

DØ Regional Analysis Center Concepts

Roadmap of Talk

CHEP 2003 UCSD

March 24-28, 2003

Lee Lueking

- The Mission
- The Resource Potential
- DØ Regional Strategy
- RAC Details
- RAC progress
- Summary and Future

DØ Offsite Analysis Task Force

Official members (and other participants)

Iain Bertram – Lancaster University, UK
Chip Brock, Dugan ONeil – Michigan State University
John Butler – Boston University

n Davies (Rod Walker) - Imperial College United King

Gavin Davies, (Rod Walker) – Imperial College, United Kingdom Amber Boehnlein, David Fagan, Alan Jonckheere, Lee Lueking, Don Petravik, Vicky White, (co-chair) - Fermilab

Nick Hadley (co-chair) - University of Maryland Sijbrand de Jong - University of Nijmegen, The Netherlands

Peter Maettig, (Daniel Wicke, Christian Schmitt) – Wuppertal, Germany

(Christian Zeitnitz) – Mainz, Germany

Pierre Petroff (c0-chair) - Laboratoire de l'Accelerateur Lineaire, France

(Patrice Lebrun) – ccin2p3 in Lyon, France

Jianming Qian – University of Michigan

Jae Yu – University of Texas Arlington

A Complex Mission!

We have a very complex physics mission:

- Billions of recorded triggers
- Dozens of physics analysis areas
- Complex analyses, Precision measurements, Minute signal searches, subtle systematics
 - Understand the underlying event consistent with 5 MeV/c² statistical precision on $M_{\rm W}$
 - Understand the jet energy scale to more precisely measure M_{top}
 - Tag and vertex B mesons in an environment of 5-10 overlapping interactions
- Estimated R2a (through 2004) computing needs for MC, Reconstruction, and Analysis. Needs beyond 2004 are larger still.
 - 4 THz CPU
 - 1.5 PB total data archive

Many Potential Resources, But...

- We have many potential resources
 - Technology and Computing Resources abound.
 - CPU and memory are inexpensive
 - Networking is becoming more pervasive
 - Disk and tape storage is affordable
 - An army of Physicists, Over 600 collaborators, are "available"
- But, they are not all in one place anymore, and they are not really "ours"
 - The resources are distributed around the world at 80 institutions in 18 countries on 4 continents.
 - In most places, the resources are shared with other experiments or organizations
- Management, Training, Logistics, Coordination, Planning, Estimating needs, and Operation are real hard
- Infrastructure and tools needed to pull this all together are essential.

The Good News is ...

There are \$\$\$, €€€, and £££ for computing.

The Rub is...

It is for many projects, LHC, Grid, and multidisciplinary...

so we need to share and be opportunistic

The Overall Game Plan

- Divide and conquer
 - Establish 6-10 geographical/political regions.
 - Establish a Regional Analysis Center (RAC) in each area.
 - Define responsibilities for each region.
- Enable the effective use of all resources
 - Hardware
 - Informational
 - Human
- Lay basic infrastructure now, fine-tune later
- Open all communications channels

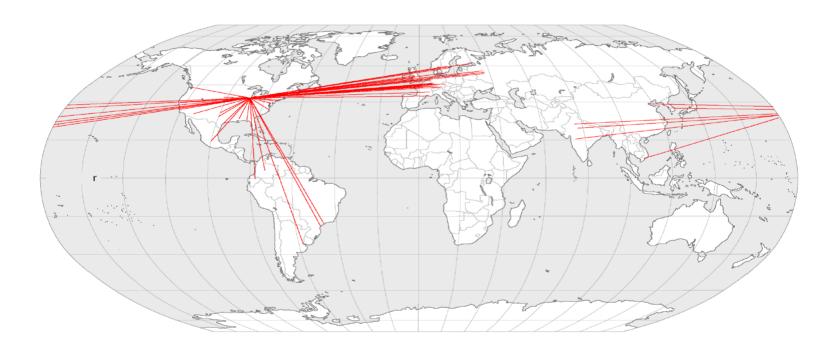
"Without a vision, the people perish" King Solomon - Proverbs

The DØ Process

- 1998: DØ Computing Model- The distributed computing concepts in SAM were embraced by the DØ management. All of DØ 's Monte Carlo was produced at remote centers.

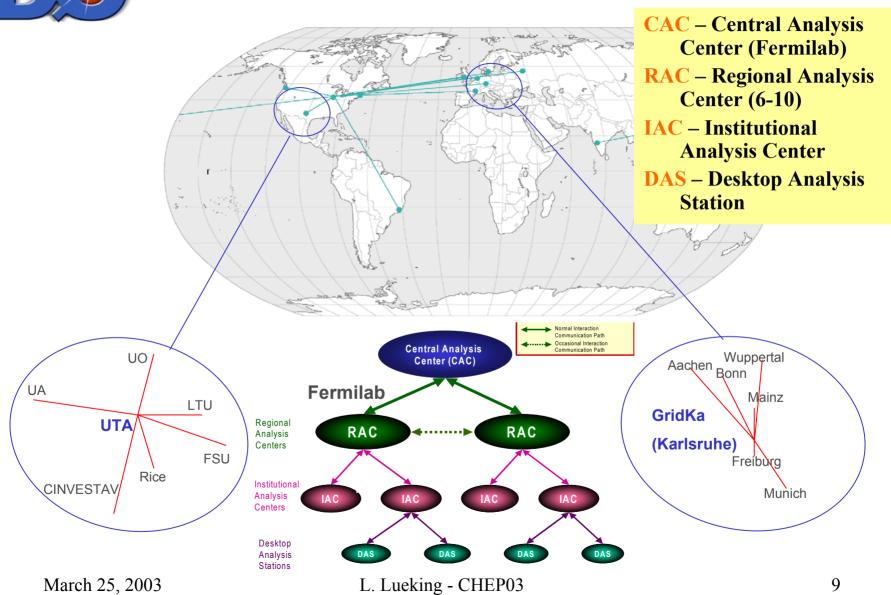
 D0 DH in section 8.
- 2001: D0RACE Remote Analysis Coordination Effort team helped to get the basic DØ infrastructure to the institutions. With this effort, 60% of the DØ sites have official analysis code distributions and 50% have SAM stations.
- 2002: RAC grassroots team Met throughout spring and summer to write a formal document outlining the concepts.*
- 2002: OATF Offsite Analysis Task Force Charged by the Spokespersons to further study the needs of offsite computing and analysis
- DØ Finance committee decides how the collaboration as a whole will contribute remote computing resources to the experiment.
- Plans for MOU's are being made.

*Bertram, et al., "A Proposal for DØ Regional Analysis Centers", DØ Internal Note # 3984, Unpublished(2002)


Why Regions are Important

- 1. Opportunistic use of <u>ALL</u> computing resources within the region
- 2. Management for resources within the region
- 3. Coordination of all processing efforts is easier
- 4. Security issues within the region are similar, CA's, policies...
- 5. Increases the technical support base
- 6. Speak the same language
- 7. Share the same time zone
- 8. Frequent Face-to-face meetings among players within the region.
- 9. Physics collaboration at a regional level to contribute to results for the global level
- 10. A little spirited competition among regions is good

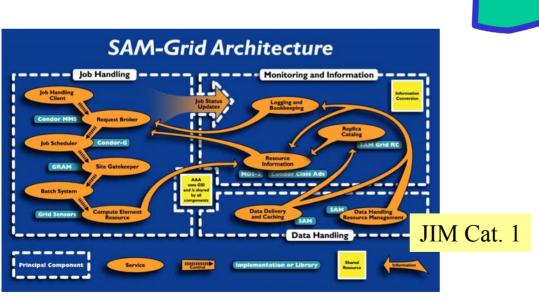
Deployment Model

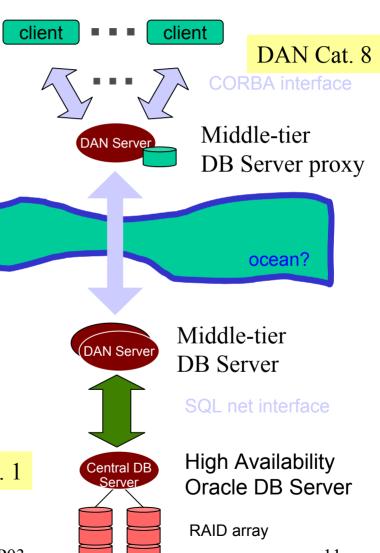

• Fermilab-centric SAM infrastructure is in place, ...

...now we transition to more hierarchical Model \rightarrow

Hierarchical Model

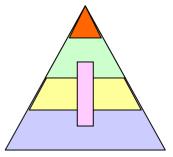
RAC Functionality


- Preemptive caching
 - Coordinated globally
 - All DSTs on disk at the sum of all RAC's
 - All TMB files on disk at all RACs, to support mining needs of the region
 - Coordinated regionally
 - Other formats on disk: Derived formats & Monte Carlo data
- On-demand SAM cache: ~10% of total disk cache


- Archival storage (tape for now)
 - Selected MC samples
 - Secondary Data as needed
- CPU capability
 - supporting analysis, first in its own region
 - For re-reconstruction
 - MC production
 - General purpose DØ analysis needs
- Network to support intraregional, FNAL-region, and inter-RAC connectivity

Required Server Infrastructure

- SAM-Grid (SAM + JIM) Gateway
- Oracle database access servers (DAN)
- Accommodate realities like:
 - -Policies and culture for each center
 - -Sharing with other organizations
 - Firewalls, private networks, et cetera

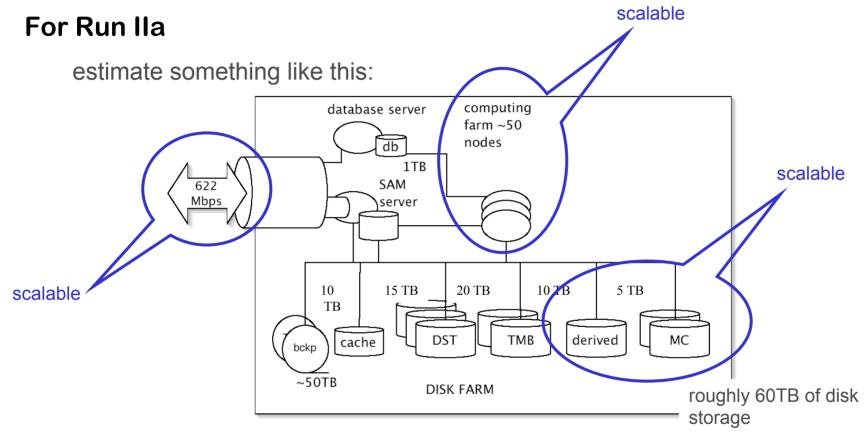

Data Model

Fraction of Data Stored

Data Tier	Size/event (MB)	FNAL Tape	FNAL Disk	Remote Tape	Remote Disk
RAW	0.25	1	0.1	0	0
Reconstructed	0.50	0.1	0.01	0.001	0.005
DST	0.15	1	0.1	0.1	0.1
Thumbnail	0.01	4	1	1	2
Derived Data	0.01	4	1	1	1
MC D0Gstar	0.70	0	0	0	0
MC D0Sim	0.30	0	0	0	0
MC DST	0.40	1	0.025	0.025	0.05
MC TMB	0.02	1	1	0	0.1
MC PMCS	0.02	1	1	0	0.1
MC root-tuple	0.02	1	0	0.1	0
Totals RIIa/RIIb		1.5PB/ 8 PB	60TB/ 800 TB	~50TB	~50TB

per Region

Data Tier Hierarchy


Metadata ~0.5TB/year

Numbers are rough estimates

the cpb model presumes: 25Hz rate to tape, Run IIa 50Hz rate to tape, Run IIb events 25% langer, Run IIb

Summary of the minimum RAC

- This alone adds > 500 cpu's, deployed in an efficient way where the physicists are
- IAC's should have have considerable additional capability
- Allain host countries.

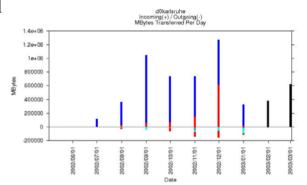
Characterizing RAC's

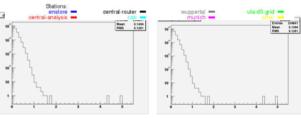
Hardware needed to achieve various levels of RAC utility

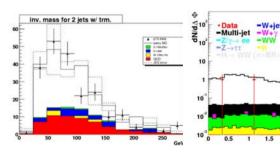
Hardware	Good	Better	Best
Network Connectivity	1 Gbps	1 Gbps	10 Gbps
Disk Cache	60 TB	80 TB	100 TB
Archival Storage	0	100 TB	500 TB
HA Servers	1	2	4
Processing CPU's	50 x (Clock Rate de Jour)	100 x (Clock Rate de Jour)	200 x (Clock Rate de Jour)
Estimated Cost	\$250k	\$500k	\$1M

This is the Run IIa investment

Challenges


- Operation and Support
 - Ongoing shift support: 24/7 "helpdesk" shifters (trained physicists)
 - SAM-Grid station administrators: Expertise based on experience installing and maintaining the system
 - Grid Technical Team: Experts in SAM-Grid, DØ software + technical experts from each RAC.
 - Hardware and system support provided by centers
- Production certification
 - All DØ MC, reconstruction, and analysis code releases have to be certified
- Special requirements for certain RAC's
 - Forces customization of infrastructure
 - Introduces deployment delays
- Security issues, grid certificates, firewalls, site policies.




RAC Prototype: GridKa

- Overview: Aachen, Bonn, Freiburg, Mainz, Munich, Wuppertal
 - Location: Forschungszentrum Karlsruhe (FZK)
 - Regional Grid development, data and computing center. Established: 2002
 - Serves 8 HEP experiments: Alice, Atlas, BaBar, CDF, CMS, Compass, DØ, and LHCb
- Political Structure: Peter Mattig (wuppertal) FNAL rep. to Overview Board, C. Zeitnitz (Mainz), D. Wicke (Wuppertal) Tech. Advs. Board reps.
- Status: Auto caching Thumbnails since August
 - Certified w/ physics samples
 - Physics results for Winter conferences
 - Some MC production done there
 - Very effectively used by DØ in Jan and Feb.
- Resource Overview: (summarized on next page)
 - Compute: 95 x dual PIII 1.2GHz, 68 x dual Xeon 2.2 GHz. D0 requested 6%. (updates in April)
 - Storage: DØ has 5.2 TB cache. Use of % of ~100TB MSS. (updates in April)
 - Network: 100Mb connection available to users.
 - Configuration: SAM w/ shared disk cache, private network, firewall restrictions, OpenPBS, Redhat 7.2, k 2.418, D0 software installed.

Summary of Current & Soon-to-be RACs

RAC	IAC's	CPU ΣHz (Total*)	Disk (Total*)	Archive (Total*)	Schedule
GridKa @FZK	Aachen, Bonn, Freiburg, Mainz, Munich, Wuppertal,	52 GHz (518 GHz)	5.2 TB (50 TB)	10 TB (100TB)	Established as RAC
SAR @UTA (Southern US)	AZ, Cinvestav (Mexico City), LA Tech, Oklahoma, Rice, KU, KSU	160 GHz (320 GHz)	25 TB (50 TB)		Summer 2003
UK @tbd	Lancaster, Manchester, Imperial College, RAL	46 GHz (556 GHz)	14 TB (170 TB)	44 TB	Active, MC production
IN2P3 @Lyon	CCin2p3, CEA-Saclay, CPPM-Marseille, IPNL-Lyon, IRES-Strasbourg, ISN- Grenoble, LAL-Orsay, LPNHE-Paris	100 GHz	12 TB	200 TB	Active, MC production
DØ @FNAL (Northern US)	Farm, cab, clued0, Central- analysis	1800 GHz	25 TB	1 PB	Established as CAC

^{*}Numbers in () represent totals for the center or region, other numbers are $D\boldsymbol{\varnothing}$'s current allocation.

From RAC's to Riches

Summary and Future

- We feel that the RAC approach is important to more effectively use remote resources
- Management and organization in each region is as important as the hardware.
- However...
 - Physics group collaboration will transcend regional boundaries
 - Resources within each region will be used by the experiment at large (Grid computing Model)
 - Our models of usage will be revisited frequently.
 Experience already indicates that the use of thumbnails differs from that of our RAC model.
 - No RAC will be completely formed at birth.
- There are many challenges ahead. We are still learning...