijngaart. NAS parallel benchmarks version 2.4. NAS Technical Report NAS-
02-007, NASA Advanced Supercomputing Division, October 2002.

6

