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ABSTRACT

This paper examines the causes of heterogeneity in energy technology
across a large set of manufacturing plants.  This paper explores how regional
and intertemporal variation in energy prices, availability, and volatility
influences a plant's energy technology adoption decision.  Additionally, plant
characteristics, such as size and energy intensity, are shown to greatly
impact the energy technology adoption decision.  A model of the energy
technology adoption is developed and the parameters of the model are estimated
using a large, plant-level dataset from the 1985 Manufacturing Energy
Consumption Survey (MECS). 
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       Not all the energy requirements for production processes can1

economically be met with any fuel.  For instance, in the production of
aluminum from bauxite, the physical characteristics of electricity give it a
clear advantage over other fuels.  However, for many process heating
applications and steam generation, different fuels can be used.  In 1976,
approximately 5,000 Annual Survey of Manufacturing plants were queried about
their fuel consumption, and whether their energy needs could be met by
consuming alternative fuels.  These plants responded that only 14.4% of
distillate fuel oil, 8.7% of residual fuel oil, 11.2% of natural gas, and
22.3% of coal consumed could not have been replaced by other fuels.  

       According to Thermo-Electron Corporation (1976), steam production2

accounts for 45% of industrial energy use.  The 1991 Manufacturing Energy
Consumption Survey will provide estimates of the amount of total energy
devoted to boilers, process heating, and facility heating and lighting.

       The literature on energy technology for manufacturing plants is scant3

since plant level-data on this subject is not widely available.  One study,
sponsored by the Energy Information Administration (1986), uses Dun and
Bradstreet's Major Industrial Plant Database to examine the choice of fuels of
plants that possess fuel switching technology.  There have been numerous
studies that examine fuel choice at a residential level, including Hartman
(1984).

       Other responses that plants have to an increase in energy prices4

include producing less energy intensive products, closing down, or adopting
more energy efficient technologies.  

1

I.  INTRODUCTION

The energy requirements for many manufacturing processes may be met by

using more than one type of fuel.   For instance, industrial boilers are1

designed to burn either coal, natural gas, distillate fuel oil, or residual

fuel oil.   There are also boilers capable switching to other fuels in the2

short run without disrupting production.  According to data from the 1985

Manufacturing Energy Consumption Survey (MECS), which asked approximately

8,500 plants about their energy consumption and energy technology, 18.9% of

manufacturing plants possess the capability to switch to other fuels in the

short run.  The remaining plants rely primarily on single fuel technology;

38.8% on natural gas, 30.1% on electricity, and 11.4% on petroleum fuel oils.

The objective of this paper is to uncover the causes of this

heterogeneity in energy technology by modeling the factors that enter into the

plant level energy technology decision, and then estimate the model parameters

using the 1985 MECS data.   There are several reasons for pursuing this line3

of research.  The first is to explore one aspect of the manufacturing sector

response to shocks in energy prices.   To understand how the manufacturing4

sector responds to an energy price shock, especially if the price shock

primarily affects a single fuel, we must understand the factors that influence



       Energy markets have witnessed their share of shocks in the 1970's and5

1980's.  Shocks in energy prices began as shocks to particular fuel types. 
Natural gas, the most widely used fuel in the industrial sector, underwent
significant changes in deregulation with the passage of the 1978 Natural Gas
Act.  As a result of this legislation, natural gas prices increased closer to
true market levels, alleviating previous supply shortages.  The price
volatility for petroleum based fuels arose as result of the creation and
effectiveness of OPEC.  The volatility of oil prices has continued with crude
oil prices plummeting in 1986, closely followed by natural gas prices. In the
first five months of 1986, the price of residual and distillate fuel oils
dropped 44%.  The impact this price change had on the fuel choice of the
electric utility industry is examined in Department of Energy (1986). 

       As one example, Stoker (1987) presents an example of the importance of6

the underlying distribution of agents when examining the relationship between
income and consumption.

       Several studies have estimated inter-fuel elasticities for the7

industrial sector using aggregate data, including Hazilla and Kopp (1984) and
Pindyck (1979).

       Numerous studies have emerged that estimate the impacts of carbon8

based taxes, such as Jorgenson, Slesnick and Wilcoxen (1991).  See Hoeller et
al (1990) for a review. 

2

a plant's energy technology decision.   Once the plant level relationships are5

established, then the aggregate response across the underlying distribution of

manufacturing plants can be computed.   For instance, if all manufacturing6

plants possessed fuel switching technologies, the aggregate price elasticities

for a fuel would be much higher than if all plants possessed single fuel

technologies.  7

The second reason for examining the plant level energy technology

adoption decision is the importance being placed on the production of

greenhouse gases from the combustion of fossil fuels.  In terms of the amount

of carbon dioxide released per unit of energy, coal is the most carbon

intensive while natural gas is the least.   One method for reducing carbon8

dioxide produced by the manufacturing sector is to invoke policies that would

encourage plants to switch to less carbon intensive fuels, policies that

influence the energy technology decision of plants.

This paper studies the factors that enter into a plant's energy

technology adoption decision in an attempt to uncover the economic sources

that generate heterogeneity in energy technology.  The factors we examine can

be divided into two groups:  energy market conditions and plant

characteristics.  The first set of factors describe energy market conditions

such as fuel prices, availability, and price volatility.  Energy markets have

undergone radical changes over the past two decades, including the supply

constrictions of OPEC and the deregulation of natural gas.  In addition to the



       The model we develop is closely tied to Lambson (1990) in spirit.  In9

Lambson's model, a plant purchases capital that favors particular factors, and
the future prices of those factors are uncertain.  The plant can only change
its capital with a fixed cost.  Abel (1983) examines the choice of energy
intensity when future energy prices are uncertain.

       The energy technology decision is inherently dynamic with plant10

managers deciding each period whether to keep their present energy technology
or undergo a fixed cost to change their energy technology.  A class of
empirical dynamic models with discrete choices is reviewed in Eckstein and
Wolpin (1990).  The papers reviewed estimate dynamic discrete choice models in
which economic agents decide when to undertake an activity, such as replacing
a bus engine (Rust (1988)) or to renew a patent (Pakes (1986)). 
Unfortunately, the estimation techniques reviewed by Eckstein and Wolpin
require time series data, and the data available on energy technology is only
cross sectional;  the energy technology state of plants is observed in 1985

3

intertemporal shocks in energy markets, geography provides another source of

energy price and supply variation.  The geographic and intertemporal variation

in energy market conditions provide natural experiments to examine how past

and present price and supply conditions influence the 1985 distribution of

energy technologies.    

The second set of factors that contribute to the observed heterogeneity

in energy technology is the heterogeneity in the characteristics of

manufacturing plants.  Fuels differ in their qualities, such as ease of use,

cleanliness, and heating properties.  The economies associated with each fuel

will therefore vary by the energy application of each plant.  For instance,

plants that use energy intensive applications may prefer fuels that have the

capability of reaching high, precisely controlled temperatures.  Additionally,

scale economies vary by fuel, as fuels like coal require storage facilities

and pollution abatement equipment.  There is tremendous variation across

plants in both energy intensity and amount of energy consumed, so the

distribution of energy technologies is in part attributable to the underlying

distribution of energy characteristics of manufacturing plants. 

This paper uses a putty-clay capital framework to model the energy

technology adoption decision of plants.   Before the energy technology is9

adopted, a plant may choose from a host of technologies that differ by their

input requirement sets.  For instance, plants may purchase boilers, ovens, and

heating equipment designed to consume a single fuel, or a combination of

fuels.  The "clay" nature of the model is that plants can change the fuels

they consume if they undergo a fixed cost to change their capital.  However,

the fuel switching technology provides an interesting twist to the traditional

putty-clay framework, since adopting this technology provides plants the

ability to be more putty-putty than putty-clay. 10



without knowing their previous or future state paths.

       According to Williams (1985), after the Natural Gas Policy Act of11

1978, natural gas pipelines did price discriminate by charging customers with
fuel switching capability lower prices than customers with single fuel
technology.  Using the 1985 MECS data, we find no significant natural gas
price advantage of plants with fuel switching capability.

4

In response to the uncertainty over future energy market volatility,

plants may adopt fuel switching technologies.  In the event of changes in the

relative prices of fuels, these technologies allow plants to purchase the

cheapest fuel at a point in time.  An additional benefit of fuel switching

technology is that if there is a supply disruption, as was the case with

natural gas in the mid 1970's, a plant can readily switch to a more abundant

fuel.  The last advantage of the fuel switching technology is that it provides

a plant a credible threat to change to other fuels.  If energy markets are

imperfect, plants with the fuel switching technology can credibly bargain for

lower fuel prices. 11

To test the various hypotheses regarding the influences of energy market

conditions and plant characteristics on the energy technology a plant

possesses, a multinomial logit model of energy technology choice is estimated. 

Overall the results are encouraging.  Many of the energy market variables have

the expected influences on the plant's technology.  For instance, plants in

areas where natural gas is the least expensive are more likely to possess

technologies that rely solely on natural gas.  In areas in which natural gas

prices are competitive with the prices of other fuels, plants are more likely

to possess fuel switching technologies.  Additionally, the severity of natural

gas supply shocks of the 1970's appears to influence whether plants in 1985

have fuel switching capability.  

In terms of plant characteristics, the amount of energy that plants

consume greatly influences the technology choice, reflecting in part, the

different economies associated with the consumption of different fuels.  The

energy intensity of the production process favors technologies that rely on

natural gas and distillate fuel oil.  After controlling for energy market

conditions and plant characteristics, there remains large innate industry

preferences towards particular energy technologies. 

Section II of this paper describes the data and presents a series a

stylized facts involving plant level energy technology distributions.  A

simple model of the energy technology decision, one that hopefully captures

some of the more salient features of the decision process, is presented in



       The plants that did respond to the switching portion of the survey12

accounted for 87, 92, 79, 91, and 93% of the total 1985 estimates of
electricity, natural gas, distillate, residual, and coal and coke consumed.

       The Petroleum Refining and Primary Metals industries are not included13

in this analysis.  Petroleum refining plants use the fuels they create to
provide their energy needs.  For primary metals, steel and aluminum are the
two largest components.  In the production of aluminum, electricity, because
of its physical properties, is used to transform bauxite into pure aluminum.

 In steel, there are two dominant steel making technologies that rely on
different fuels.  The last integrated steel plant was constructed in 1964,
while every new steel making facility constructed since 1964 uses electric arc
furnace technology.  Integrated steel making facilities receive a majority of
their energy requirements from coal, while electric arc facilities rely
primarily on electricity.  The decision to construct an integrated plant
versus an electric arc plant depends on many factors including scale, scrap
metal availability, and final product.  In the case of steel, energy
technology choice is not independent of the much larger production technology
choice.

5

section III.  Section IV presents estimates from the empirical model.  The

last section provides a few concluding remarks.

II.  DATA AND STYLIZED FACTS

The goals of this section are to discuss the data sources, and then to

present some plant level tabulations using these data.  These tabulations

provide insight into how to appropriately model the energy technology adoption

decision by showing the energy consumption patterns of plants, and how these

patterns vary by such characteristics as size and region.

The manufacturing plant-level energy data used in this study come from

the 1985 Manufacturing Energy Consumption Survey (MECS).  The MECS collects

plant level energy consumption and production data on 20 different types of

fuels from approximately 10,400 plants.  In addition, the MECS also collects

information on the degree which other fuels could have been consumed without

disrupting production.  This portion of the survey, the fuel switching

component, asks plants about their ability to switch between the five most

conventional fuels within 30 days without disrupting production.  Of the

10,400 plants, 8,589 responded to questions concerning their ability to use

other fuels. 12,13
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figure 1- total consumption
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To meet its energy needs, the manufacturing sector relies on a variety

of fuels.  Figure 1 presents a summary of fuel use and fuel switching

capability for the manufacturing sector.  Each bar in figure 1 is composed of

three segments representing non-switchable, switchable, and potential fuel

use.  The non-switchable regions represent the BTU amount, of fuel consumed

that plants reported that they could not replace in the short run without

disrupting production.  The switchable portion of each segment represents the

amount of fuel used that could have been replaced by other fuels without

disrupting production.  The sum of the switchable and non-switchable portions

is the amount of the fuel consumed.  The third segment of each bar in figure 1

represents the amount of each fuel that was not consumed, but could have been

consumed had all plants with the ability to burn that fuel chose to do so. 

This amount is the potential use for each fuel.  

Notice that although the use of energy is heavily concentrated with

natural gas providing 41.7% of total energy requirements, the capability

exists for there to be much less concentration since 45.9% of natural gas

consumed could have been switched to other fuels.  Distillate and residual

fuel oils, provide only 5.8% of total energy needs, but they could provide up

to 26.6%.   These figures suggest that there are considerable and economically



9



       According to a supplement to the 1975-1976 Annual Survey of14

Manufacturers, 50% of electricity consumed was reported to be non-
substitutable with other energy sources.  Howarth et al (1992) find that the
industrial sector in Norway relies much more heavily on electricity than the
U.S., as Norway possesses significant and relatively inexpensive hydro-
electric capability. 

       Only .1% of manufacturing plants respond that they have the15

capability of generating their own electricity.

10

iable substitution possibilities between fuels.

One of objective of this investigation is to determine the causes of the

determinants of fuel technology choice at the plant level in order to help

better understand aggregate distributions.  However, the quantities in figure

1 do not describe the energy consumption patterns and fuel switching

capability of individual plants.  For instance, do the statistics in figure 1

suggest that all manufacturing plants consume a variety of fuels, or do

individual plants consume only one type of fuel?  Similarly, 30% of the energy

derived from coal consumption could have been provided by other fuels.  Does

this imply that 100% of the plants that consumed coal could have reduced their

coal consumption by 30%, or, at the other extreme, that 30% of the plants

could have reduced their coal consumption by 100%?  The answers to these

questions are needed to accurately model the energy technology adoption

decision at a plant level.

One of the first points to recognize about plant level energy

consumption is that because of electricity's unique properties for lighting,

electric motors, and computers, all plants consume electricity.  Electricity

can also be used for other conventional purposes, such as space heating. 

Unfortunately 1985 MECS and the LRD do not provide any information on how much

electricity is used in applications that could rely on other fuels.  14

The first two columns of table 1 present the weighted and unweighted

distributions of the share of total plant energy requirements that electricity

furnishes.   The unweighted distributions are based on plant counts while the15

weighted distributions are based on energy consumption.  The first two columns

reveal that nearly all manufacturing plants consume electricity, although the

dependence on this energy type varies considerably across plants.  The

unweighted distribution shows that 54.6% of all plants receive less than half

of their energy requirements from electricity, while the weighted distribution

shows that these plants account for 91.8% of all energy consumed.  These

figures suggest that, on average, large energy consuming plants rely less on

electricity than small energy consuming plants.  For instance, 7.9% percent of

manufacturing plants receive up to 10% of their energy requirements from



       Electricity is excluded from figure 2 since only 1.6% of electricity16

consumed is switchable.

       In most 2 digit industries, over 90% of the plants that have17

switching capability have natural gas as one of their primary fuel
possibilities.

11

TABLE 1
ENERGY CONSUMPTION DISTRIBUTIONS

             % Electricity                % Primary Fuel
Share(%)  Unweighted   Weighted        Unweighted    Weighted
  0           0.1         0.6              0.0          0.0 
 0-10         7.8        47.3              0.0          0.0 
10-30        26.0        35.0              0.0          0.0 
30-50        20.7         8.9              0.9          2.8 
50-70        11.6         3.7              8.5         16.5 
70-90         8.3         2.0              9.6         31.4 
90-100        3.1         1.7             13.1         35.2 
 100         22.4         0.8             67.9         14.1

% Electricity is the plant's share of total energy that electricity
provides.
% Primary Fuel is the share of non-electric energy met by a plant's
primary fuel.

electricity.  This same group of plants, 7.9% of the total population, uses a

disproportionate 47.9% of the total amount of energy consumed by the entire

population.

The electricity share figures demonstrate that many plants primarily

rely on non-electric fuels to meet their energy needs.  The next two columns

in table 1 present the distribution of the share of non-electric energy

requirements met by the primary fuel.  Again, weighted and unweighted

distributions are presented.  An overwhelming majority of plants, 90.6%,

obtain over 70% of their non-electric energy requirements from a single fuel,

and these plants consume 80.7% of all energy.

Just as not all plants have the same reliance on a single fuel, not all

plants have the capability of switching to other fuels.  Figure 2 presents the

distributions of the percent of each fuel that is switchable, where the unit

of observation is plant-fuel.   Notice that the switching distributions are16

distinctly bimodal: if a plant has any capability to switch away from a fuel

type, then it is likely that a plant can switch most of its consumption away

to another fuel type. 17
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figure 2:  switching distributions



       An 80% cutoff is arbitrary.  The estimates presented in the results18

section appear robust to using an 80%, 90% or 100% threshold.

13

The preceding tables and figures have shown that nearly all plants

consume electricity, a majority of plants rely heavily on one other fuel

source, and if plants possess any fuel switching capability, that capability

is likely to be considerable.  Based on these stylized facts, and in order to

simplify the analysis in this and subsequent sections, each plant's energy

technology is classified into one of six categories.  The first step in

classifying the energy technology of a plant is to determine the share of

total energy met by electricity.  Table 1 shows that 22.4% of all

manufacturing plants rely entirely on electricity, and another 7.7% obtain at

least 80% of their energy requirements from electricity.  If a plant obtains

80% or more of its energy requirements from electricity, then its energy

technology is classified as ELEC.   18

For the remaining plants, 69.9% of the sample, the percent of non-

electric fuels that can be switched to other fuels is calculated.  If a plant

can substitute over 50% of its non-electric fuels, then the plant is

classified as SWITCH;  otherwise, its energy technology is classified by the

primary fuel source: DIST for distillate, RESID for residual, NAT GAS for

natural gas, and COAL for coal.

Table 2 presents the distributions of energy technologies by 2-digit

industry.  These distributions demonstrate that although the distributions

vary by industry, each industry displays the capability to use a variety of

fuels, and each industry also has the ability to adopt fuel switching



14

technologies.  Although the energy technology distributions do vary by 
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TABLE 2:  ENERGY TECHNOLOGY DISTRIBUTIONS 
BY 2-DIGIT INDUSTRY

Industry        ELEC   RESID   DIST   NAT GAS  COAL  SWITCH
Food            15.2     1.2    2.7     45.4    0.6   34.9 
Textiles        21.9     3.8   11.2     19.5    1.7   42.0 
Apparel         47.6     2.4   22.3     17.2    0.1   10.6 
Lumber          39.6     1.9   34.7     19.3    0.0    4.5 
Furniture       26.1     1.1   11.5     34.0    1.6   25.8 
Paper           11.5     3.3    3.7     45.6    2.2   35.7 
Printing        14.3     2.1    2.3     47.1    0.0   11.3 
Chemicals       20.2     1.4    4.8     39.4    1.3   33.1 
Rubber          27.3     3.6    3.1     41.1    0.2   24.7 
Leather         28.8     2.0   19.5     27.7    2.4   19.5 
Stone and Clay  16.1     0.2   31.3     28.2    1.2   23.0 
Fabricated 
  Metals        28.5     0.8   11.0     44.6    0.7   14.4 
Machinery       23.6     0.2   10.8     45.9    0.4   19.2 
Electronics     33.3     0.8    2.8     51.0    0.2   12.0 
Transportation  34.8     0.5    4.2     40.9    1.0   18.6 
Instruments     58.7     0.8    0.7     27.4    0.0   12.3 
Miscellaneous   52.3     0.3    3.0     29.6    0.4   14.4 
____________________________________________________________
Total           30.1     1.3   10.3     38.8    0.6   18.9 

industry, there are strong trends that span industries.  NAT GAS is the most

popular technology in 11 out of 17 industries, and 38.8% of all manufacturing

plants possess this technology.  The second most popular technology is ELEC,

with 30.1% of plants using this technology.  ELEC is the most popular

technology in 5 out of the 17 industries.  Table 2 shows that nearly 19% of

plants possess significant fuel switching capability, although the propensity

to have this technology does vary considerably across industries.  Plants in

the food, textile, and paper industries are more likely to possess fuel

switching capability than plants in the remaining industries.  The inter-

industry trends for COAL and RESID are more consistent in that the propensity

to adopt either of these technologies never exceeds 3.8%.  The remaining

technology, DIST, displays tremendous variation, with the instrument industry

rarely using this technology (.7%), while 34.7% of the plants in lumber employ

DIST.

Table 2 also demonstrates that there is considerable heterogeneity in

energy technologies within and across industries.  What is the source of this

heterogeneity?  As discussed in the introduction, many factors enter into the

energy technology adoption decision.  These factors include energy prices and

availability in addition to plant level characteristics.  As the economies



       When the size quintiles are determined within each 2-digit industry,19

the results are very similar except that the trends for ELEC and SWITCH are
not as pronounced.

16

TABLE 3:  ENERGY TECHNOLOGY DISTRIBUTIONS BY SIZE
QUINTILE

  Size 
Quintile    ELEC    RESID   DIST   NAT GAS   COAL    SWITCH
   1        58.3     1.2     7.6     27.5     0.0      5.3 
   2        37.0     0.3    12.5     40.1     0.3      9.8 
   3        25.4     1.1    15.6     41.7     0.1     16.1 
   4        23.7     0.7    10.6     43.9     0.2     20.9 
   5         6.5     2.9     5.3     36.6     2.1     43.2 
Total       30.1     1.3    10.3     38.8     0.6     18.9 

Size Quintile 1 is the smallest, 5 is the largest.

associated with each fuel vary, so the energy technology a plant adopts is a

function of plant characteristics, such as size and energy intensity.  The

distributions of these characteristics vary across industries, so these plant

specific characteristics may explain some of the inter, as well as the intra,

industry heterogeneity.  The tables that follow present breakdowns of energy

technology by plant level characteristics.  Table 3, presents the cross

tabulation between energy technology and size quintile, where size is defined

as the quantity of BTUs consumed in a plant.   Of the cross tabulations that19

follow, the size table exhibits the most distinct patterns.

The relationship between size and energy technology is most pronounced

for ELEC and SWITCH, where SWITCH is sharply increasing with size and ELEC is

sharply decreasing.  The ELEC results could indicate that small energy

consuming plants are not performing operations that involve the heating of raw

materials.  If a plant is primarily coal using, then there is a 75% chance the

plant is in the largest quintile.  The patterns for the three remaining

technologies are not as distinct.  NAT GAS and DIST are nonmonotonically

related to size, as the propensity to solely rely on these fuels initially

increases, then decreases with the last quintile.  This final decrease is in

part due to the tremendous increase in the likelihood of SWITCH in the largest

quintile.  
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TABLE 4:  ENERGY PRICE AND TECHNOLOGY DISTRIBUTIONS 
BY CENSUS REGION

ENERGY TECHNOLOGY
REGION    ELEC    RESID    DIST   NAT GAS    COAL    SWITCH
  1       41.0     5.5     18.9     19.4      0.1     15.1
  2       35.9     2.9     18.1     23.5      0.5     19.1
  3       13.6     0.1      3.0     56.8      0.8     25.6
  4       27.4     0.1      2.2     52.6      1.1     16.7
  5       35.6     1.6     14.4     27.1      0.7     20.7
  6       25.9     0.1      9.8     32.3      1.2     30.7
  7       28.4     0.0      6.5     46.4      0.1     18.6
  8        7.2     0.1     25.2     44.9      0.3     22.5
  9       44.1     0.9      8.2     39.0      0.0      7.8

MEAN 1985 ENERGY PRICES
(All figures are in dollars per million BTU.)

REGION  Electricity  Residual   Distillate   Natural Gas  Coal
  1        25.14       4.15        8.05         6.62      2.32
  2        25.79       4.32        7.84         5.91      1.76
  3        19.22       4.37        7.66         5.23      1.87
  4        18.12       3.60        6.77         4.65      1.46
  5        18.36       4.12        7.27         5.20      1.90
  6        16.53       3.96        6.63         4.50      1.82
  7        19.08       4.08        6.29         3.39      1.71
  8        17.50       4.17        6.71         4.72      1.31
  9        20.74       4.94        6.87         5.20      2.22

Region:  1=New England, 2=Mid Atlantic, 3=East North Central, 4=West
North Central, 5=South Atlantic, 6=East South Central, 7=West South
Central, 8=Mountain, 9=Pacific

Table 4 presents how energy technology varies by Census region, and

there is considerable variation across regions.  Region affects the energy

technology for several reasons.  First, different industries are concentrated

in different regions of the country.  Second, energy prices and energy

availability vary by region.  The region with the lowest probability of using

NAT GAS is New England, with only 19.4% of plants, which is 50% less than the

national average.  The distribution for SWITCH and ELEC are also varied, with

only 7.8% of Pacific using SWITCH, and 7.2% of Mountain plants using ELEC.

Part of the regional variation in energy technologies can be attributed

to regional variation in energy prices.  Table 4 also presents average fuel

prices, in dollars per million BTUs, by the nine Census regions for 1985, and

there are quite pronounced regional price differentials.   One major cause20



       There are wide differences in per BTU prices across the fuels, as20

there are differing externalities associated with a BTU of electricity
compared to a BTU of coal.  Electricity is cleanest while coal is the
dirtiest, and gelatinous residual fuel oil is harder to use than distillate
fuel oil.

        What we mean by supply shocks is when the supply of a fuel is21

forcibly curtailed, such as the natural gas shortages of the 1970's.  

18

for regional price differentials is transport costs.  For instance, the 1985

price for natural gas in the West South Central region, where much of the

domestic supply of natural gas is produced, is 49% lower than the average

price paid in New England.  Note that New England also has the lowest value of

NAT GAS.

III.  A MODEL OF ENERGY TECHNOLOGY ADOPTION

This section presents a putty-clay model of energy technology adoption

where future energy prices are uncertain.  The model explores the conditions

in which plants would adopt fuel switching technology versus less expensive

single fuel technologies.  In this model, the fuel switching technology allows

plants to consume the lowest cost fuel after prices are realized.  In this

case, the fuel switching technology protects plants from a price shock to a

single fuel.  Moreover, as discussed in the introduction, there are several

other advantages that fuel switching technology provides for plants;

protection against supply shocks, and the ability credibly negotiate lower

prices in imperfect energy markets. 21

In this model the objective for a risk neutral plant is to choose the

energy technology that minimizes total expected energy related costs.  These

expected costs include two components;  the variable cost of fuels and the

fixed costs associated with each energy technology.  Initially we examine the

case where there are two fuel types, A and B, and three energy consuming

technologies;  T  that consumes only A, T  that consumes only energy B, and aA B

fuel switching technology, T , that has the capability to consume either A orS

B.  The fixed costs for T , T , and T  are K ((), K ((), and K ((),A B S A B S

respectively.  These fixed costs include such things as storage facilities,

pollution abatement equipment, personnel training, and the cost of new

boilers.  The cost for each technology is an increasing function of size, (.  
To understand the energy technology adoption decision of plants, we must

realize that these decisions are made in a dynamic world where plants make

fixed cost decisions in the current period based on expectations of prices in

future periods.  In dynamic models where there are nonconvexities in adjusting



       This strong separability is only assumed so we can derive closed form22

solutions on the expected profits for each of the three energy technologies. 
At a plant level, this may not be an unrealistic assumption.  If there are
short run substitution possibilities, then the expected advantages of the fuel
switching technology will be overstated.   
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(1)

(2)

the state variable, state dependence arises.  In this paper we develop a one

period model of energy technology adoption, where the plant initially

possesses T .  The plant in this model must decide whether to incur a fixedA

cost to change to either T  or T .  Which technology a plant decides to adoptB S

depends on the initial condition, so we also examine the other initial

condition possibilities; the plant initially possessing T , or a new plantS

that initially possesses no technology.

Whether or not a plant changes its energy technology depends upon

whether the expected cost savings exceed the fixed cost of changing the

technology.  The variable costs associated with each technology depend upon

the prices for the two fuel types, p  and p .  The prices are jointlyA B

distributed with density h(p ,p ), E(p )=µ , E(p )=µ , Var(p )=F , Var(p )=F , andA B A A B B A A B B
2 2

Corr(p ,p )=D.  We assume that energy does not have any short run substitutionA B

possibilities with the other inputs in production, allowing us to focus on the

sub-problem of minimizing energy related costs. 22

These costs include the variable costs associated with purchasing of

fuels and the fixed costs of technology.  The expected energy related costs,

E(C), of the three energy technologies become

The expected costs for the two single fuel technologies are straightforward,

as they include the expected price and any fixed costs.  The expected energy

price paid by a plant with the fuel switching technology, E(min(p ,p )), is aA B

weighted sum of the conditional expectation of p  when p  < p  and the expectedA A B

value of p  when p  < p . B B A

Through some manipulation, (2) may be expressed as 
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(3)

(4)

(5)

Notice that the equations in (3) imply that in all cases in which

Prob(p >p )…0 and Prob(p >p )…0, the expected fuel costs of the fuel switchingA B B A

technology will be less than min(µ ,µ ); E(min(p ,p )) < min(µ ,µ ). A B A B A B

In order to explore (3) further, we assume h( @) is a bivariate normal

distribution.  The properties of truncated normal distributions are well

established, and this is the primary reason we chose the normal distribution

in this analysis.  Let p =p -p  and p -N(µ ,F ), where µ =µ -µ  and F =F +F -3 A B 3 3 3 3 A B 3 A B
2 2 2

2DF F .  Then, A B

where x=-µ /F  and M and N are the cumulative and marginal standard normal3 3

distribution functions, respectively.  Substituting (4) into (3), the expected

energy related costs for the fuel switching technology becomes

There are three terms in which the mean fuel prices appear in (5).  The first

two terms are a weighted average of the two mean fuel prices, where each

weight is the probability of that fuel being the cheaper of the two. 

The third term, - F N(x), represents a savings in expected variable cost3

from having the fuel switching technology.  Notice that F N(x) is a decreasing3

function of the absolute difference in the energy prices.   As the difference

in the two fuel prices increase, the value of having the option to switch

between fuels decreases since the expected opportunities to exercise the

option to switch fuels decrease.  Empirically we will be able to test whether

the probability of adopting T  decreases as one of the fuel prices approachesS

extreme values.  

Figure 3 illustrates the expected energy related costs of the three

technologies over a range of µ  and for a given value of µ .  For simplicityB A

and without loss of generality, we let µ =0.  Two curves, E(C ) and E(C ),A A B

represent the expected costs of the two single fuel technologies:  E(C ) isA

independent of µ , while E(C ) is a linear function of µ  with slope (.  FigureB B B



21

3 also contains two curves for the fuel switching technology, with the

difference being that E(C )  is based on having a higher fixed cost thanS 2

E(C ) .  As µ  gets small, the difference in E(C ) and E(C ) approaches theS 1 B S B

difference in the fixed costs of the technologies, K (()-K (().  As µ  getsS B B

large the difference in expected costs between T  and T  approaches K (().  InS A S

the limits of µ , E(C ) mimics the expected costs of the single fuelB S

technologies, however with a parallel shift equal to the difference in fixed

costs.  The second derivative of E(C ) with respect to µ  is negative,S B

implying that E(C ) is concave, as shown in figure 3.  S

The plant chooses the energy technology with the smallest expected

energy related costs.  Note that for E(C ) , there is a range (µ ,µ ) for whichS 1 B B
* **

the fuel switching technology has the least expected cost.  However, if the

fixed cost associated with T  is too large, as demonstrated by E(C ) , then TS S 2 S

will never be chosen.  In this case the expected variable costs savings

provided by the fuel switching technology never exceed the differential in

fixed costs. 

Figure 3 illustrates that as the absolute difference in the expected

fuel prices increases, the less likely it is that the plant will adopt T .  AtS

some point µ  it no longer is profitable for the plant to purchase T , butB S
**

rather it is more profitable to remain with T . A

The expected cost curves in figure 3 assume that the plant initially

possesses T .  However, if the initial conditions change, then the technologyA

ranges also change.  For instance, a new plant must pay a fixed cost for any

technology.  For the case of a new plant, E(C ) in figure 3 will shift upwardsA

by K ((), resulting in an increase in µ .  A new plant will therefore be moreA B
**

likely to adopt T  than a plant that initially possesses T  or T .  The otherS A B
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       There may be incentive to change from T  if the efficiency of the23
S

energy technologies increases over time.
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(6)

(7)

possible initial condition is that the plant initially possesses T .  UnderS

this scenario, the plant has no incentive to adopt any of the single fuel

burning technologies, since doing so would entail a fixed cost and no possible

reduction in fuel costs. 23

Expected fuel prices and the initial conditions greatly influence the

energy technology adoption decision for a plant.  Additionally, (µ ,µ ) is a* **
B B

function of the remaining parameters of the model, variances, covariance, and

size.  Intuitively, variances and covariances affect the expected costs

associated with the fuel switching technology since the fuel switching

technology provides the plant with the option to buy the least costly fuel. 

As with standard option pricing, the value of the option depends not only on

the expected prices, but also on the variances and covariances of the price

series.  This is also true for this special option.

In relation to figure 3, variance parameters affect the curvature of

E(C )  and E(C ) , but do not change their values in the limits.  For instance,S 1 S 2

as the correlation between the two fuel prices increases, the expected fuel

costs of the fuel switching technology always increases since the

opportunities to exploit using a cheaper fuel decrease.  Additionally, the

expected costs increase at a decreasing rate. 

The effect of increasing the correlation between the two prices is to make

both E(C )  and E(C )  less concave:  as D increases, µ  increases and µS 1 S 2 B B
* **

decreases.   

The effect on expected cost is less clear when the variance of one of

the prices is changed, as the derivative of the expected cost of the fuel

switching technology with respect to one of the standard deviations is

ambiguous.  
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(8)

(9)

(10)

Although the first derivative is ambiguous, the second derivative is

unambiguously negative.

The remaining parameter of the model, (, is size.  There is
considerable variation in ( across plants, and the energy technology
distribution varies considerably by size.  We focus on plant size, in terms of

the total amount of energy consumed, since economies do vary by fuel type. 

For instance, electricity, the most expensive fuel in terms of BTUs per

dollar, requires no storage facilities, while the consumption of coal requires

trained personnel, storage facilities, and pollution abatement costs.

At the point µ , E(C )=E(C ).  To examine the effect of size on µ , we* *
B S B B

implicitly differentiate this equality to produce 

An increase in ( affects E(C ) and E(C ) through two channels.  The first isS B

by increasing the expected variable costs of the fuels, while the second is by

increasing the fixed costs of the technologies.  As the energy requirements

for a plant increase, the expected variable cost savings from the switching

technology increase proportionately.  As demonstrated by (3), the expected

marginal increase in the variable costs is less for a plant with T  than aS

plant with T  by µ M(x)+F N(x).  Notice that this expected price differentialB B 3

between the two technologies is the first quantity in the numerator.

The second component in the numerator of (10) is the marginal difference

in the fixed costs of the two technologies. If these expected variable cost

savings exceed the marginal difference of the fixed costs, then the plant will

be more likely to purchase T .  The fixed cost of the fuel switchingS

technology, K ((), will be at least as much K (().  Let f( ()=K (()-K (().  ItS B S B

is reasonable to assume that f( () is an increasing function: the difference
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(11)

in fixed costs between T  and T  increases with the size of the furnace orS B

oven.  If there are scale economies in heating equipment, then f( () may be
concave.  If f( () is concave, then the sign of (10) is more likely to be
negative as ( increases.

A similar exercise is performed for the upper bound of E(C ) .  S 1

Again the numerator has two components.  The first is the difference in the

expected variable costs between T  and T , which is always negative.  If theS A

expected costs savings exceed the marginal fixed cost, then the plant will

more likely purchase T .  S

This one period model is capable of producing heterogeneity in energy

technology through several different mechanisms.  The first is that plants may

enter this model with different initial conditions; new plants may chose a

different technology than existing plants.  A second heterogeneity generating

factor is the variance across plants in expectations of future energy prices. 

A portion of this variation is attributable to geographic factors.  Third, due

to the economies associated with each technology type, the energy technology

depends upon size.  Given the wide distribution of plant sizes in

manufacturing (see Dunne, Roberts and Samuelson (1988)), heterogeneity may

arise solely on account of the underlying size distribution.  

Extensions

In the introduction, several other advantages of possessing fuel

switching technology are suggested.  For instance, if energy markets are not

perfectly competitive, then the presence of the fuel switching technology

makes the threat of going to an alternative fuel credible since the plant

already has the capital capable of burning another fuel.

Another reason for plants to adopt fuel switching technology is as an

insurance against supply shocks, especially in light of the natural gas

shortages of the 1970's.  By 1981 the shortages of natural gas abated and a

glut had appeared.  However, there is good reason for the natural gas supply

shocks to affect the energy technology observed in 1985.  In the model

presented in this section, if the plant started with the fuel switching

technology, then it has no incentive to adopt a single fuel system.  With the

fuel switching technology the plant may always purchase the least cost fuel. 



       Methods for estimating discrete choice models in which the error24

structure is more general have been posited by McFadden (1989) and Pakes and
Pollard (1989). 
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(12)

However, plants do change their energy technologies for reasons other than to

alter the fuel consumed, more recent technologies are more efficient.  

The model presented here can be modified to address the supply shock

scenario.  We have assumed that the prices for the two fuel types are jointly

normally distributed.  To incorporate the supply shock, the normal

distribution can be modified to include a non-zero probability of a near

infinite price.

IV.  ESTIMATION AND RESULTS

The appropriate estimation method depends on the hypotheses to be tested

and the data used.  The energy technology adoption decision is inherently

dynamic, as plant managers decide each period whether to stay with their

present technology, or adopt a new technology.  Unfortunately, the data

available on energy technology are cross-sectional;  we observe the energy

technology state of plants in 1985 without knowing their previous or future

state paths.

In order to incorporate some of the dynamic aspects of the model, the

cross-sectional energy technology data are merged with historical plant level

investment and age data, in addition to historical energy supply and price

data.  These historical variables are included in the estimation to perform

crude tests of the extent that past energy supply and price conditions have on

the technology present in 1985.  In addition to variables that describe past

and present energy market conditions, the estimated model also includes plant

specific variables such as measures of size, energy intensity, 2-digit

industry dummies.  

Estimation

The parameters of the model are estimated using a multinomial logit

procedure.   The probability of adopting single fuel technology j is given by24



       SWITCH contains all plants that have significant fuel switching25

capability.  As stated in the data section, over 90% of plants that have
switching capability can use natural gas as a fuel.  In earlier work, SWITCH
was further broken down by the mix of fuels that plants could switch between. 
In estimation, the model had little predictive ability in selecting the
specific switching technology, however, the model does have some predictive
power in whether there is some switching capability.   

        Recall that the Petroleum Refining (SIC 29) and Primary Metals (SIC26

33) industries are not included in this analysis.

       A much simpler specification for equation 13 was also estimated by 2-27

digit industry.  Across the 2-digit industry estimates, there were strong
commonalities for the effects of size and prices.

27

Separate sets of ß 's are estimated for the RESID, DIST, NAT GAS, COAL, andj

SWITCH technologies.   For identification, the ß's for ELEC are set equal to25

0.

The ß 's are estimated using the entire sample, which pools observationsj

across all industries.   A disadvantage of pooling across industries is that26

the assumption of the ß 's being constant across industries is imposed. j

However, there is a benefit to pooling.  The frequencies of COAL, RESID, and

DIST technologies become sparse for many 2-digit industries, and therefore

require the exclusion of many explanatory variables.  Although pooling imposes

cross industry parameter restrictions, it permits a much richer model

specification.  To reduce the cross industry restrictions, 2-digit industry

dummies are included in the NAT GAS and SWITCH equations to capture some of

the innate preferences particular industries may have towards particular

technologies.  27

Results

The energy technology adoption decision is a function of many variables. 

Some of these variables include plant specific characteristics, such as size,

age, and energy intensity.  Other variables include measures of energy market

conditions, such as prices, natural gas availability, and the severity of

previous natural gas shortages.  The number of parameters estimated from (12)

is 189.  

For each of the five estimated equations, Appendix A provides detailed

variable definitions, and a complete listing of the parameter estimates,

standard errors, t-statistics, and mean values.  Unfortunately, due to the

nonlinearity of the model, visual examination of the parameter estimates does

not readily convey the impact a variable has on the predicted probability of

adopting a particular energy technology.  To remedy this problem, a series of



       A logarithmic scale is used since the plant-level distribution of28

SIZE is very concentrated amongst small plants.

28

graphs and tables present how the expected probability for each technology

varies over the relevant range of the independent variables.  These predicted

probabilities are calculated, using (13), by varying the variable of interest

while holding all other variables in system to their mean values.  In most of

the figures, the predicted probability for each technology is computed from

the fifth percentile to the ninety-fifth percentile of the variable of

interest.  

The discussion of the results is divided by variables that describe

plant characteristics and variables that describe energy market conditions. 

 

Plant Characteristics

An influential variable in the model is the amount of energy consumed in

a plant.  The variable SIZE is defined as the total energy consumption for a

plant, measured in BTUs.  The logarithm of SIZE, along with the logarithm

squared and cubed, are included in each of the five estimated choice

equations.  Additionally, the logarithm of SIZE is interacted with own price

in each equation, allowing for price elasticities to vary by SIZE.  Figure 4

presents the predicted probability for each technology over a logarithmic SIZE

scale.   The numbers along the logarithmic SIZE scale are the percentiles of28

the SIZE distribution.  We present the percentiles of the SIZE distribution

instead of the value of the logarithms of SIZE to allow the reader to see how

the predicted probabilities change for the distribution of plants as SIZE

varies.

The predicted probabilities displayed in figure 4 vary tremendously by

SIZE.  Small energy consuming plants are much more likely to possess the ELEC

or NAT GAS technologies.  However, the propensity to possess ELEC quickly

diminishes.  As discussed in the data section, all plants rely on electricity

to some extent.  If a manufacturing plant does not require energy to generate

steam or to heat raw materials, then the plant is likely to rely on

electricity for machinery power and lighting.  These plants will then likely

be relatively small energy consumers.  Additionally, the fixed costs

associated with electricity are small, as storage facilities are not required.

While the predicted probability of ELEC initially decreases, the

predicted probability of NAT GAS increases. NAT GAS possesses the greatest

predicted probability for over 50% of the sample, and is the second largest

for most of the rest.  However, even though NAT GAS has the highest predicted
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probability for most of the SIZE range, its predicted probability never

exceeds 50%.  After the 25th percentile of SIZE, the predicted probability of

NAT GAS monotonically decreases. 

The most striking results in figure 4 are those for SWITCH.  The

predicted probability of SWITCH is monotonically increasing over the 5th to 
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95th percentile in SIZE.  For the 95th percentile, the predicted probability

of SWITCH approaches 70%, the largest predicted probability over the relevant

range of SIZE.  These results suggest that there are strong scale economies

associated with fuel switching technologies.   

The predicted probabilities of the other technologies tend to be nearly

insignificant over large ranges of SIZE.  The predicted probabilities for DIST

hover between 10% and 15% for a large range of SIZE before declining as SIZE

increases.  An interesting phenomenon occurs for COAL.  Beyond the 95th SIZE

percentile, the predicted probability of COAL does rapidly increase.  For the

very largest plants in the sample, the predicted probability of COAL exceeds

60%, while the predicted probability of SWITCH diminishes to 30%.  This result

is consistent with large fixed and external costs associated with the burning

of coal, such as storage facilities and pollution abatement equipment. 

A second plant specific measure of energy consumption, INTENSITY,

is computed as the ratio of SIZE to dollars value added.  The correlation

between SIZE and INTENSITY is .43, signifying that large energy consuming

plants are not necessarily energy intensive plants.  INTENSITY, its square and

cube are included in each of the five equations.  Figure 5 presents the

predicted probabilities of the six energy technologies over the fifth to

ninety-fifth percentile of INTENSITY.  Again, like SIZE, the distribution of

INTENSITY is heavily skewed, and figure 5 is presented using a logarithmic

scale.  The percentiles of the INTENSITY distribution are noted on the x-axis.

Although not as drastic as the SIZE results, the predicted probabilities

do vary considerably over the range of INTENSITY.  The largest changes in

predicted probabilities occur after the 50th percentile, especially with ELEC. 

The ELEC results conform to the theory that ELEC plants are less likely to

undertake process heating.  Consequently, these plants will be relatively

small energy consumers and will not be very energy intensive.  The predicted

probabilities in figure 5 suggest that natural gas and distillate fuel oil are

desirable for energy intensive applications.  This is due in part to the high

temperature and desirable flame properties of natural gas.  

SWITCH shows less covariation with INTENSITY than ELEC, DIST, or NAT

GAS.  However, there is a slight positive relationship, demonstrating that the

greater reliance the production process is towards energy, the greater the

likelihood that SWITCH will be installed.  However, the relationship is weak

with only an increase in 5% of the predicted probability.  This is an

interesting result.  It demonstrates that plants with energy intensive

applications are not more likely to insure against price or supply shocks by

adopting fuel switching capability.  Instead, the results seem to suggest that
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highly energy intensive applications may require special fuels, such natural

gas and distillate fuel oil.



33



34

TABLE 5: PREDICTED PROBABILITY OF ADOPTION BY 2-DIGIT INDUSTRY

Industry          ELEC    RESID    DIST    NAT GAS    COAL    SWITCH
___________________________________________________________________

Food               5.8     0.6      6.8      44.2     0.14      2.5
Textiles          16.2     1.6     18.9      24.6     0.2      38.6
Apparel           18.0     1.8     21.0      27.1     0.2      32.0
Lumber            28.5     2.8     33.3      23.6     0.3      11.5
Furniture          9.8     1.0     11.5      35.3     0.1      42.3
Paper              6.7     0.7      7.8      48.8     0.1      36.0
Printing           8.5     0.8     10.0      51.5     0.1      29.1
Chemicals          8.7     0.8     10.1      42.5     0.1      37.8
Rubber            13.1     1.3     15.3      35.7     0.1      34.6
Leather           12.2     1.2     14.3      34.8     0.1      37.3
Stone and Clay    15.1     1.5     17.6      30.6     0.2      35.1
Fabricated Metals 12.0     1.2     14.0      45.5     0.1      27.1
Machinery          5.7     0.6      6.7      45.6     0.1      41.4
Electronics        8.7     0.9     10.2      57.4     0.1      22.7
Transportation    13.0     1.3     15.2      46.4     0.1      24.0
Instruments       12.8     1.3     15.0      37.9     0.1      32.9
Misc.              9.6     0.9     11.2      38.1     0.1      40.0
___________________________________________________________________

Total              10.5    1.0     12.3      42.8     0.1      33.2



       In the unweighted sample, SWITCH and NAT GAS provide the largest29

number of observations, and that is why 2-digit industry dummies are included
in the SWITCH and NAT GAS equations.  Additionally, a dummy variable is not
included for industry 21, Tobacco Products, due to the small number of
observations.

       Recall that prices are based on heat content, and not on the other30

characteristics of the fuels, such as ease of use, temperature control, flame
characteristics, or emissions.

       Part of the explanation for the low propensity for plants in Lumber31

to use natural gas is that lumber mills are often in rural areas without
access to natural gas.  Later in this section, a discussion follows that
describes the control variables used for natural gas availability.

35

The final plant characteristic that we control for is 2-digit industry. 

To capture some of the innate industry preference towards specific energy

technologies, the SWITCH and NAT GAS equations contain dummy variables for 2-

digit industries.   These dummy variables should capture the preference an29

industry has towards an energy technology, after controlling for size, energy

intensity of the production process, and prices.   30

Table 5 presents the predicted probabilities for an average

manufacturing plant by 2-digit industry.  Recall that table 2 displays a large

amount of variation in energy technologies within and across industries. 

However, the distributions in table 2 do not control for factors that

influence the energy technology of a given plant that also varies by industry. 

For instance, mean plant SIZE and INTENSITY vary tremendously by 2-digit

industry, as shown in Appendix B.  Table 5 shows the variation in industries

that can be attributable to differences in the propensity to consume fuel by

industry.  The predicted probability for NAT GAS obtains a high of 40.8 for

the Electronics industry, and a low of 14.1 for Lumber.  Similar spreads exist

for the other energy technologies.  For SWITCH, a plant in the Food industry

is most likely to adopt fuel switching capability while again Lumber is the

least likely.   31

Energy Market Characteristics

The other set of variables that are included in estimation capture

energy market conditions.  Specifically, the estimated model possesses

variables that measure energy prices, availability, and variance.  Just how

these measures should be constructed and used in estimation is unclear.  The

appropriate price measures to include in the estimation depends upon the model

of energy technology adoption.  The energy technology adoption model is

dynamic, where plants update their expectations regarding future energy prices



       The relative price of natural gas increased more than any other fuel32

between 1978 and 1985.

36

each period, and decide whether or not to replace their technology.  Due to

the fixed costs involved with changing technology, it is not always profitable

to change a technology even though expectations of future prices may have

altered.  For this framework, current prices, and expectations or future

prices are needed.  Unfortunately, the energy technology data used in this

study are cross-sectional, and we do not know when the energy technology was

adopted, and therefore plant specific expected energy prices based on time of

adoption can not be generated.

Several approaches to energy prices are used in this study.  The first

approach infers energy technology adoption dates by combining plant age and

new machinery investment data.  The second approach uses average energy prices

for the 1982-1984 period.  In the first approach, plant age and capital age

information is used to place the energy technology adoption date within five

year intervals.  Actual energy prices, and forecasted energy prices (a second

order autoregressive model with a linear time trend) based on these inferred

technology adoption intervals are included in the model.  However, these

expected prices did not perform well in that they are not significant and have

only marginal impacts on the predicted probabilities.  The poor performance of

these prices may have occurred for several reasons.  

In the 1970's the price of natural gas was regulated.  Due to the

artificially low price, shortages of natural gas developed.  Some trade

literature suggests that those industrial firms that could purchase natural

gas did so since natural gas prices were more favorable than prices from other

fuels.   However, natural gas has not been available in all markets, so in32

the 1970's the price of natural gas was not the primary factor for plants not

using natural gas.  Hence, the expected energy prices based on plant age are

not indicative of the true variables that entered into the decision.   Another

reason why the expected prices at the inferred adoption date may not have

performed well is that the inferred adoption date is simply incorrect.

The second approach to prices, constructing an average of the 1982-84

prices, produced the best model fits.  By 1982 natural gas prices increased

closer to true market levels.  Variables based on energy price forecasts and

realized prices after 1985 were included in previous versions of the model. 

The inclusion of these future prices did not produce improved model fits.  An



       The correlation between the ratio of natural gas to residual fuel33

prices in 1983 to 1987 is .95.

       Recall ELEC is the omitted equation in the multinomial logit system. 34

To test whether the energy technology choice is a function of electricity
prices, the price of electricity is included in each of the estimated
equations.  The predicted probabilities for the six energy technologies do not
vary considerably over the range of electricity prices. 

       All plants with significant switching potential are classified as35

SWITCH regardless of the types of fuels they may switch to and from.  Over 90%
of SWITCH plants have the capability of meeting a majority of their energy
needs with natural gas.  Models failed to distinguish between fuel specific
categories.      

37

explanation is that relative energy prices have shown very little change at

the state level before and after 1985. 33

In the following results, the 1982-1984 average fuel prices are used. 

In each of the single fuel technologies two sets of prices are included:  the

price of the own fuel and the price of electricity.   For the SWITCH34

equation, natural gas and residual prices are used since plantz with fuel

switching technology have the capability to use these two fuels most

frequently.   In each of the equations, the log of prices, the square and35

cube are included.  Additionally, the own price in each equation is interacted

with SIZE.



38



39

natural gas prices



       The results for COAL are omitted since the expected probability of36

COAL is always less than 2%.
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(13)

We focus first on natural gas prices since natural gas is the most

widely used fuel in manufacturing, and fuel switching technologies often can

use natural gas as a fuel source.  Figure 6 presents the predicted

probabilities over the range of natural gas prices, and some interesting

patterns emerge.  When natural gas is relatively inexpensive, as in states

such as Louisiana, the predicted probability for NAT GAS reaches 63.2%.  When

natural gas prices increase from the lowest level to 31.5% higher, the

predicted probability of NAT GAS falls to 43.3%.  Almost all of this decrease

is absorbed by SWITCH, whose predicted probability increases from 17.7% to

37.8%.  The predicted probabilities for the other technologies remain

relatively constant over this range.

Recall in the model section that the expected benefits of the switching

technology diminish as the absolute difference in the energy prices increase.

The predicted probabilities in figure 6 confirm this prediction.  As the price

of natural gas reaches either extreme, the predicted probability for SWITCH is

low, since the expected opportunities to use the switching capability are

small.  When the price of natural gas is low plants are much more likely to

adopt NAT GAS; conversely when prices of natural gas are high plants are much

more likely to adopt ELEC or DIST.

Figure 6 displays the complex relationship between the predicted

probability for each energy technology and the price of natural gas.  The

prices of residual fuel oil, distillate fuel oil, electricity, and coal, also

enter the model.  Table 6 summarizes the sensitivity of the predicted

probability for each technology and changes in each of the fuel prices.  The

statistics presented in table 6 are the change in the predicted probability of

technology j for a 1% increase in fuel price i.  These elasticities, > , arei,j

computed as

  

where P  is defined in (13).  The elasticities are computed for eachj

technology-price combination.   Table 6 presents three sets of > , depending36
i,j

on whether they are computed at the 10th, 50th, or 90th percentile of SIZE. 

For example, a 1% increase in natural gas prices leads to the predicted
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probability for NAT GAS to decrease by .25, for a plant in the 10th SIZE

percentile.
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TABLE 6:  PREDICTED PROBABILITY PRICE ELASTICITIES
EVALUATED AT THE 10TH, 50TH, AND 90TH PERCENTILES OF SIZE

10th SIZE Percentile

              ELEC     RESID    DIST   NAT GAS   SWITCH
Electricity    .10      .01     -.42      .23      .08
Residual      -.12     -.05     -.07     -.25      .49
Distillate     .11      .01     -.44      .23      .09  
Natural Gas    .57      .03      .34     -.02     -.55   
P.P.         21.85     1.25    12.97    45.98    17.90

50th SIZE Percentile

              ELEC     RESID    DIST   NAT GAS   SWITCH
Electricity    .04      .01     -.40      .20      .14
Residual      -.05     -.04     -.06     -.22      .37
Distillate     .08      .01     -.68      .33      .26  
Natural Gas    .28      .03      .33     -.01     -.43   
P.P.         10.52     1.03    12.31    42.81    33.21

90th SIZE Percentile

              ELEC     RESID    DIST   NAT GAS   SWITCH
Electricity    .01      .01     -.09      .04      .04
Residual       .02     -.05      .01      .04     -.02
Distillate     .03      .01     -.28      .06      .18  
Natural Gas    .18      .03      .05     -.01     -.02   
P.P.         10.88     1.82     2.87    21.92    62.09

P.P.= Predicted Probability



       This variable, NAT75, is not the ideal measure for whether or not a37

plant can hook up to a natural gas pipeline.  However, it appears to
distinguish between urban and rural areas, where rural areas are less likely
to have access to natural gas. 
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The numbers in table 6 must be viewed with caution.  Recall in figure 6

that the predicted probability of SWITCH is a non-monotonic function of the

price of natural gas.  The results in table 6 are computed at the means of all

the variables in the model, except for SIZE.   The statistics in table 6 do

not convey any measures of concavity, convexity, or monotonicity in the

relationships between prices and predicted probabilities. 

Own price elasticities are negative, except for electricity.  Over the

range of electricity prices, the predicted probability of ELEC changes little. 

The own price elasticities for residual, distillate, and natural gas are

negative, with DIST being the most price sensitive in each SIZE category.  An

interesting result is that the predicted probabilities for DIST, NAT GAS, and

SWITCH, generally become less price sensitive from the 50th to the 90th SIZE

percentile.  Large energy consuming plants are much more likely to possess

SWITCH, and as a result, the price of a single fuel is not as influential.  

The analysis of energy market conditions and energy technology has so

far focused on energy prices.  However, other energy market conditions

influence the energy technology choice of plants.  For instance, whether or

not plants chose NAT GAS does not only depend on prices, but also on whether

natural gas is available, and whether the supply of natural gas in the past

has been stable.  In the estimated model, two controls for natural gas

availability and supply stability are included.  

Natural gas availability has increased during the past several decades,

however, thre are remote areas that did not have access to natural gas in

1985.  Using the 1975 Annual Survey of Manufactures data on natural gas usage,

we compute how much of the manufacturing fuel requirements in each county is

met by natural gas.  A dummy variable, NAT75, is set equal to one if there is

a significant of natural gas consumed in a county in 1975, otherwise NAT75 is

0.  For the sample used in this study, 72.6% of plants are in counties in

which natural gas was used in 1975.   37

Table 7 presents how the predicted probabilities of the six energy

technologies vary depending on the value of NAT75.  This variable greatly

influences the predicted probability of several of the technologies.  The

predicted value of NAT GAS more than doubles from 22.80 to 48.64.  Absorbing

most of this increase is DIST, whose predicted probability plummets from 40.55



       In a supplement to the 1976 Annual Survey of Manufacturers, 5,00038

plants were asked how many production worker hours were lost as a result of
natural gas supply disruptions.  Unfortunately we do not have access to the
micro data.  However, the results are published for 21 states.  For these 21
states we compute the ratio of production hours lost to total production
hours, and included this variable in estimation.  For the remaining states, we
use a national average, as no other information is available.  This variable
has little impact on the predictive ability of the model. 
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TABLE 7:  NATURAL GAS AVAILABILITY IN 1975
AND PREDICTED PROBABILITY OF ADOPTION

           ELEC    RESID    DIST  NAT GAS   COAL  SWITCH 
NAT75=0    11.19    2.69   40.55   22.80    .17    22.60
NAT75=1     9.21     .64    7.03   48.64    .09    34.39
  

to a mere 7.03.  The other large change in predicted probability occurs for

SWITCH.  This result is not surprising since fuel switching equipment often

relies on natural gas as one of the fuel sources.

Even in areas in which natural gas is generally available, shortages of

natural gas have occurred.  During the severe winters in the mid 1970's,

natural gas shortages developed in many parts of the country, and the supply

shortages vary in severity by region.  Starrett (1976) presents average

curtailment rates for 10 regions.  We include this variable, CURTAIL, along

with its square and cube, in each of the five estimated equations.   Figure 738

presents how the predicted probability for each technology varies over the

relevant range of CURTAIL.  There is generally a positive relationship between

the degree of curtailments and the predicted probability of SWITCH. 

Corresponding to the increase in SWITCH, the predicted probability for NAT GAS

declines dramatically.  

The degree of curtailments in natural gas supplies is a measure of the

variance in supply.  In the model section we briefly explore the role of

variances and covariances of prices on the expected energy related costs of

the fuel switching technology.  In estimation we include several measures of

price variance, and these variance measures have little impact on the

predicted probabilities.  One measure of price variance is simply the standard

deviation of a fuel price over time.  The other measure included in estimation
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is the variance of the error term from the price forecast equation.  As with

the prices, the question arises as to the appropriate definition of variance. 

That is, should variances based on data form the 1970's be used, or should we

limit ourselves to the 1980's?  An additional problem arises since the price

data used in this study are annual, and this annual price data mask higher

frequency volatility.

V.  CONCLUSION

This paper is a first step in exploring how the manufacturing sector

responds to energy price shocks by examining the factors that influence the

energy technology choice of individual manufacturing plants.  Using plant

level data from the 1985 MECS and the LRD, this paper documents the

heterogeneity in energy technologies across and within industries.  The

objective of this paper is not just to document the heterogeneity, but to

explain how this heterogeneity has arisen by using basic economic concepts.  

In order to test the impact of certain variables on the energy

technology adoption decision, we estimate a multinomial logit model of

technology choice.  For simplicity, the variables that enter the model are

classified into two categories;  plant level characteristics and energy market

conditions.  Overall we find that both sets of variables greatly influence the

energy technology adoption decision.

Because fuels differ in their attributes, the most economical energy

technology for a plant depends on the amount of energy consumed and the

production process.  There is great variance in how much energy plants consume

and the energy intensity of production.  Our results show that large energy

consuming plants are more likely to adopt fuel switching technologies,

indicating the existence of strong scale economies for the fuel switching

technology.  Plants that partake in energy intensive applications are more

likely to rely on natural gas and distillate fuel oil.  Even after controlling

for the amount of energy consumed and the energy intensity of the production

process, we still find great innate industry preferences towards particular

technologies.
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Besides the variables that describe the characteristics of manufacturing

plants, the model also includes variables that describe energy market

conditions that each plant faces.  The natural experiment that enables us to

identify the impacts of energy market conditions on the energy technology of a

plant is that energy market conditions vary drastically by geographical

region.  The estimated model in this paper uses fuel prices and variables that

capture natural gas availability.  

The price results are interesting.  As the price of natural gas

increases, the predicted probability of relying solely on natural gas

decreases.  The relationship between natural gas prices and the predicted

probability of adopting fuel switching technology confirms to the model of

energy technology adoption.  As the price of natural gas reaches either

extreme, the predicted probability of adopting fuel switching technology

decreases since the opportunities to exploit fuel switching capability

decrease. 

The price of natural gas is not the only factor in whether plants rely

primarily on this energy source since not all communities have had access to

natural gas, and some communities underwent severe natural gas shortages in

the 1970's.  Our results indicate that the severity of natural gas shortages

of the 1970's is positively related to the predicted probability of possessing

fuel switching technology in 1985.  

The data used in this paper are cross sectional, and do not allow

explicit modeling of the dynamic process of the energy technology decision of

plants.  However, our results indicate that a portion of the heterogeneity in

energy technologies can be attributable to the heterogeneity in plant

characteristics and geographical dispersion of energy prices and supplies.   
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APPENDIX A

VARIABLE DEFINITIONS, PARAMETER ESTIMATES,

T-STATISTICS, AND MEAN VALUES

This appendix contains the parameter estimates for the multinomial logit

model of energy technolgy choice: 

Seperate sets of ß's are estimated for the RESID, DIST, NAT GAS, COAL, and

SWITCH technologies.  In this appendix, we present a variable dictionary,

followed by the parmeter estimates, t-statistics, and mean values for each of

the estimated equations. 

Variable Dictionary

AGE1 dummy variable whether the plant started between 1964 and 1974

AGE2 dummy variable whether the plant started between 1975 and 1981

AGE3 dummy variable whether the plant started after 1981

C constant

CAP1 dummy variable whether the plant underwent significant investments
after 1980

CAP2 dummy variable whether the plant underwent significant investments
between 1975 and 1980

CURTAIL percent of natural gas curtailed in the 1974/5 winter

CURT2 percent of worker hours lost due to natural gas curtailments

ECOAL average square error for coal prices from an AR(2) model with a
linear trend.

EDIST average square error for distillate fuel oil prices from an AR(2)
model with a linear trend.
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ENATGAS average square error for natural gas prices from an AR(2) model
with a linear trend.

ERESID average square error for residual fuel oil prices from an AR(2)
model with a linear trend.

INDxx dummy variable for 2-digit industry xx

INTENS the ratio of total BTUs consumed in a plant to dollars value added

LSIZE logarithm of total BTUs consumed in the plant

NAT75 dummy variable, =1 if the county had access to natural gas in
1975, =0 otherwise

PCOAL state level 1982-84 average price of coal

PDIST state level 1982-84 average price of distillate fuel oil

PELEC state level 1982-84 average price of electricity

PNATGAS state level 1982-84 average price of natural gas

PRESID state level 1982-84 average price of residual fuel oil

STCOAL standard deviation of coal prices for 1980-1987

STDIST standard deviation of distillate fuel oil prices for 1980-1987

STNATGAS standard deviation of natural gas prices for 1980-1987

STRESID standard deviation of residual fuel oil prices for 1980-1987
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Estimates from the RESID Equation

           Variable         ß        T-stat      Mean 
           C             172.304      0.158      1.000
           PRESID       -326.631     -0.153      1.531
           PELEC        -168.393     -1.451      2.957
           SIZE           -0.101     -0.091     -6.505
           CURTAIL         0.112      0.453     12.529
           INTENSITY       0.600      9.538      2.536
           STRESID        -8.100     -0.460     26.330
           ERESID        605.964      2.565      0.829
           NAT75          -1.239     -3.721      0.726
           CURT2          -0.280     -1.033      0.983
           AGE1            0.550      1.972      0.235
           AGE2           -1.328     -2.886      0.199
           AGE3           -2.387     -4.189      0.251
           CAP1            1.467      3.568      0.321
           CAP2            1.883      4.435      0.224
           PRESID^2      266.931      0.194      2.345
           PELEC^2        53.375      1.258      8.742
           SIZE^2         -0.007     -0.093     42.315
           CURTAIL^2      -0.010     -0.602    156.977
           INTENSITY^2    -0.021     -8.516      6.430
           STRESID^2       0.275      0.410    693.244
           ERESID^2     -577.632     -2.622      0.688
           PRESID^3      -69.274     -0.235      3.591
           PELEC^3        -5.625     -1.101     25.846
           SIZE^3          0.000      0.070   -275.259
           CURTAIL^3       0.000      0.515   1966.777
           INTENSITY^3     0.000      7.350     16.305
           STRESID^3      -0.003     -0.347  18252.788
           ERESID^3      168.593      2.680      0.571
           PRESID*SIZE     0.110      0.164     -9.962
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Estimates from the DIST Equation

           Variable         ß        T-stat      Mean 
           C           -8540.397     -3.235      1.000
           PDIST       13211.935      3.363      2.024
           PELEC        -316.982     -6.303      2.957
           SIZE            0.199      0.176     -6.505
           CURTAIL         0.880      8.616     12.529
           INTENSITY       0.794     15.876      2.536
           STDIST        -11.122     -3.394     13.172
           EDIST         -84.366     -3.536      0.866
           NAT75          -1.558    -11.664      0.726
           CURT2           0.295      4.323      0.983
           AGE1            0.399      2.733      0.235
           AGE2           -0.192     -0.562      0.199
           AGE3            0.083      0.225      0.251
           CAP1           -0.295     -0.835      0.321
           CAP2            0.949      2.816      0.224
           PDIST^2     -6529.849     -3.375      4.097
           PELEC^2       112.156      6.124      8.742
           SIZE^2         -0.150     -1.436     42.315
           CURTAIL^2      -0.057     -9.411    156.977
           INTENSITY^2    -0.029    -11.319      6.430
           STDIST^2        0.854      3.382    173.509
           EDIST^2        84.395      3.278      0.751
           PDIST^3      1074.693      3.386      8.293
           PELEC^3       -13.242     -6.022     25.846
           SIZE^3         -0.000     -0.083   -275.259
           CURTAIL^3       0.001      9.686   1966.777
           INTENSITY^3     0.000     10.508     16.305
           STDIST^3       -0.021     -3.304   2285.517
           EDIST^3       -25.285     -2.811      0.651
           PDIST*SIZE     -1.037     -2.113    -13.167
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Estimates from the NAT GAS Equation

           Variable         ß        T-stat      Mean 
           C            -105.323     -3.004      1.000
           PNATGAS       -37.187     -1.214      1.623
           PELEC         148.435      4.401      2.957
           SIZE           -0.706     -3.081     -6.505
           CURTAIL         0.324      6.325     12.529
           INTENSITY       0.607     15.395      2.536
           STNATGAS        1.427      6.451      9.564
           ENATGAS       -71.279     -7.919      0.464
           NAT75           0.952      8.631      0.726
           CURT2          -0.042     -0.938      0.983
           AGE1           -0.227     -2.387      0.235
           AGE2           -1.366     -6.700      0.199
           AGE3           -1.132     -5.854      0.251
           CAP1            0.445      2.422      0.321
           CAP2            0.781      3.844      0.224
           PNATGAS^2      29.273      1.477      2.635
           PELEC^2       -56.134     -4.555      8.742
           SIZE^2          0.025      0.759     42.315
           CURTAIL^2      -0.027     -8.024    156.977
           INTENSITY^2    -0.020    -12.590      6.430
           STNATGAS^2     -0.124     -6.345     91.470
           ENATGAS^2     125.685      7.093      0.216
           PNATGAS^3      -7.648     -1.811      4.277
           PELEC^3         6.883      4.629     25.846
           SIZE^3          0.007      3.295   -275.259
           CURTAIL^3       0.000      8.408   1966.777
           INTENSITY^3     0.000      9.817     16.305
           STNATGAS^3      0.003      5.940    874.812
           ENATGAS^3     -66.795     -6.281      0.100
           PNATGAS*SIZE    0.154      1.541    -10.559
           IND22          -1.609     -5.875      0.021
           IND23          -1.618     -7.842      0.045
           IND24          -2.216    -12.391      0.066
           IND25          -0.749     -3.417      0.027
           IND26          -0.041     -0.172      0.027
           IND27          -0.230     -1.532      0.116
           IND28          -0.439     -2.192      0.040
           IND30          -1.023     -5.844      0.052
           IND31          -0.985     -2.937      0.009
           IND32          -1.320     -7.427      0.059
           IND34          -0.696     -4.776      0.115
           IND35           0.045      0.316      0.164
           IND36          -0.145     -0.879      0.064
           IND37          -0.755     -3.399      0.024
           IND38          -0.946     -4.680      0.035
           IND39          -0.650     -3.603      0.052
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Estimates from the COAL Equation

           Variable         ß        T-stat      Mean 
           C             -20.343     -0.118      1.000
           PCOAL          17.282      1.907      0.644
           PELEC          29.138      0.153      2.957
           SIZE            0.107      0.236     -6.505
           CURTAIL         0.573      1.969     12.529
           INTENSITY       0.613     10.539      2.536
           STCOAL          0.040      0.036      6.596
           ECOAL        -179.996     -1.741      0.169
           NAT75          -0.506     -1.252      0.726
           CURT2          -0.074     -0.334      0.983
           AGE1           -2.202     -2.732      0.235
           AGE2           -2.595     -3.061      0.199
           AGE3           -1.327     -1.938      0.251
           CAP1            0.818      1.347      0.321
           CAP2            1.344      2.360      0.224
           PCOAL^2         8.635      0.482      0.415
           PELEC^2       -11.185     -0.160      8.742
           SIZE^2          0.118      1.657     42.315
           CURTAIL^2      -0.040     -2.158    156.977
           INTENSITY^2    -0.020    -11.023      6.430
           STCOAL^2       -0.027     -0.206     43.509
           ECOAL^2       887.404      1.671      0.028
           PCOAL^3       -28.669     -1.658      0.267
           PELEC^3         1.278      0.151     25.846
           SIZE^3          0.009      1.563   -275.259
           CURTAIL^3       0.001      2.025   1966.777
           INTENSITY^3     0.000      9.443     16.305
           STCOAL^3        0.002      0.404    286.993
           ECOAL^3     -1277.619     -1.540      0.005
           PCOAL*SIZE      1.199      2.002     -4.189
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Estimates from the SWITCH Equation

           Variable         ß        T-stat      Mean 
           C           100.675      0.926      1.000
           PNATGAS     109.011      2.644      1.623
           PRESID     -232.952     -1.093      1.531
           SIZE         -0.318     -1.091     -6.505
           CURTAIL       0.017      0.239     12.529
           INTENSITY     0.572     14.117      2.536
           STNATGAS      0.052      0.170      9.564
           STRESID     -11.254     -2.377     26.330
           ENATGAS     -43.451     -3.754      0.464
           ERESID       64.493      2.217      0.829
           NAT75         0.614      5.040      0.726
           CURT2        -0.133     -1.975      0.983
           AGE1         -0.205     -1.857      0.235
           AGE2         -1.137     -5.346      0.199
           AGE3         -1.044     -5.021      0.251
           CAP1          0.580      2.979      0.321
           CAP2          0.999      4.795      0.224
           PNATGAS^2   -53.534     -2.049      2.635
           PRESID^2    194.028      1.369      2.345
           SIZE^2        0.022      0.600     42.315
           CURTAIL^2    -0.005     -1.131    156.977
           INTENSITY^2  -0.020    -12.090      6.430
           STNATGAS^2    0.002      0.068     91.470
           STRESID^2     0.454      2.546    693.244
           ENATGAS^2    72.809      3.252      0.216
           ERESID^2    -95.490     -2.740      0.688
           PNATGAS^3     8.196      1.501      4.277
           PRESID^3    -50.923     -1.628      3.591
           SIZE^3        0.005      2.272   -275.259
           CURTAIL^3     0.000      1.847   1966.777
           INTENSITY^3   0.000      9.603     16.305
           STNATGAS^3   -0.000     -0.231    874.812
           STRESID^3    -0.006     -2.725  18252.788
           ENATGAS^3   -36.764     -2.759      0.100
           ERESID^3     45.154      3.230      0.571
           PNATGAS*SIZE  0.718      5.741    -10.559
           PRESID*SIZE  -0.556     -3.865     -9.962
           IND22        -1.119     -4.495      0.021
           IND23        -1.411     -5.887      0.045
           IND24        -2.896    -10.925      0.066
           IND25        -0.529     -2.207      0.027
           IND26        -0.305     -1.199      0.027
           IND27        -0.759     -4.153      0.116
           IND28        -0.515     -2.388      0.040
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Estimates from the SWITCH Equation (Continued)

           Variable         ß        T-stat      Mean 
           IND30        -1.015     -5.285      0.052
           IND31        -0.877     -2.294      0.009
           IND32        -1.146     -5.888      0.059
           IND34        -1.176     -6.837      0.115
           IND35        -0.012     -0.075      0.164
           IND36        -1.036     -4.914      0.064
           IND37        -1.373     -5.184      0.024
           IND38        -1.048     -4.136      0.035
           IND39        -0.564     -2.622      0.052
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APPENDIX B

PLANT LEVEL MEANS OF SIZE AND INTENSITY
BY 2-DIGIT INDUSTRY

  Industry                 SIZE         INTENSITY
        Food                     5.88            3.30 
        Textiles                 5.88            5.42 
        Apparel                  0.26            0.85 
        Lumber                   0.65            3.01 
        Furniture                0.68            1.31 
        Paper                   22.80            6.70 
        Printing                 0.28            0.86 
        Chemicals               32.80            6.73 
        Rubber                   2.01            2.82 
        Leather                  1.30            2.11 
        Stone and Clay           9.19            8.57 
        Fabricated Metals        1.22            2.43 
        Machinery                0.61            1.13 
        Electronics              1.35            1.18 
        Transportation          21.94            1.36 
        Instruments              1.17            0.67 
        Miscellaneous            2.46            0.94 
 

SIZE=mean plant size in 10's of millions of BTUs
INTENSITY= thousands of BTUs per 1985 dollar value added.
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