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SUMMARY

A compressible linear stability theory is presented for nonparallel
three-dimensional boundary-layer flows, taking into account the normal
velocity component as well as the streamwise and spanwise variations of
the basic flow. The method of multiple scales is used to account for the
nonparallelism of the basic flow, and equations are derived for the spatial
evolution of the disturbance amplitude and wavenumber. The numerical proce-

dure for obtaining the solution of the nonparallel problem is outlined.



I. INTRODUCTION

For laminar—flow vehicles, a high performance is achieved with
respect to range and economy of vehcile operation by reducing the friction
drag. The design of such vehicles 1is strongly influenced by the stability
considerations of the boundary layer. To maintain laminar flow with
minimum external power, an optimum amount of suction, or cooling (in air),
or heating (in water) is required. For the design of swept LFC wings of
transonic aircrafts, this optimization process needs accurate computations
of the stability characteristics of three-dimensional, compressible
boundary-layer flows.

An extensive treatment of the stability theory for compressible
flows 1s given by Mack (1969) for two-dimensional mean flows, where the
disturbance can be two or three-dimensional. These stability theories
treat the mean flows as quasi-parallel. Some incomplete attempts to
account for the nonparallel flow effects by including either the normal or
some of the streamwise derivatives of the mean flow were given by Brown
(1967), Gunness (1968), and Boehman (1971).

For two-dimensional heated boundary-layer flows, El-Hady (1978)
and El-Hady and Nayfeh (1978) introduced a complete nonparallel stability
theory to account for the rate of heat transfer between the fluid and the
wall. The nonparallel stability results are in better agreement with the
heated water experimental data of Strazisar et al (1977) and Strazisar and

Reshotko (1978), than the parallel results of Lowell (1974).



Recently, El-Hady and Nayfeh (1979) analyzed the effect of the non-
parallelism of the mean flow on the stability characteristics for two-
dimensional subsonic and supersonic flows. Results calculated by the non-
parallel stability theory are in better agreement with the supersonic
experimental data of Laufer and Vrebalovich (1960) and Kendall (1975) than

the results calculated by the parallel theory of Mack (1969).

The propagation of three-dimensional disturbances in three-dimensional
compressible boundary layers was numerically investigated by Mack (1979) and
Lekoudis (1979). Their analysis was for parallel flows over an infinite
sweptback wing. Their results show that the effects of compressibility are
negligible near the leading and trailing edges (regions of cross—-flow type
instability). However, away from the leading and trailing edges (regions
of T-S8 type instability), the maximum amplification rate is reduced and
the most unstable-wave orientation is considerably changed due to compres-
sibility effects,

In this article, a compressible linear stability theory is presented
for three~dimensional disturbance in a nonparallel three-dimensional
boundary-layer flows. Section II contains the formulation of the problem.
Section III contains the method of solution for the zeroth and first-order

problems. The computational procedures are outlined in Section IV.



IT. FORMULATION OF THE STABILITY THEORY

We consider the spatial, threé—dimensional stability of laminar
compressible three-dimensional steady viscous flows to small-amplitude
disturbances.

The flow field is described by the Navier-Stokes, energy, and state
equations. Lengths, velocities, and time are made dimensionless using a
suitable reference length L*, the freestream velocity Ui and L*/Ui,
respectively. The pressure is made dimensionless using piUiz. The
temperature, density, specific heats, viscosity, and thermal conductiv-

ity are made dimensionless using their corresponding freestream values.

2.1 Disturbance Equations

To study the linear stability of a steady three-dimensional, bound-
ary-layer flow (basic flow), we superpose a small time dependent disturb-
ance on each mean-flow, thermodynamic, and transport quantity. Thus, we
let

q(x,y,z,t) = Q (x,y,2) + q(x,y,z,t) (1)
where Qs(x,y,z) is a three-dimensional basic-state quantity and q(x,y,z,t)
is a three-dimensional unsteady disturbance quantity. Here, q stands for
the velocity components (u, v, and w), temperature T, pressure p, density
p, and viscosity u. Substituting (1) into equations governing the flow
field, subtracting the basic-state quantities, and linearizing the result-

ing equations in the q's, we obtain the following disturbance equations:
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and the state equation., Here R = peUeL/Ue is the Reynolds number,

Pr = C_ u /k_ is the Prandtl number, Ec = U2/C_ T is the Eckert number,
Pe e e e P e

A~

and ¢, the perturbation dissipation function, is defined as
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Moreover, r and m are given by
r=20+,m=20-1n (8)

where £ is the ratio of the second to the first viscosity coefficients.
Equations (2)-(6) represent the stability equations for a three-

dimensional disturbance in a three-dimensional basic flow.



2.2 Boundary Conditions

The analysis presented here is applicable to cases with suction or

blowing as well as cases with uniform or non-uniform wall heating or

cooling. The stability problem is completed by the specification of the

appropriate initial and boundary conditions. We consider next the bound-

At the wall, we require the vanishing of the component of the relative
velocity of the fluid/solid surface that is parallel to the interface, even
in the region of perforations. This is a reasonable assumption provided
that the percentage of the permeable area is small and most of the flow
there is directed normal to the wall. The normal velocity and thermal
boundary conditions at the wall need careful consideration.

For an impermeable wall, both the mean and disturbance velocities
normal to the surface must vanish, whereas for a permeable wall this is
not the case. The mean normal velocity component 1is not zero. For dif-
ferent disturbance normal velocities at the wall, Gaponov (1971, 1975)
showed a destabilizing effect of a nonzero value for the normal component
of the disturbance velocity at the wall. His results are based on the
calculation of the neutral stability curves. Such curves are not directly
related to transition. Moreover, the boundary condition used by Gaponov
is not of a practical application. Of more interest are the results of
Lekoudis (1978), who examined the effect of the normal component of the
disturbance velocity on the growth rates of disturbances. This boundary
condition is given in the form of an admittance calculated for different
configurations. He concluded that the condition of zero normal velocity
at the wall is a reasonable approximation when the surface permeability

is very small.



The thermal boundary condition for the disturbances needs an analysis
of the heat conduction problem in the region very close to the wall (e.g.,
Dunn and Lin, 1955). This analysis results in a thermal boundary condition

for the disturbance in the form

9T
§;(O)+gT(0)=0

where g is a constant that depends on the disturbance frequency, and the
physical properties of the liquid and the adjacent solid wall. This con-
dition holds for very low frequencies because the thermal fluctuations can
penetrate large distances into the solid wall. On the other hand, for
very high frequencies, the thermal inertia of the solid makes the thermal
fluctuations die out in the solid very close to the surface, and the wall
remains at the temperature of the basic flow. 1In this case, the condition
T(0) = 0 is a very accurate approximation.

In the freestream, it is assumed that all disturbance quantities die
out for subsonic disturbances and satisfy a radiation condition for super-
sonic disturbances. For boundary layers in subsonic flows, disturbances
have amplitudes that decay exponentially in the freestream. For boundary
layers in supersonic flows, we restrict our analysis to subsonic disturb-
ances, that is to disturbances that move subsonically with respect to the
freestream. The amplitudes of these disturbances decay also exponentially
in the freestream.

In this analysis, we consider walls of small permeability and subsonic
disturbances of sufficiently high frequencies. With these assumptions, the
disturbance boundary conditions become

u=v=w=T=0aty=290 (9)

u,v,w,T > 0 as y » @ (10)



2.3 Nonparallel-Flow Considerations

We consider weakly nonparallel flows. Thus, to account for the non-
parallelism of the mean flow, we require that all mean-flow variables be
weak functions of the streamwise and spanwise positions. Moreover, we
require that the normal velocity component be small compared with the other
velocity components. These assumptions are expressed mathematically by

writing the mean-flow variables in the form
u = Us(xi,y,zl), v, = EVs(xl,y,zl), WS = Ws(xl,y,zl),

P = Ps(xl’zl)’ T = TS(XI,YJZ‘) (]-l)

s

(12)
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and € is a small dimensionless parameter characterizing the nonparallelism
of the mean flow. In the parallel-flow approximation, Vg = O and all

variables in Eqs. (11) are independent of x, and z,. The main idea behind

1
the nonparallel-flow analysis is to make a perturbation about the parallel-

flow solution (Bouthier, 1973; Gaster, 1974; Nayfeh et al, 1974). The method of
multiple scales 1is used to effect this perturbation. Accordingly,

different streamwise scales x, x z, and z, are introduced. The fast

1°
scales x and z are used to describe the relatively rapid streamwise and
spanwise variations of the traveling wave disturbance. The slow scales
X, and z, are used to describe the relatively slow variations of the mean-

flow quantities’, the disturbance wavenumber, the growth rate, and the

amplitude.



ITI. METHOD OF SOLUTION

To determine an approximate solution to Eqs. (2)-(11), we use the
method of multiple scales and seek a first-order expansion for the disturb-
ance variables u, v, w, p, and T in the form of a traveling harmonic wave,

that is

q(x,y,2z,,t;e) = [qo(xl,y,zl) + eqy(xy,y,2y) + . . . ]exp(i@) (13)

where the phase function € is defined by

->

Ve =K, = [ao(xl,zl), Bo(x1’21)] (14a)
30
=== (14b)

Here o, and B, are the quasi-parallel components of the wavenumber vector
e » - . .
Ky inthe x and z directions and w is the circular frequency.

For the case of quasi-parallel spatial stability w is real and o,

and B, are complex, while for the case of quasi-parallel temporal stability,
o, and BO are real and w is complex. For the general case, 0,, B,, and w
are complex. The present study is limited to spatial stability so that w

is a known real quantity.

The viscosity disturbance is related to the temperature disturbance by

dus

dT
s

u(x,,y,z,,t;e) = T(x,,y,2z,,t;€) (15)

while the density disturbance is related to the temperature disturbance

by the state equation.



Substituting Eqs. (13)-(15) into Eqs. (2)-(6), transforming the time and
spatial derivatives from t, x, and z to 8, x,;, z,, and equating the
coefficients of €” and € on both sides, we obtain problems describing the
q, and q, disturbance quantities. These problems are referred to as the
zeroth and first-order problems. They are given next for the physical
problem of air boundary layer treated as perfect gas.

3.1 The Zeroth-Order Problem

Substituting (13)-(15) into (2)-(11) and equating the coefficients
of €® on both sides, we obtain
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The operators L,-L, correspond to the continuity, x-momentum,

y-momentum, z-momentum, and energy equations, respectively.
Equations (16)-(22) constitute an eigenvalue problem that is

solved numerically. The numerical solution is discussed in the next

section, and the solution of Eqs. (16)-(22) can be expressed in the form

uy = A(xy,2y) gy (x1,y,2,) (23a)
vy = A(xy,2,) T3 (xy,y,21) (23b)
P, = Alx,,z) ¢, (x,,y,2z,) (23c)
T, = A(x,,z,) ¢ (x,,y,2,) (23d)
w = A(x,,2,) 5, (xy,y,2,) (23e)

The amplitude function A(x,,z;) is determined by imposing the solvability

condition at the next level of approximation.

3.2 The First-Order Problem

Substituting (13)-(15) into Eqs. (2)-(11) and equating the coefficients

of € on both sides, we obtain

Li(ul,vl,wl,Pl,Tl) = I, for 1 =1,2, . ., 5 (24)
u =v, =w =T =0 at y = 0 (25)
u;,vy,wy, Ty, > 0 as y + @ (26)

where the operators Li-Ls are defined by Eqs. (16)-(20) and I;-Is are the
inhomogeneous terms in the continuity, X-momentum, z-momentum, and energy

equations, respectively. These inhomogeneous terms reflect the effects of

13



the streamwise and spanwise variations of the disturbance amplitude, the
normal basic-velocity component and the streamwise and spanwise variations

of the wavenumber. Using Eq. (23), these inhomogeneous terms are defined

by
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The inhomogeneous Eqs. (24)-(26) have a solution if, and only if, a
solvability condition is satisfied. This condition demands the inhomo-

geneous terms be orthogonal to every solution of the adjoint homogeneous
problem. In the next section, we obtain equations for the modulation of
the wave amplitude and the wavenumber with position using the solvability

condition.



IV. COMPUTATIONAL PROCEDURE

The zeroth-order stability problem defined by Eqs. (16)-(22) is
reduced to the solution of the following set of eight first-order differen-

tial equations with eight homogeneous boundary conditions

820 8
—t - 5 :Zg for i =1, 2, ., 8 (32)
ay =1 373

Zor = Zog3 = Zgs = Zg7 = 0 at y = 0 (33)
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oT ow
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and the a,. are the elements of 8x8 variable-coefficient matrix. The

nonzero elements of this matrix are
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where

X = 1/[5‘— + iryMZ(aOUS + BoW, - ®)]
S

Equations (32)-(34) constitute an eigenvalue problem and it has nontrivial

solutions only for certain combinations of the parameters 0,, By, w and R.

4.1 Eigenvalues and Vectors

OQutside the boundary layer (at y = Yo > §, where § is the boundary-
layer thickness), the mean~flow quantities are independent of y and the
nonzero elements of the coefficient matrix [aij] given by Eq. (32) are

constants. They become

ajp, =1, 321 = iR(ag + CBy - w) + a% + Bg,

824 = iRog - fYMzao(ao + CBO = w)s

3,5 = fop(op + CBy - w), 331 = - i0g, A3y = = iYMZ(@o + CBy - w),
835 = i(op + CBy - w), 337 = - 1By, 842 = — iXQo,

Ay = - x[iR(OLo + CBy - w) + af + 83] , aye = ixrloy, + CBy - w),
Qyg = ~ iXBo, 8sg = 1, Agy = — iRPr(y - 1)1»12(&0 + CBy - w),

455 iRPr (o + CBo - w) + aZ + B%, 8y = iRBg - fYMzﬁo(ao + CBp - W),

~ ~

dgs = fRo (g + CBy = W), dg7 = d21



where

X = 1/[R + iryMz(ao + CBy - m)] , and C = WS at'y =y,

Equations (32) with a constant coefficient matrix [aij] permit a solution
that can be expressed in the general form

Zog =
;

N ™Mo

A, .c.exp(A.y) for i = 1,2,...,8 (36)
L i3] ]

where the Aj are eigenvalues of the matrix [aij]’ the A i3 are the
elements of the corresponding eight eigenvectors, and the cj are arbi-
trary constants.

The values Aj and Aij can be derived analytically by rewriting the
eight first-order equations (32) with constant coefficients as four second-

order equations in the form

d2J
i 4
—= - I b, .J. =0 for i =1,2,..,4 (37)
dy =1 133
J
where
Ji1 = Zg1, J2 = Zou, J3 = Zgs, Ju = Zg7 (38)

and the coefficients bij are given by

b11 = 431, b1z = dz4, by = aszs,

bo2 = 84842 + d348u3 + Aygdgy + Augdgy,

b3 = @584z + 835843 + Aygdes + dypdgs,

b3z = 8g4, b3z = &5, by, = 8gy4, byz = dgs, byy = 831
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The solution of Eqs. (37) has the form

B..d.exp(X.y) for i = 1,2,...,4 (39)
1] ] ]

where the A. are the same as the eigenvalues of Eqs. (32) with constant
coefficients, the Bij are the elements of the corresponding eight eigen-

vectors, and the dj are arbitrary constants. From the characteristic

determinant, it follows that the eigenvalues are

1
Aiss = + (by1) & (40)
Aase = F1E (b ) + [£ - by3)? W WA G (41)
2,6 = 5 (b2p + b3z) + [4 (b2: 33)> + baabss |

_ 1 1

A3,7 = + 4] (b22 + baz) - [l (b2 = by3)? + byabay /2 /2 (42)
7 A

_ 1

Moo = % (byy) /2 (43)

The Bij can be obtained from the solution of the characteristic

equation. They are given by

B..=1, B,, =0, Bg. =0, b,. =0
ij 3 ZJ 3J ’ '4‘_j
for j = 1,5 (44)
(A% - 8gs5)dz4 + Az586s )
By, = —A » By = dgs5 — AL,
(821 - A%) - ]
J
Sgudgs + (A% - 3gs)agy
_ A~ . ]
By, = - agy, By. =
J J (821 - )\2.)
for j = 2,3,6,7 (45)
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and
Blj =0, sz =0, B3j =0, qu =1
for j = 4,8 (46)

The Aij are related to the Bij by Eqs. (36)-(39); they are

M. =1, Ao. = A., A3, = (33,B1. + 834Bp. + A35B3, + A37By.)/A.B;.
1J ’ 2_'] J' 3J 31 1_’] 3y 2J 35 3J 37 uJ JIJ,

Ay . B,./B1., As. = B3./By., A¢. = A.B3./By., Ay, = By./By.
v5 2J/ 1 5. 3J/ 150 Mo 5B33/B1ys Ay 4J/ 1

Ag .
]

(4g4Bp. + AgsBs. + 8g7By.)/A.By. (47)
] ] ] J ]

These eigenvectors are normalized such that

c.exp(A.y) at =
i P Jy y Ye

4.2 Boundary Conditions

The boundary conditions at infinity (34) demand the constants
cs5, cg, c7, and cg be zero. To set up these boundary conditions for numerical

solution, we first solve Eqs. (36) for the cjexp(kjy) and obtain

f..2p., for j=1,2,...8 (48)
R

B ™M

.exp(A.y) =
CJ P Jy i

where the matrix [f..] is the inverse of [A..]. Setting cs=cg=c;=cg=0 in
1] 1]

Eq. (48) leads to

8
il eingi =0 for j = 5,6,7,and 8 at y = Yo (49)

Equations (49) replace the boundary conditions Eqs. (34).
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The boundary conditions at the wall (33) can be set up for numerical

solution by writing them in the form

8
% e .Z1j =0 for i =1,2,...8 (50)

where the eij are the elements of an 8 x 8 matrix with only four nonzero

elements.

4.3 Integration and Orthonormalization

For the spatial stability problem, we assign values to ®w and R and
two relations among Co s Qo Bor, and Boi’ where oy = Qo + iaoi and
By = Bor + iBoi. Then, we guess the remaining two relations. We determine
the fij in Eqs. (49) and use this boundary condition to construct a linear
combination of the general solution given by Eqs. (36). As y + =, the four
growing solutions in Eqs. (36) are eliminated. A variable step size algorithm
developed by Scott and Watts (1977), based on the Runge-Kutta-Fehlburg
fifth-order formulas, is used to integrate Eqs. (32) from y = ¥ to the wall.
A straightforward integration fails to produce four linearly independent
solutions because of the buildup of parasitic errors among the different
solutions. To overcome this difficulty, the integrator used is coupled with
an orthonormalization test that is based on the modified Gram—Schmidt proce-
dure.

Since testing for independence after each integration step is
expensive, we use a modified algorithm (Darlow et al, 1977) and choose a

preselected set of points where orthonormalization is performed. These
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points are assigned a priori by using information about the points where
orthonormalization is needed.

At the wall, the values of the linearly independent solution vectors
are linearly combined to satisfy all but one of the wall boundary conditions.
The last wall boundary condition can only be satisfied by this combined solu-
tion when the exact remaining relations among %o s %oy, Bor’ and Boi have
been found. A Newton-Raphson procedure is used to determine these relationms.
With the eigenvalue determined to within the desired accuracy, the eigen-—
functions can be recovered using the stored solution vectors. This solution

can be expressed in the form

Zoi = A(xy,21) o (xy, y,z1) for i = 1,2,...,8 (51)

4.4  Solvability Condition and the Adjoint

With the solution of the zeroth-order problem given by (51), the

first-order problem becomes

azli 8

-3 a7, =62 5 % L5 Afori=1,2,...8 (52)
dy j=1 13773 i 9x, i 9z, i
211 = 213 = Zys = Zy7 = 0aty =20 (53)
Zy1, Z13, Z15, 237 >0 as y > @ (54)

where the Gi’ Ei’ and Di are known functions of the Ci’ g, By, and mean-

flow quantities; they are defined by

3A 34 _
G E{T + Ey ‘8";1- + D1A =0 (55a)
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(e %%; + E, %%T + D2A = - ifoc(,TSI1 - %E I, (55b)
Gs §£?~+ Ej %é: + D3A = Tsll (55¢)
Gy -g—;%l— + Ey g—‘:; + DyA = rx(g—i— ;—1:7% 2 2T )1, + rxT g— I, + ES 13(55d)
Gs g—iil— + Es g%l— + DsA = 0 (55e)
Gs %é: + Eg %éT + DA = - %EE Is (55¢)
e g—:l-+E7£—§-Sl—+D7A= 0 (55¢)
Gg %—31— + Eg %—iil- + DgA = - ifBoTSII - 5—— Iy (55h)

S

where Iy - Is are defimed by Eqs. (27)-(30).

Since the homogeneous parts of (52)-(54) are the same as (32)-(34) and
since the latter have a nontrivial solution, the inhomogeneous Eqs. (52)-(54)
have a solution if, and only if, a solvability condition is satisfied. 1In

this case, the solvability condition is

[o 0] 8 A
It e, 9A g 24, D.A]W.dy = 0 (56)
i=1 i 9%, i %z i i
0 i=

~

where the wi(xl,y,zl) are solutions of the adjoint homogeneous problem

corresponding to the same eigenvalue. Thus, they are solutions of

8 ~
=+ ¥ a,W =0 fori=1,2,...,8 (57)
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Wo =Wy =Wg =Wg =0 at y =20 (58)
Wo, Wy, Wg, Wg =0 asy > (59)

We solve the adjoint problem, Eqs. (57)-(59), following the same
numerical procedure used to solve the zeroth-order problem. Outside the
boundary layer (at y = ye), Eqs. (57), has constant coefficients and
its solution can be written in the form

~ 8
W. = z

; j Azjcgexp(kjy) for i=1,2,...,8 (60)

1

where the Aj are the same as those for the zeroth-order homogeneous problem,
Eqs. (32)-(34), but the A?j are different from the Aij' The Afj can be
obtained analytically in the same way we obtained the Aij' The Aij

components are given by

* % * e * * % *
AT. =1, Aa. = - (B, + 842B2.)/X.By., Ag. = — d43B2./X.B1.,
L » Do g 1 duaB2 / 385 35 w3B2 /A ;B1
x % * * *x % k3 * x *
Ay, =By./By., As. = Bs,/By., Ae. = - (G4ysBa. + B3.)/A.By1.,
¥ 2J/ ¥ 5 5 3;/Brg, e v6B2 4 ¥ 5B
Y. = Buw./Bi., Ns. = — (848Bs. + By.)/A.B1, (61)
] J J ] ] J J ]

where

. (\2-8g5)E24+a7586y

By. =1, By. = J s
] ] (aes—Ag)(bzz—Ag)—geubza

azubza-(bzz-xg)gzs

(=]
w
]

w
+
]

O

J (aes‘xg)(bzz—xg)-asqbza ]

for j = 1,5 (62)
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By. =0, By, = —fg4,B3, = bap=A%, By. =0
j j ] j

for j = 2,3,6,7 (63)

and
2 A ~ ~ A
(A5-3g5)agy + dgsagy

By. =0, By, = J ;
J (365“)\2.)(b22—>\2.)—35ub23
J J
- ﬁsubza-(bzz‘kg)ﬁes %
B;. = , By. =1
I (865-A2)(b22-A%)-Fsubay 3
J ]
for j = 4,8 (64)

In solving the adjoint problem, the eigenvalue relations we found
before are used in one integration to produce the adjoint solution. The
solution of the adjoint problem can provide an independent check
on the eiggnvalues obtained earlier. Moreover, solving the adjoint problem
provides an easier and accurate way of calculating the group velocity

instead of the approximate and lengthy finite difference techniques.

4.5 Amplitude and Wavenumber Equations

Substituting for Gi’ Ei’ and Di from Eqs. (55) in the solvability
condition (56), we obtain the following equation for the modulation of the

wave amplitude A with position

9A 3A
Q Ty + Q2 Py HyA (65)
where
(o] 8 ~
Q =/ ‘Z Giwidy (66)
0 1i=1
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8
Q =/ £ E,Wdy

Here, Q) and Q; are proportional to the components of the group velocity

§£Lg

(aw
30L0 3 G'BO

To determine H;, we need to evaluate 304 /3x;y, 9a¢/3z1, 9Bo/9%x1, 9B /921,

BCi/Bxl, and BCi/le. To accomplish this, we replace zZ, by zs in (32)-

(34), differentiate the result with respect to x;, and obtain

3 a@i 8 aCi doLo dBe
3y 5% T jil a5 T 6 axy *Biam Sy fer i T LnZ,.8

F
|
|
|

9z . 8 oz .
o (—2) - I a..(z=3) = G, %% E. 1L § . fori=1,2,.,8
dy 9dz1 =1 ij 9z, i 9z i 9z, zi

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)
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Here Gi’ Ei’ and Si are known functions of Ci’ g, By, and the basic-flow

quantities; they are given by

8 Bai. l 8 Bai.

6= I %o 8o, x1 = E LiBon gz for i=1,2,..,8 (75)
j=1 =1 o]
8 BalJ 8 Bal

B, = 2 Tty 3R IoLo,xl = r T35, luo,zl for i = 1,2,..,8 (76)
=1 3=1
8 aai. 8 aai.

i T jzl Cj 0x1 Iao:Bo, zi ~ jil CJ 9z IGOsBo for i =1,2,..,8 (77)

Again, applying the solvability conditions to (69)-(71) and (72)-(74),

we obtain equations for the modulation of the wavenumber with position

aao 80.0 _

Q1 %, + Q2 21 Ho (78)
98¢ 9Bo _

Q o9x1 * Qe dz1 Hs 79

where Q; and Q; are given in (66) and (67) and Hy; and H; are given by

© 8 ~
H, =i [ I S_.W.dy (80)
o j=1 X3 ]
oo 8 ~
H; =i J ¢ S .w.d (81)
y
=1 z3 J
0]

The quantities Hy;, H,, Hsz, Q1 and Q; in Eqs. (65), (78), and (79) are
slowly varying functions of x and z. For a parallel mean flow, the H's

vanish and the Q's are constant. Nayfeh and Padhye (1979) derived equations
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similar to (65), (78) and (79) for incompressible nonparallel three-

dimensional flows.

In the spatial theory o, and By are complex and w is real. We
define a real wavenumber vector of magnitude ky and direction Y according
to

%o = (dor, Bor)s U = tan [(Bop/Cor) (82)

and a real spatial amplification-rate vector of magnitude 0, and direction

Y according to

go = (aoi, Bgi), & = tan_l(Soi/uoi) (83)

The solution of the eigenvalue problem, gives the complex dispersion

relation
>
w = (.U(ko 00 ,X,Z) (84)

For'fixed w, x, and z, there are four real parameters, ko, ¥, 0, and @.
Two of them can be determined from the eigenvalue calculation.

In general, the direction of the wave propagation ¥ is different
from the direction of the wave amplification . The propagation angle {
can be used as an input parameter, while the question of determining the
direction of the amplification ¥ is still open. Mack (1977) chose the
direction given by the real part of the group velocity angle to be the
direction of amplification., He showed that for two-dimensional basic flows,
the direction of the group velocity deviates by a few degrees from the

streamwise direction. This deviation decreases as the Mach number increases.
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Lekoudis (1979) and Runyan and George (1979) chose the direction of
amplification to be the direction of the local potential flow. An
amplification direction given by the real ratio of the complex group
velocities was derived by Nayfeh (1979). TFor a parallel mean flow, the
amplification direction is given by the real ratio of 90, /3Ry, which was
derived by Cebeci and Stewartson (1979) and Nayfeh (1979). For a mono-

cromatic wave generated by a source oscillating at frequency w at x = 0

to penetrate large values of x and z, the ray equation

dz Q2 =, real quantity (85)

defines the direction of the wave amplification for the physical problem

of real x and z. The wave amplitude and wavenumber will vary along the

ray as
A= Aq exp( [ H, d& ) (86)
ay =/ Hy d§ (87)
Bo = S Hy d& (88)

Equations (86)-(88) are derived from Eqs. (65), (78), and (79) by using

Xm

1

= Q and 321 = Q (89)

Using Eqs. (14), and (86)-(88) in Eq. (51), we obtain

Zoi = AT (% ,y,2,) exp l:if(OLo + By g‘f -ie g':‘) dx‘iwt] + o) (90

where Z;i is related to the disturbance variables by (35), and the
constant Ay is determined from the initial conditions. It is clear from
(90) that, in addition to the dependence of the eigensolution on x; and z1,
the amplification of the disturbance is a function of the normal distance

from the wall.
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