On Aerial Navigation

by Sir George Cayley, Bart. Brompton, Sept. 6, 1809

Nicholson's Journal of Natural Philosophy November, 1809

SIR, I observed in your Journal for last month, that a watchmaker at Vienna, of the name of Degen, has succeeded in raising himself in the air by mechanical means. I waited to receive your present number, in expectation of seeing some farther account of this experiment, before I commenced transcribing the following essay upon aerial navigation, from a number of memoranda which I have made at various times upon this subject. I am induced to request your publication of this essay, because I conceive, that, in stating the fundamental principles of this art, together with a considerable number of facts and practical observations, that have arisen in the course of much attention to this subject, I may be expediting the attainment of an object, that will in time be found of great importance to mankind; so much so, that a new era in society will commence, from the moment that aerial navigation is familiarly realized.

It appears to me, and I am more confirmed by the success of the ingenious Mr. Degen, that nothing more is necessary, in order to bring the following principles into common practical use, than the endeavours of skilful artificers, who may vary the means of execution, till those most convenient are attained.

Since the days of Bishop Wilkins the scheme of flying by artificial wings has been much ridiculed; and indeed the idea of attaching wings to the arms of a man is ridiculous enough, as the pectoral muscles of a bird occupy more than two-thirds of its whole muscular strength, whereas in man the muscles, that could operate upon wings thus attached, would probably not exceed one-tenth of his whole mass. There is no proof that, weight for weight, a man is comparatively weaker than a bird; it is therefore probable, if he can be made to exert his whole strength advantageously upon a light surface similarly proportioned to his weight as that of the wing to the bird, that he would fly like the bird, and the ascent of Mr. Degen is a sufficient proof of the truth of this statement.

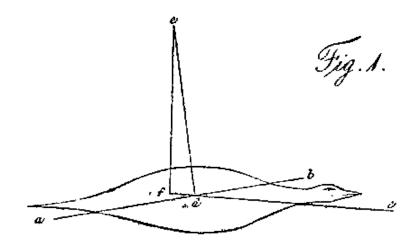
The flight of a strong man by great muscular exertion, though a curious and interesting circumstance, in as much as it will probably be the first means of ascertaining this power, and supplying the basis whereon to improve it, would be of little use. I feel perfectly confident, however, that this noble art will soon be brought home to man's general convenience, and that we shall be able to transport ourselves and families, and their goods and chattels, more securely by air than by water, and with a velocity of from 20 to 100 miles per hour.

^{*} Editor's Note: The account of Degen's "flight" with strap-on wings and the support of a balloon prompted Sir George Cayley to record his research results.

To produce this effect, it is only necessary to have a first mover, which will generate more power in a given time, in proportion to its weight, than the animal system of muscles.

The consumption of coal in a Boulton and Watt's steam engine is only about 5 1/2 lbs. per hour for the power of one horse. The heat produced by the combustion of this portion of inflammable matter is the sole cause of the power generated; but it is applied through the intervention of a weight of water expanded into steam, and a still greater weight of cold water to condense it again. The engine itself likewise must be massy enough to resist the whole external pressure of the atmosphere, and therefore is not applicable to the purpose proposed. Steam engines have lately been made to operate by expansion only, and those might be constructed so as to be light enough for this purpose, provided the usual plan of a large boiler be given up, and the principle of injecting a proper charge of water into a mass of tubes, forming the cavity for the fire, be adopted in lieu of it. The strength of vessels to resist internal pressure being inversely as their diameters, very slight metallic tubes would be abundantly strong, whereas a large boiler must be of great substance to resist a strong pressure. The following estimate will show the probable weight of such an engine with its charge for one hour.

	lb.
The engine itself from 90 to	100
Weight of inflamed cinders in a cavity presenting about 4 feet surface of tube	25
Supply of coal for one hour	6
Water for ditto, allowing steam of one atmosphere to be 1/1800 the specific gravity of water	32


I do not propose this statement in any other light than as a rude approximation to truth, for as the steam is operating under the disadvantage of atmospheric pressure, it must be raised to a higher temperature than in Messrs. Boulton and Watt's engine; and this will require more fuel; but if it take twice as much, still the engine would be sufficiently light, for it would be exerting a force equal to raising 550 lb. one foot high per second, which is equivalent to the labour of six men, whereas the whole weight does not much exceed that of one man.

It may seem superfluous to inquire farther relative to first movers for aerial navigation; but lightness is of so much value in this instance, that it is proper to notice the probability that exists of using the expansion of air by the sudden combustion of inflammable powders or fluids with great advantage. The French have lately shown the great power produced by igniting inflammable powders in close vessels; and several years ago an engine was made to work in this country in a similar manner, by the inflammation of spirit of tar. I am not acquainted with the name of the person who invented and obtained a patent for this engine, but from some minutes with which I was favoured by Mr. William Chapman, civil engineer in Newcastle, I find that 80 drops of the oil of tar raised eight hundred weight to the

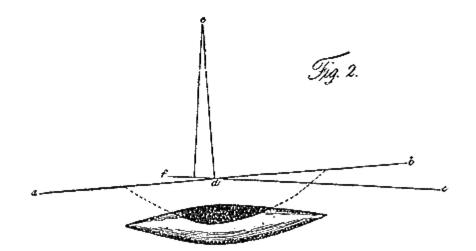
height of 22 inches; hence a one horse power many consume from 10 to 12 pounds per hour, and the engine itself need not exceed 50 pounds weight. I am informed by Mr. Chapman, that this engine was exhibited in a working state to Mr. Rennie, Mr. Edmund Cartwright, and several other gentlemen, capable of appreciating its powers; but that it was given up in consequence of the expense attending its consumption being about eight times greater than that of a steam engine of the same force.

Probably a much cheaper engine of this sort might be produced by a gas-light apparatus, and by firing the inflammable air generated, with a due portion of common air, under a piston. Upon some of these principles it is perfectly clear, that force can be obtained by a much lighter apparatus than the muscles of animals or birds, and therefore in such proportion may aerial vehicles be loaded with inactive matter. Even the expansion steam engine doing the work of six men, and only weighing equal to one, will as readily raise five men into the air, as Mr. Degen can elevate himself by his own exertions; but by increasing the magnitude of the engine, 10, 50, or 500 men may equally well be conveyed; and convenience alone, regulated by the strength and size of materials, will point out the limit for the size of vessels in aerial navigation.

Having rendered the accomplishment of this object probable upon the general view of the subject, I shall proceed to point out the principles of the art itself. For the sake of perspicuity I shall, in the first instance, analyze the most simple action of the wing in birds, although it necessarily supposes many previous steps. When large birds, that have a considerable extent of wing compared with their weight, have acquired their full velocity, it may frequently be observed, that they extend their wings, and without waving them, continue to skim for some time in a horizontal path. Fig. I, in the Plate, represents a bird in this act.

Let *a b* be a section of the plane of both wings opposing the horizontal current of the air (created by its own motion) which may be represented by the line *c d*, and is the measure of the velocity of the bird. The angle *b d c* can be increased at the will of the bird, and to preserve a perfectly horizontal path, without the wing being

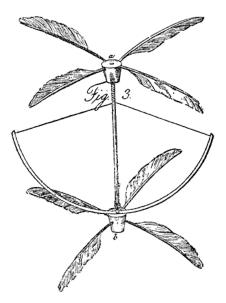
waved, must continually be increased in a complete ratio, (useless at present to enter into) till the motion is stopped altogether; but at one given time the position of the wings may be truly represented by the angle b d c. Draw d e perpendicular to the plane of the wings, produce the line e d as far as required, and from the point e, assumed at pleasure in the line d e, let fall e f perpendicular to d f. Then d e will represent the whole force of the air under the wing; which being resolved into the two forces e f and f d, the former represents the force that sustains the weight of the bird, the latter the retarding force by which the velocity of the motion, producing the current c d, will continually be diminished. e f is always a known quantity, being equal to the weight of the bird, and hence f d is also known, as it will always bear the same proportion to the weight of the bird, as the sine of the angle b d e bears to its cosine, the angles d e f, and b d c, being equal. In addition to the retarding force thus received is the direct resistance, which the bulk of the bird opposes to the current. This is a matter to be entered into separately from the principle now under consideration; and for the present may be wholly neglected, under the supposition of its being balanced by a force precisely equal and opposite to itself.

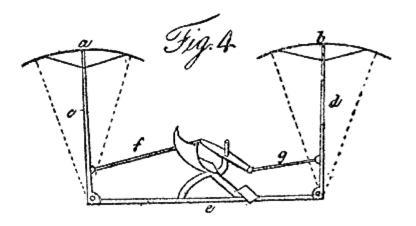

Before it is possible to apply this basis of the principle of flying in birds to the purposes of aerial navigation, it will be necessary to encumber it with a few practical observations. The whole problem is confined within these limits, viz. To make a surface support a given weight by the application of power to the resistance of air. Magnitude is the first question respecting the surface. Many experiments have been made upon the direct resistance of air, by Mr. Robins, Mr. Rouse, Mr. Edgeworth, Mr. Smeaton, and others. The result of Mr. Smeaton's experiments and observations was, that a surface of a square foot met with a resistance of one pound, when it travelled perpendicularly to itself through air at a velocity of 21 feet per second. I have tried many experiments upon a large scale to ascertain this point. The instrument was similar to that used by Mr. Robins, but the surface used was larger, being an exact square foot, moving round upon an arm about five feet long, and turned by weights over a pulley. The time was measured by a stop watch, and the distance travelled over in each experiment was 600 feet. I shall for the present only give the result of many carefully repeated experiments, which is, that a velocity of 11.538 feet per second generated a resistance of 4 ounces; and that a velocity of 17.16 feet per second gave 8 ounces resistance. This delicate instrument would have been strained by the additional weight necessary to have tried the velocity generating a pressure of one pound per square foot; but if the resistance be taken to vary as the square of the velocity, the former will give the velocity necessary for this purpose at 23.1 feet, the latter 24.28 per second. I shall therefore take 23.6 feet as somewhat approaching the truth.

Having ascertained this point, had our tables of angular resistance been complete, the size of the surface necessary for any given weight would easily have been determined. Theory, which gives the resistance of a surface opposed to the same current in different angles, to be as the squares of the sine of the angle of incidence, is of no use in this case; as it appears from the experiments of the French Academy, that in acute angles, the resistance varies much more nearly in the direct ratio of the sines, than as the squares of the sines of the angles of incidence. The flight of birds will

prove to an attentive observer, that, with a concave wing apparently parallel to the horizontal path of the bird, the same support, and of course resistance, is obtained. And hence I am inclined to suspect, that, under extremely acute angles, with concave surfaces, the resistance is nearly similar in them all. I conceive the operation may be of a different nature from what takes place in larger angles, and may partake more of the principle of pressure exhibited in the instrument known by the name of the hydrostatic paradox, a slender filament of the current is constantly received under the anterior edge of the surface, and directed upward into the cavity, by the filament above it, in being obliged to mount along the convexity of the surface, having created a slight vacuity immediately behind the point of separation. The fluid accumulated thus within the cavity has to make its escape at the posterior edge of the surface, where it is directed considerably downward; and therefore has to overcome and displace a portion of the direct current passing with its full velocity immediately below it; hence whatever elasticity this effort requires operates upon the whole concavity of the surface, excepting a small portion of the anterior edge. This may or may not be the true theory, but it appears to me to be the most probable account of a phenomenon, which the flight of birds proves to exist.

Six degrees was the most acute angle, the resistance of which was determined by the valuable experiments of the French Academy; and it gave 4/10 of the resistance, which the same surface would have received from the same current when perpendicular to itself. Hence then a superficial foot, forming an angle of six degrees with the horizon, would, if carried forward horizontally (as a bird in the act of skimming) with a velocity of 23.6 feet per second, receive a pressure of 4/10 of a pound perpendicular to itself. And, if we allow the resistance to increase as the square of the velocity, at 27.3 feet per second it would receive a pressure of one pound. I have weighed and measured the surface of a great many birds, but at present shall select the common rook (corvus frugilegus) because its surface and weight are as nearly as possible in the ratio of a superficial foot to a pound. The flight of this bird, during any part of which they can skim at pleasure, is (from an average of many observations) about 34.5 feet per second. The concavity of the wing may account for the greater resistance here received, than the experiments upon plain surfaces would indicate. I am convinced, that the angle made use of in the crow's wing is much more acute than six degrees; but in the observations, that will be grounded upon these data, I may safely state, that every foot of such curved surface, as will be used in aerial navigation, will receive a resistance of one pound, perpendicular to itself, when carried through the air in an angle of six degrees with the line of its path, at a velocity of about 34 or 35 feet per second.


Let *a b*, fig. 2, represent such a surface or sail made of thin cloth, and containing about 200 square feet (if of a square form the side will be a little more than 14 feet); and the whole of a firm texture. Let the weight of the man and the machine be 200 pounds. Then if a current of wind blew in the direction *c d*, with a velocity of 35 feet per second, at the same time that a cord represented by *c d* would sustain a tension of 21 pounds, the machine would be suspended in the air, or at least be within a few ounces of it (falling short of such support only in the ratio of the sine of the angle of 94 degrees compared with radius; to balance which defect, suppose a little ballast to be thrown out) for the line d e represents a force of 200 pounds, which, as before, being resolved into *d f* and *f e*, the former will represent the resistance in the direction of the current, and the latter that which sustains the weight of the machine. It is perfectly indifferent whether the wind blow against the plane, or the plane be driven with an equal velocity against the air. Hence, if this machine were pulled along by a cord *c d*, with a tension of about 21 pounds, at a velocity of 35 feet per second, it would be suspended in a horizontal path; and if in lieu of this cord any other propelling power were generated in this direction, with a like intensity, a similar effect would be produced. If therefore the waft of surfaces advantageously moved, by any force generated within the machine, took place to the extent required, aerial navigation would be accomplished. As the acuteness of the angle between the plane and current increases, the propelling power required is less and less. The principle is similar to that of the inclined plane, in which theoretically one pound may be made to sustain all but an infinite quantity; for in this case, if the magnitude of the surface be increased ad infinitum, the angle with the current may be diminished, and consequently the propelling force, in the same ratio. In practice, the extra resistance of the car and other parts of the machine, which consume a considerable portion of power, will regulate the limits to which this principle, which is the true basis of aerial navigation, can be carried; and the perfect ease with which some birds are suspended in long horizontal flights, without one waft of their wings, encourages the idea, that a slight power only is necessary.


As there are many other considerations relative to the practical introduction of this machine, which would occupy too much space for any one number of your valuable Journal, I propose, with your approbation, to furnish these in your subsequent numbers; taking this opportunity to observe, that perfect steadiness, safety, and steerage, I have long since accomplished upon a considerable scale of magnitude; and that I am engaged in making some farther experiments upon a machine I constructed last summer, large enough for aerial navigation, but which I have not had an opportunity to try the effect of, excepting as to its proper balance and security. It was very beautiful to see this noble white *bird* sail majestically from the top of a hill to any given point of the plane below it, according to the set of its

rudder, merely by its own weight, descending in an angle of about 18 degrees with the horizon. The exertions of an individual, with other avocations, are extremely inadequate to the progress, which this valuable subject requires. Every man acquainted with experiments upon a large scale well knows how leisurely fact follows theory, if ever so well founded. I do therefore hope, that what I have said, and have still to offer, will induce others to give their attention to this subject; and that England may not be backward in rivalling the continent in a more worthy contest than that of arms.

As it may be an amusement to some of your readers to see a machine rise in the air by mechanical means, I will conclude my present communication by describing an instrument of this kind, which any one can construct at the expense of ten minutes labour. a and b, fig. 3, are two corks, into each of which are inserted four wing feathers from any bird, so as to be slightly inclined like the sails of a windmill, but in opposite directions in each set. A round shaft is fixed in the cork a, which ends in a sharp point. At the upper part of the cork b is fixed a whalebone bow, having a small pivot hole in its centre, to receive the point of the shaft. The bow is then to be strung equally on each side to the upper portion of the shaft, and the little machine is completed. Wind up the string by turning the flyers different ways, so that the spring of the bow may unwind them with their anterior edges ascending; then place the cork with the bow attached to it upon a table, and with a finger on the upper cork press strong enough to prevent the string from unwinding, and taking it away suddenly, the instrument will rise to the ceiling. This was the first experiment I made upon this subject in the year 1796. If in lieu of these small feathers large planes, containing together 200 square feet, were similarly placed, or in any other more convenient position, and were turned by a man, or first mover of adequate power, a similar effect would be the consequence, and for the mere purpose of ascent this is perhaps the best apparatus; but speed is the great object of this invention, and this requires a different structure.

P. S. In lieu of applying the continued action of the inclined plane by means of the rotative motion of flyers, the same principle may be made use of by the alternate motion of surfaces backward and forward; and although the scanty description hitherto published of Mr. Degen's apparatus will scarcely justify any conclusion upon the subject; yet as the principle above described must be the basis of every engine for aerial navigation by mechanical means, I conceive, that the method adopted by him has been nearly as follows. Let A and B, fig. 4, be two surfaces or parachutes, supported upon the long shafts C and D, which are fixed to the ends of the connecting beam E, by hinges. At E, let there be a convenient seat for the aeronaut, and before him a cross bar turning upon a pivot in its centre, which being connected with the shafts of the parachutes by the rods F and G, will enable him to work them alternately backward and forward, as represented by the dotted lines. If the upright shafts be elastic, or have a hinge to give way a little near their tops, the weight and resistance of the parachutes will incline them so, as to make a small angle with the direction of their motion, and hence the machine rises. A slight heeling of the parachutes toward one side, or an alteration in the position of the weight, may enable the aeronaut to steer such an apparatus tolerably well; but many better constructions may be formed, for combining the requisites of speed, convenience and steerage. It is a great point gained, when the first experiments demonstrate the practicability of an art; and Mr. Degen, by whatever means he has effected this purpose, deserves much credit for his ingenuity.

