$$\Xi$$
(1820) D_{13}

 $I(J^{P}) = \frac{1}{2}(\frac{3}{2}^{-})$ Status: ***

The clearest evidence is an 8-standard-deviation peak in ΛK^- seen by GAY 76. TEODORO 78 favors J=3/2, but cannot make a parity discrimination. BIAGI 87C is consistent with J=3/2 and favors negative parity for this J value.

Ξ(1820) MASS

We only average the measurements that appear to us to be most significant and best determined.

VALUE	(MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT		
1823 ± 5 OUR ESTIMATE									
1823.4 \pm 1.4 OUR AVERAGE									
1819.4	$4\pm 3.1\pm 2.0$	280	¹ BIAGI	87	SPEC	0	$egin{array}{c} \varXi^- \operatorname{Be} o \ (\Lambda K^-) \ {\sf X} \end{array}$		
1826	\pm 3 \pm 1	54	BIAGI	87C	SPEC	0	$\Xi^{-}_{X} Be \rightarrow (\Lambda \overline{K}^{0})$		
1822	± 6		JENKINS	83	MPS	_	$ \begin{array}{c} K^{-} p \rightarrow K^{+} \\ (MM) \end{array} $		
1830	± 6	300	BIAGI	81	SPEC	_	SPS hyperon		
1823	\pm 2	130	GAY	76 C	HBC	_	$K^- p$ 4.2 GeV/c		
• • •	We do not use the	e following	data for averages	, fits	, limits,	etc. •	• •		
1797	± 19	74	BRIEFEL	77	HBC	0	<i>К р</i> 2.87 GeV/ <i>с</i>		
1829	\pm 9	68	BRIEFEL	77	HBC	-0	$\Xi(1530)\pi$		
1860	± 14	39	BRIEFEL	77	HBC	_	$\Sigma^{-}\overline{K}^{0}$		
1870	\pm 9	44	BRIEFEL	77	HBC	0	$\Lambda \overline{K}^0$		
1813	\pm 4	57	BRIEFEL	77	HBC	_	ΛK^{-}		
1807	± 27		DIBIANCA	75	DBC	-0	$\Xi \pi \pi, \Xi^* \pi$		
1762	± 8	28	² BADIER	72	HBC	-0	$\Xi\pi$, $\Xi\pi\pi$, YK		
1838	\pm 5	38	² BADIER	72	HBC	-0	$\Xi\pi$, $\Xi\pi\pi$, YK		
1830	± 10	25	³ CRENNELL	70 B	DBC	-0	3.6, 3.9 GeV/ <i>c</i>		
1826	± 12		⁴ CRENNELL	70 B	DBC	-0	3.6, 3.9 GeV/ <i>c</i>		
1830	± 10	40	ALITTI	69	HBC	_	$\Lambda, \Sigma\overline{K}$		
1814	\pm 4	30	BADIER	65	HBC	0	$\Lambda \overline{K}^0$		
1817	± 7	29	SMITH	65 C	HBC	-0	Л К ⁰ , ЛК [—]		
1770			HALSTEINSLII	063	FBC	-0	K [−] freon 3.5 GeV/c		

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
24	+15 -10	OUR ESTIMATE					
24	± 6	OUR AVERAGE	Error includes scale below.	e fact	or of 1.	5. See	the ideogram
24.6	5± 5.3	3 280	¹ BIAGI	87	SPEC	0	$egin{array}{c} \Xi^- \operatorname{Be} ightarrow \ (\Lambda K^-) \ {\sf X} \end{array}$
12	± 14	±1.7 54	BIAGI	87C	SPEC	0	$\Xi^{-} Be \rightarrow (\Lambda \overline{K}^{0})$
72	± 20	300	BIAGI	81	SPEC	_	SPS hyperon beam
21	\pm 7	130	GAY	76C	HBC	_	<i>K</i> ⁻ <i>p</i> 4.2 GeV/ <i>c</i>
• • • \	We do	not use the followi	ng data for averages	, fits	, limits,	etc. •	• •
99	± 57	74	BRIEFEL	77	HBC	0	<i>K p</i> 2.87 GeV/ <i>c</i>
52	± 34	68	BRIEFEL	77	HBC	-0	$\Xi(1530)\pi$
72	± 17	39	BRIEFEL	77	HBC	_	$\Sigma^{-}\overline{K}^{0}$
44	± 11	44	BRIEFEL	77	HBC	0	$\Lambda \overline{K}^0$
26	± 11	57	BRIEFEL	77	HBC	_	ΛΚ-
85	± 58		DIBIANCA	75	DBC	-0	$\Xi \pi \pi$, $\Xi^* \pi$
51	± 13		² BADIER	72	HBC	-0	Lower mass
58	± 13		² BADIER	72	HBC	-0	Higher mass
103	+38 -24		³ CRENNELL	70 B	DBC	-0	3.6, 3.9 GeV/ c
48	$^{+36}_{-19}$		⁴ CRENNELL	70 B	DBC	-0	3.6, 3.9 GeV/ c
55	$^{+40}_{-20}$		ALITTI	69	HBC	_	$\Lambda, \Sigma\overline{K}$
12	\pm 4		BADIER	65	HBC	0	$\Lambda \overline{K}^0$
30	\pm 7		SMITH	65 B	HBC	-0	Λ Κ
< 80			HALSTEINSLII	D63	FBC	-0	K [−] freon 3.5 GeV/c

Ξ(1820) WIDTH

 Ξ (1820) width (MeV)

Ξ(1820) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	Λ Κ	large
Γ2	$\Sigma \overline{K}$	small
Г3	$\equiv \pi$	small
Г4	$\Xi(1530)\pi$	small
Γ ₅	$\Xi \pi \pi (\operatorname{not} \Xi(1530) \pi)$	

Ξ(1820) BRANCHING RATIOS

The dominant modes seem to be $\Lambda \overline{K}$ and (perhaps) $\Xi(1530)\pi$, but the branching fractions are very poorly determined.

$\Gamma(\Lambda \overline{K}) / \Gamma_{\text{total}}$						Γ_1/Γ
VALUE	DOCUMENT ID		TECN	CHG	<u>COMMENT</u>	
0.30±0.15	ALITTI	69	HBC	_	К [—] р 3.9–5 GeV/c	
$\Gamma(\Xi\pi)/\Gamma_{\text{total}}$						Г ₃ /Г
VALUE						
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	

$ (=\pi)/ (\Lambda K)$						Г3/Г1
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	CHG	COMMENT
<0.36	95	GAY	76 C	HBC	_	<i>К</i> <i>р</i> 4.2 GeV/ <i>с</i>
0.20±0.20		BADIER	65	HBC	0	<i>K</i> ⁻ <i>p</i> 3 GeV/ <i>c</i>
$\Gamma(\Xi\pi)/\Gamma(\Xi(1530)\pi)$	·)					Γ_3/Γ_4
/ALUE		DOCUMENT ID		TECN	CHG	COMMENT
5 <mark>+0.6</mark> -0.4		APSELL	70	HBC	0	<i>K⁻ p</i> 2.87 GeV/ <i>c</i>
$\left(\Sigma\overline{K}\right)/\Gamma_{\text{total}}$						Г ₂ /Г
VALUE		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.30±0.15		ALITTI	69	HBC	_	К [—] р 3.9–5 GeV∕с
• • We do not use the	e following	g data for averages	s, fits	, limits,	etc. •	••
<0.02		TRIPP	67	RVUE		Use SMITH 65C
$(\Sigma \overline{K})/\Gamma(\Lambda \overline{K})$						Γ_2/Γ_1
ALUE		DOCUMENT ID		TECN	CHG	COMMENT
0.24±0.10		GAY	76C	HBC	—	$K^- p$ 4.2 GeV/c
$(\Xi(1530)\pi)/\Gamma_{total}$						Γ ₄ /Γ
/ALUE		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.30±0.15		ALITTI	69	HBC	-	<i>К⁻ р</i> 3.9–5 GeV/ <i>c</i>
• • We do not use the	e following	g data for averages	s, fits	, limits,	etc. •	• •
seen		ASTON	85 B	LASS		<i>K⁻ p</i> 11 GeV/ <i>c</i>
not seen		⁵ HASSALL	81	HBC		<i>K⁻ p</i> 6.5 GeV/ <i>c</i>
<0.25		^o DAUBER	69	HBC		K p 2.7 GeV/c
$(\Xi(1530)\pi)/\Gamma(\Lambda\overline{K})$	()					Γ ₄ /Γ ₁
		DOCUMENT ID	-	TECN	<u>CHG</u>	COMMENT
0.30 ± 0.27 OUR AVERA	IGE Erro		ctor (DT 2.3.		K^{-} = 12 CoV/c
1.0 ± 0.3		SMITH	65C	HBC	_0	K^{-} p 4.2 GeV/C
1.20 ± 0.13		3101111	050	HDC	-0	GeV/c
$(\Xi \pi \pi (\text{not} \Xi (1530)))$	π))/Γ(NK)				Γ_5/Γ_1
VALUE		DOCUMENT ID		TECN	CHG	COMMENT
0.30±0.20		BIAGI	87	SPEC	_	Ξ^- Be 116 GeV
• • We do not use the	e following	g data for averages	s, fits	, limits,	etc. •	• •
<0.14		⁷ BADIER	65	HBC	0	1 st. dev. limit
>0.1		SMITH	65 C	HBC	-0	К [—] р 2.45–2.7 GeV/c
$\Gamma(\Xi\pi\pi(not\Xi(1530)$)π))/Γ(.	$\Xi(1530)\pi)$				Γ5/Γ4
		DOCUMENT ID		TECN	<u>CHG</u>	<u>COMMENT</u>
VALUE						
<u>VALUE</u> consistent with zero ● ● ● We do not use the	e following	GAY g data for averages	76C s, fits	HBC , limits.	_ etc. ●	K [−] p 4.2 GeV/c

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Created: 6/29/1998 11:30

$\Xi(1820)$ FOOTNOTES

¹ BIAGI 87 also sees weak signals in the in the $\Xi^- \pi^+ \pi^-$ channel at 1782.6 \pm 1.4 MeV ($\Gamma = 6.0 \pm 1.5$ MeV) and 1831.9 \pm 2.8 MeV ($\Gamma = 9.6 \pm 9.9$ MeV).

² BADIER 72 adds all channels and divides the peak into lower and higher mass regions. The data can also be fitted with a single Breit-Wigner of mass 1800 MeV and width 150 MeV.

³ From a fit to inclusive $\Xi \pi$, $\Xi \pi \pi$, and ΛK^- spectra.

⁴ From a fit to inclusive $\Xi\pi$ and $\Xi\pi\pi$ spectra only.

⁵ Including $\Xi \pi \pi$.

 6 DAUBER 69 uses in part the same data as SMITH 65C.

⁷ For the decay mode $\Xi^- \pi^+ \pi^0$ only. This limit includes $\Xi(1530)\pi$.

⁸Or less. Upper limit for the 3-body decay.

BIAGI ZPHY C34 15 (BRIS, CERN, GEVA, HEIDP, LAUS, LOQM, RAL) 87 87C ZPHY C34 175 (BRIS, CERN, GEVA, HEIDP, LAUS, LOQM, RAL) JP BIAGI +(SLAC, CARL, CNRC, CINC) (FSU, BRAN, LBL, CINC, MASD) ASTON 85B PR D32 2270 +Carnegie+ JENKINS PRL 51 951 +Albright, Diamond+ 83 BIAGI ZPHY C9 305 (BRIS, CAVE, GEVA, HEIDP, LAUS, LOQM, RHEL) 81 HASSALL NP B189 397 +Ansorge, Carter, Neale+ (CAVE, MSU) 81 (AMST, CERN, NIJM, OXF) JP **TEODORO** PL 77B 451 78 +Diaz, Dionisi, Blokzijl+ PR D16 2706 (BRAN, UMD, SYRA, TUFTS) BRIEFEL 77 +Gourevitch, Chang+ Also 69 PRL 23 884 Apsell +(BRAN, UMD, SYRA, TUFTS) GAY 76 NC 31A 593 +Jeanneret, Bogdanski+ (NEUC, LAUS, LIVP, CURIN) (AMST, CERN, NIJM) IJ GAY 76C PL 62B 477 +Armenteros, Berge+ DIBIANCA 75 NP B98 137 $+ \mathsf{Endorf}$ (CMU) BADIER 72 NP B37 429 +Barrelet, Charlton, Videau (ÈPOL) APSELL 70 PRL 24 777 (BRAN, UMD, SYRA, TUFTS) I +CRENNELL 70B PR D1 847 +Karshon, Lai, O'Neall, Scarr, Schumann (BNL) ALITTI (BNL, ŠYRA) I 69 PRL 22 79 + Barnes, Flaminio, Metzger+DAUBER 69 PR 179 1262 +Berge, Hubbard, Merrill, Miller (LRL) (LRL, SLAC, CERN, HEID, SACL) TRIPP 67 NP B3 10 +Leith+BADIER +Demoulin, Goldberg+ (EPOL, SACL, AMST) I 65 PL 16 171 (LRL) SMITH 65B Athens Conf. 251 +Lindsey (LRL) IJP SMITH PRL 14 25 +Lindsey, Button-Shafer, Murray 65C HALSTEINSLID 63 (BERG, CERN, EPOL, RHEL, LOUC) I Siena Conf. 1 73 +

E(1820) REFERENCES

— OTHER RELATED PAPERS —

TEODORO	78	PL 77B 451	+Diaz, Dionisi, Blokzijl+	(AMST, CERN, NIJ	M, OXF) JP
BRIEFEL	75	PR D12 1859	+Gourevitch+	(BRAN, UMD, SYRA,	TUFTS)
SCHMIDT	73	Purdue Conf. 363		,	(BRAN)
MERRILL	68	PR 167 1202	+Shafer		(LRL)
SMITH	64	PRL 13 61	+Lindsey, Murray, Button-S	Shafer+	(LRL) IJP