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SUMMARY 

A compressible linear stability theory is presented for nonparallel 

three-dimensional boundary-layer flows, taking into account the normal 

velocity component as well as the streamwise and spanwise variations of 

the basic flow. The method of multiple scales is used to account for the 

nonparallelism of the basic flow, and equations are derived for the spatial 

evolution of the disturbance amplitude and wavenumber. The numerical proce- 

dure for obtaining the solution of the nonparallel problem is outlined. 



I. INTRODUCTION 

For laminar-flow vehicles, a high performance is achieved with 

respect to range and economy of vehcile operation by reducing the friction 

drag. The design of such vehicles is strongly influenced by the stability 

considerations of the boundary layer. To maintain laminar flow with 

minimum external power, an optimum amount of suction, or cooling (in air), 

or heating (in water) is required. For the design of swept LFC wings of 

transonic aircrafts, this optimization process needs accurate computations 

of the stability characteristics of three-dimensional, compressible 

boundary-layer flows. 

An extensive treatment of the stability theory for compressible 

flows is given by Mack (1969) for two-dimensional mean flows, where the 

disturbance can be two or three-dimensional. These stability theories 

treat the mean flows as quasi-parallel. Some incomplete attempts to 

account for the nonparallel flow effects by including either the normal or 

some of the streamwise derivatives of the mean flow were given by Brown 

(19671, Gunness (19681, and Boehman (1971). 

For two-dimensional heated boundary-layer flows, El-Hady (1978) 

and El-Hady and Nayfeh (1978) introduced a complete nonparallel stability 

theory to account for the rate of heat transfer between the fluid and the 

wall. The nonparallel stability results are in better agreement with the 

heated water experimental data of Strazisar et al (1977) and Strazisar and 

Reshotko (19781, than the parallel results of Lowell (1974). 



Recently, El-Hady and Nayfeh (1979) analyzed the effect of the non- 

parallelism of the mean flow on the stability characteristics for two- 

dimensional subsonic and supersonic flows. Results calculated by the non- 

parallel stability theory are in better agreement with the supersonic 

experimental data of Laufer and Vrebalovich (1960) and Kendall (1975) than 

the results calculated by the parallel theory of Mack (1969). 

The propagation of three-dimensional disturbances in three-dimensional 

compressible boundary layers was numerically investigated by Mack (1979) and 

Lekoudis (1979). Their analysis was for parallel flows over an infinite 

sweptback wing. Their results show that the effects of compressibility are 

negligible near the leading and trailing edges (regions of cross-flow type 

instability). However, away from the leading and trailing edges (regions 

of T-S type instability), the maximum amplification rate is reduced and 

the most unstable-wave orientation is considerably changed due to compres- 

sibility effects. 

In this article, a compressible linear stability theory is presented 

for three-dimensional disturbance in a nonparallel three-dimensional 

boundary-layer flows. Section II contains the formulation of the problem. 

Section III contains the method of solution for the zeroth and first-order 

problems. The computational procedures are outlined in Section IV. 
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II. FORMULATION OF THE STABILITY THEORY 

We consider the spatial, three-dimensional stability of laminar 

compressible three-dimensional steady viscous flows to small-amplitude 

disturbances. 

The flow field is described by the Navier-Stokes, energy, and state 

equations. Lengths, velocities, and time are made dimensionless using a 

suitable reference length L*, the freestream velocity Uz and L>k/Uz, 

respectively. The pressure is made dimensionless using pzUz*. The 

temperature, density, specific heats, viscosity, and thermal conductiv- 

ity are made dimensionless using their corresponding freestream values. 

2.1 Disturbance Equations 

To study the linear stability of a steady three-dimensional, bound- 

ary-layer flow (basic flow), we superpose a small time dependent disturb- 

ance on each mean-flow, thermodynamic, and transport quantity. Thus, we 

let 

G(x,y,z,t) = Qs(x,y,d + q(x,y,z,t) (1) 

where Qs(x,y,z) is a three-dimensional basic-state quantity and q(x,y,z,t) 

is a three-dimensional unsteady disturbance quantity. Here, ^q stands for 

the velocity components (u, v, and w), temperature T, pressure p, density 

p, and viscosity u. Substituting (1) into equations governing the flow 

field, subtracting the basic-state quantities, and linearizing the result- 

ing equations in the q's, we obtain the following disturbance equations: 

g + & (PsU + pus) + ii- (psv + PVs) + fy (P,W + PWs) = 0 
aY 

(2) 



au au 
ps(~+us~+u~+vs~+v~+ws~ 

au 
+ w- aZ 7 

au au au 
+ P(U 24-V s ax s+w s ay ,-$)=-g++ &[pS(r~+m~+m~) 

1 
au av aw au 

+ p(r -2 
ax 

+mL+m 
aY 

$1 + g [!J& + 2) + v '$ + g%] 

+ i& [p,(E + 2 
aw 

+ l&y + $I] 
1 

av 
p& + us g -I- u 2 + v av av 

-+vs+w 
av 

ax s aY ay 
-+w 

s aZ 
$9 

av av av 
+ P(U s+v s ax s+w s ay 

&2)=-S+; 
I 

& [ll& + ig) 

au 
+ 2)] f k [ps(m 2 + r e 

av 
+ LA> 

ay 
+mE) +p(r2 

au S 
aY 

fm- 
ax 

aw S +m-+- 
aZ i, [p,($ ay +a”, +p(L il + ?)I 1 

aw 
ps($ + us g + u 2 + aw aw 

v s+w aw 
ax s aY - + v ay 

--+w 
s aZ 

2, 

= - Z+’ 
R 

1 
& bJ,g 

aw 
+$) +LJ($ + g% ] +g [&+E) 

av au av 

+ l&y +$)I +& [ps(mg + rng + rg) + U(rn$ 
S +m- 

ay 

+r2)] 
i 

(3) 

(4) 

(5) 
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aT 
Ps[g + u Ty + u aT+vaTs+V aT+waTs+W aT s ax ay s ay az s z] + P[Us 2 + vs 2 

(6) 

and the state equation. Here R = p,U,L/I-I, is the Reynolds number, 

Pr = cp lie/K is the Prandtl number, EC = U2/C T e e 'e e 
is the Eckert number, 

e 

and i, the perturbation dissipation function, is defined as 

i=lJ \ au s au av s av aw au 
s I 

2r(~~+--++~)+2m[fl(*+ ay ay X ay 2) 

avs a aw + ay ‘2 + z’> +2 (&+;$)I + 2(au 
ay 

+$),$+$) 

+ 2(% +E)(?+?) + 2(E 
au aw 

+~"~+~' 
I 

+p r[(?,'+ (>)* + (~,']+2m(~>+~f$.+~~) 
I 

au av 2 av aw 2 av aw 2 
+(A+$) +($+L) +($+A) 

aY aY ax i 
(7) 

Moreover, r and m are given by 

r = 5 (R + 2), m = f (R - 1) (8) 

where R is the ratio of the second to the first viscosity coefficients. 

Equations (2)-(6) represent the stability equations for a three- 

dimensional disturbance in a three-dimensional basic flow. 
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2.2 Boundary Conditions 

The analysis presented here is applicable to cases with suction or 

blowing as well as cases with uniform or non-uniform wall heating or 

cooling. The stability problem is completed by the specification of the 

appropriate initial and boundary conditions. We consider next the bound- 

ary conditions. 

At the wall, we require the vanishing of the component of the relative 

velocity of the fluid/solid surface that is parallel to the interface, even 

in the region of perforations. This is a reasonable assumption provided 

that the percentage of the permeable area is small and most of the flow 

there is directed normal to the wall. The normal velocity and thermal 

boundary conditions at the wall need careful consideration. 

For an impermeable wall, both the mean and disturbance velocities 

normal to the surface must vanish, whereas for a permeable wall this is 

not the case. The mean normal velocity component is not zero. For dif- 

ferent disturbance normal velocities at the wall, Gaponov (1971, 1975) 

showed a destabilizing effect of a nonzero value for the normal component 

of the disturbance velocity at the wall. His results are based on the 

calculation of the neutral stability curves. Such curves are not directly 

related to transition. Moreover, the boundary condition used by Gaponov 

is not of a practical application. Of more interest are the results of 

Lekoudis (1978), who examined the effect of the normal component of the 

disturbance velocity on the growth rates of disturbances. This boundary 

condition is given in the form of an admittance calculated for different 

configurations. He concluded that the condition of zero normal velocity 

at the wall is a reasonable approximation when the surface permeability 

is very small. 



The thermal boundary condition for the disturbances needs an analysis 

of the heat conduction problem in the region very close to the wall (e.g., 

Dunn and Lin, 1955). This analysis results in a thermal boundary condition 

for the disturbance in the form 

g (0) + g T(0) = 0 

where g is a constant that depends on the disturbance frequency, and the 

physical properties of the liquid and the adjacent solid wall. This con- 

dition holds for very low frequencies because the thermal fluctuations can 

penetrate large distances into the solid wall. On the other hand, for 

very high frequencies, the thermal inertia of the solid makes the thermal 

fluctuations die out in the solid very close to the surface, and the wall 

remains at the temperature of the basic flow. In this case, the condition 

T(0) = 0 is a very accurate approximation. 

In the freestream, it is assumed that all disturbance quantities die 

out for subsonic disturbances and satisfy a radiation condition for super- 

sonic disturbances. For boundary layers in subsonic flows, disturbances 

have amplitudes that decay exponentially in the freestream. For boundary 

layers in supersonic flows, we restrict our analysis to subsonic disturb- 

ances, that is to disturbances that move subsonically with respect to the 

freestream. The amplitudes of these disturbances decay also exponentially 

in the freestream. 

In this analysis, we consider walls of small permeability and subsonic 

disturbances of sufficiently high frequencies. With these assumptions, the 

disturbance boundary conditions become 

u=v=w=T=Oaty=O (9) 

u,v,w,T -f 0 asy-+" (10) 



2.3 Nonparallel-Flow Considerations 

We consider weakly nonparallel flows. Thus, to account for the non- 

parallelism of the mean flow, we require that all mean-flow variables be 

weak functions of the streamwise and spanwise positions. Moreover, we 

require that the normal velocity component be small compared with the other 

velocity components. These assumptions are expressed mathematically by 

US = Us(X1'Y'Z1), vs = EVS(X1,Y,Z 1 

PS = ps(xl,zl), Ts = Ts(xl,y,zl) 

where 

writing the mean-flow variables in the form 

1, ws = WshI,Y’ZIL 

(11) 

*1 = EX, za = EZ (12) 

and E is a small .dimensionless parameter characterizing the nonparallelism 

of the mean flow. In the parallel-flow approximation, V, = 0 and all 

variables in Eqs. (11) are independent of xp and zl, The main idea behind 

the nonparallel-flow analysis is to make a perturbation about the parallel- 

flow solution (Bouthier, 1973; Gaster, 1974; Nayfeh et al, 1974). The method of 

multiple scales is used to effect this perturbation. Accordingly, 

different streamwise scales x, x1, z, and z, are introduced. The fast 

scales x and z are used to describe the relatively rapid streamwise and 

spanwise variations of the traveling wave disturbance. The slow scales 

x1 and z1 are used to describe the relatively slow variations of the mean- 

flow quantities', the disturbance wavenumber, the growth rate, and the 

amplitude. 

9 



. .__ , .,.,, ,..,,_, , .,._.,._ . . ..-_ _,.. - .------ ..-- - _-..---.. .-- _._. _ . _. .-_ ..-...-.-__- .-._-_.. ..__. - _,,._._ ,.. . 

III. METHOD OF SOLUTION 

To determine an approximate solution to Eqs. (2)-(ll), we use the 

method of multiple scales and seek a first-order expansion for the disturb- 

ance variables u, v, w, p, and T in the form of a traveling harmonic wave, 

that is 

q(x l>Y ,z pw) = [qo(xpy, Z1) + Eql(XI,Y,ZI) + . . . ]exp(iS) (13) 

where the phase function 0 is defined by 

(14a) 

ae -z-w at (14b) 

Here ~1~ and 6, are the quasi-parallel components of the wavenumber vector 

2 0 inthe x and z directions and o is the circular frequency. 

For the case of quasi-parallel spatial stability w is real and CX,, 

and BI, are complex, while for the case of quasi-parallel temporal stabmility, 

ao and f,, are real and w is complex. For the general case, oO, a,, and w 

are complex. The present study is limited to spatial stability so that o 

is a known real quantity. 

The viscosity disturbance is related to the temperature disturbance by 

du 
~(x,,Y,Z,,t;E) = $ T(xl,y,zl,t;E) 

S 
(15) 

while the density disturbance is related to the temperature disturbance 

by the state equation. 
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Substituting Eqs. (13)-(15) into Eqs. (2)-(6),transforming the time and 

spatial derivatives from t, x, and z to 8, x1, zl, and equating the 

coefficients of Co and E on both sides, we obtain'problems describing the 

q0 and q, disturbance quantities. These problems are referred to as the 

zeroth and first-order problems. They are given next for the physical 

problem of air boundary layer treated as perfect gas. 

3.1 The Zeroth-Order Problem 

Substituting (13)-(15) into (2)-(11) and equating the coefficients 

of E0 on both sides, we obtain 

quo ,v O,~O,pO,TO) = ips(oOuO + Bow,) + i(cx,Us + BOWS - W)P, 

+k (P svo> = 0 ( 16) 

L2(uo, vo, wo, po, To) = [ios(ooUs + BOWS - w) + 2 (rai + Bi)] u. 

au all T dp au 
+ (p 

s . 
- - 12 ao>vo 

0 a 

s aY R aY 
+ io,p, - - - (s 2) R ay dTs ay 

1 aus auO if av0 1 a, aus aTo 
-_-P-e 

R aY aY R I-l?' - - ---- ay R dTs ay ay (17) 
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Ls(u,, vo, wo, po, To) = [ips(cLoU + f3,w 
% 

S S - w> + R hi; + 8;) ] v. 

im --a 
R 

(18) 

LI+(u~,v~,w~,~~,T~) = ips(cloUs + BOW S 

+ (P 
1 a du, aw 

v. + iB,p, - - - R ay (dTs ay 
-L)To 

(19) 

L&'vO'wO'PO~ To) = { ips(cloUs + Bow - w) - 
(~-1)Mi dus 

S R 
q 

321-1 +B;)-G >T, 
aY 

+ [ps 2 - 2i(y;1)Mz us (a, 2 + B, 2) ] V. - icy-l)M~(aoUs 

au aTo 
+BW - w)po - 2 s _- - 

2(y-l)M; aus au0 aws awe 

0 s RPr ay ay R I-lS(aySjT+~2+ 

1-1, a+, 
-- 

RPr we = ' 

% = v. = w. = To = 0 at y = 0 

(20) 

(21) 

(22) U o, vo, wo, To + 0 as y + ~0 
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The operators L,-L, correspond to the continuity, x-momentum, 

y-momentum, z-momentum, and energy equations, respectively. 

Equations (16)-(22) constitute an eigenvalue problem that is 

solved numerically. The numerical solution is discussed in the next 

section, and the solution of Eqs. (16)-(22) can be expressed in the form 

UO = A(x, ,ZI) 51 (x, ,Y,ZI 1 (23a) 

VO = A(+ ,zl) C3 (x1 ,y,zl> (23b) 

PO = A$ ,zl) 5, (x, ,y,zl) (23~) 

TO = A(x, ,zl) c5 (xl ,y,zl 1 (23d) 

WO = Ah1 ,zl) 5, (x, ,y,zl) (23e) 

The amplitude function A(x. 1,zj) is determined by imposing the solvability 

condition at the next level of 

3.2 The First-Order Problem 

approximation, 

Substituting (13)-(15) into Eqs. (2)-(11) and equating the coefficients 

of E on both sides, we obtain 

Li(uI,vl,wl,P1,T1) = Ii for i = 1,2, . ., 5 (24) 

ul =v 1 =w 1 =T1=O aty=O (25) 

u12-J I,WI,TI, -+ 0 asy+m (26) 

where the operators Ll-Ls are defined by Eqs. (16)-(20) and 11-15 are the 

inhomogeneous terms in the continuity, x-momentum, z-momentum, and energy 

equations, respectively. These inhomogeneous terms reflect the effects of 
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the streamwise and spanwise variations of the disturbance amplitude, the 

normal basic-velocity component and the streamwise and spanwise variations 

of the wavenumber. Using Eq. (23), thes e inhomogeneous terms are defined 

by 

11 = - 

aw S Us aT S Vs aT S +--2---2----z 
aZl Ts ax, Ts ay 

(27) 

au 
+v s+w s ay 



1 d% aus +--- 
R dTs ay 

m au 
+-zc7 R ay 

dps a +i[f--( dT ax, 

av au 
+ (r? 

ay 
+mL+m 

ax1 

au aw x5 
+mS+mS) m aus a67 f 

ax1 az, ay 
a( - + Ti F aZ, + F ps aZ, 

aw aw 
J + w 

s ay 
---q 

s aZ, 

av 
+mS+r 

aY (~0l-Q 

+ ($i ,JsQo - $) 2 + ($ usfio - 2) 2 - $ 2 
S 1 S S 



au 
1s = [of - l)M;($p, $ 53 + us&J + (j-g aolJ, - $1 z;sl E 

S 

+ {(y - l)Mz[> + 2 QoUs (r 
I 1 

2 
1 +- R us (y - 1)M2 e 

au av au 
>+rn ax S+m 

1 aY 
2) 

1 
+ g BolJs '$ 

1 
+ >,I 

1 
aus as, aws as, au av S -- S+r- ‘F aX, + ay aZ, (m ax, aY 

+m!&zq- YMi x4 
1 ay 

y-- (us 2 + vs 2 + ws 2, 5, 
S 1 1 

+ (y - l)M;(Us ax- 
I 

as 
+ v L+w s ay 

a5,) 
aT aT aT aa 

s aZ 1 
+ [$ (us $ + vs $ + ws $1 + g$ (p, $ 

S 1 1 1 

+ 2a T5) 0 ax + & Q.ls 2 + a3 o 2) I 5, + (& sops - 2, 2 
1 1 1 

W ar; vs ar5 
+(&B. -$)&--+ 

kJ 

Ts ay 
(y - l)Mz [2 + 8 oo~s 

S 1 1 

(31) 

The inhomogeneous Eqs. (24)-(26) have a solution if, and only if, a 

solvability condition is satisfied. This condition demands the inhomo- 

geneous terms be orthogonal to every solution of the adjoint homogeneous 

problem. In the next section, we obtain equations for the modulation of 

the wave amplitude and the wavenumber with position using the solvability 

condition. 

16 



IV. COMPUTATIONAL PROCEDURE 

The zeroth-order stability problem defined by Eqs. (16)-(22) is 

reduced to the solution of the following set of eight first-order differen- 

tial equations with eight homogeneous boundary conditions 

az,i - ; a**z 
1J Oj 

=O fori=l, 2, . . . . 8 
aY j=l 

Zr~1=203=Z05=207=0 aty=O 

zo 1 , 203, zo 5, 207 +O asy+m 

where 

ZOl = uo, 
au0 202 = --) au zo 3 = vo , zo4 = PO, 

zo 5 = To aT0 206 = -, 
ay 

zo 7 = wo , 
awe 

Zoe = -- 
ay 

and the a.. are the elements of 8x8 variable-coefficient matrix. The 
1J 

nonzero elements of this matrix are 

a12 = 1 

a21 = * (clous + BOW - w> + a: + 802 S s s 
au 

a22 = - - 
;, e 

R au S au 
a23 =---- 

Tsl-ls ay 
iao (L S + 

US ay 

(32) 

(33) 

(34) 

(35) 

icloR a24 -- - 
pS 

fyM)o(aoUs + Bows - W) 
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f% dp aU 
a25 = y (ololJs + Bow 

s - w) - p- (" 2) 
S s b dTs ay 

1 dl.l, au s a26 =- -- 
lJs dTs aY 

a31 = - icl0 

1 aT a33 = -2 
Ts ay 

a34 = - iyMi(CtoUs + Bows - 0) 

a35 = $- (olous + Bows - w> 
S 

a37 = - iB0 

a41 = - ixao (& 2 + $- ay 2) 

S S 

c 
aps aT a2T iR 

a43 = x [-a; - B$ + $- ay # + $- ayps - Ty bus + BOWS - d-J 

s s S s s 

ap aT au 
a44 = - iXryMi [(k $ + aNs] 

S 

& ;i-;') (CXoUs + 50Ws - W) + 010 $ + 130 ay 
S 

L - uJ/ 7 -0 - + PO 
aY ay’ 

a42 = - ip0 

a ?L (aoUs + BOWS - m)l d ay a vu ay ' t Ty ay 
> .3 a s s 

du au 
a45 = ix[(t -$ + k) (a0 jf + 130 ay + BOW 

S 
- d] 

s S S 

a46 
S 

a47 = 



a43 = - ix60 

au 
a62 = - 2Pr(y - 1)M2 --% 

e a~ 

RPr aTs au 
a63 =---- Tsps a~ 

2iPr(y - l)Mi(~%o-~ + fro 
aY 

a6 4 _ iyr (y _ 1)~; (@us + BOW - w) 

S S 

a6 5 S - WI + cl,’ + !3$ - (y-1)M; 7 2 
6 s 

aw 
a68 = - 2Pr(y - 1)M2 --? 

e a~ 

a83 = 

iRBo a84 =-- 
US 

fBoyM; hoUs + Bows - W) 

a3 5 
S 

1 dus aw 
a66 = ---s 

pS dTs aY 

a3 7 = gf- (aous + sow - 0) + CL: + BO2 S s s 
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1 aW a** c--s 
1-I, aY 

where 

x = l/If- + iryMz(C%oUs + Bows - m)] 
S 

Equations (32)-(34) constitute an eigenvalue problem and it has nontrivial 

solutions only for certain combinations of the parameters ~10, 60, w and R. 

4.1 Eigenvalues and Vectors 

Outside the boundary layer (at y = ye > 6, where 6 is the boundary- 

layer thickness), the mean-flow quantities are independent of y and the 

nonzero elements of the coefficient matrix [aij] given by Eq. (32) are 

constants. They become 

^a1 2 = 1, $21 = iR(oo + CBo - W) + ao' + Bi, 

zz4 = iRoo - fyM20 (a0 + Cfio - O), 

$25 = fao(ao + cfio - o), ^a31 = - iclg, 234 = - iyMi(oo + C8o - (JJ), 

$3 5 = i(ao + CBo - w), $37 = - iB0, 242 = - ixao 9 

243 = - x [ iR(ao i cBo - 0.)) + ai + 6021 , $46 = ixr(aO ' CBO - a> 3 

iis8 = - ixB0, ^a56 = 1, 264 = - iRPr(y - l)Mt(a, + C8o - W>, 

^a65 = iRpr (a0 + CBo - 0) + ai + f3:, $84 = iRBo - fYMtBo(aO + COO - 0)~ 

$3 5 = f&(ao + CBO - @I, ^a67 = $21 



where 

x = l/[R + iryMz(ao + Cf30 - o>] , and C = Ws at y = ye 

Equations (32) with a constant coefficient matrix [sij] permit a solution 

that can be expressed in the general form 

6 
zoi = c A.. 

i=l 
c.exp(Ajy) for i = 1,2,...,8 

1J J 
(36) 

where the A. 
J 

are eigenvalues of the matrix [Z..], the A are the 
1J ij 

elements of the corresponding eight eigenvectors, and the ci are arbi- 

trary constants. 

The values A. and A.. 
3 1J 

can be derived analytically by rewriting the 

eight first-order equations (32) with constant coefficients as four second- 

order equations in the form 

d2Ji 

F- 
; b. ..J = 0 for i = 1,2,..,4 

j=l 1~ j 

where 

Jl = ZOI, J2 = 204, 53 = Zos, J4 = 207 

(37) 

(38) 

and the coefficients b.. are given by 
13 

b = $21, blz = 224, 
A 

b13 = a25, 
11 

bzz = 224242 + $34243 
h 

+ ^a46264 + a48%34s 

bz3 = 
h a2sZ42 + g35243 + ~46~65 + ~46%35, 

b3z = zc4, bX3 = ,-. h 
a65, b4z = 264, b43 = a85, b44 = 221 
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The solution of Eqs. (37) has the form 

Ji = i 
j=l 

Bijdjexp(Ajy) for i = 1,2,...,4 (39) 

where the A. 
3 

are the same as the eigenvalues of Eqs. (32) with constant 

coefficients, the B.. 
1J 

are the elements of the corresponding eight eigen- 

vectors, and the d. 
3 

are arbitrary constants. From the characteristic 

determinant, it follows that the eigenvalues are 

A = 7 (bll) 92 
135 

x2,6 = T 

i 
$ (bzz + b33) +[$ (bzz - bd2 + bzdm] 

92 v2 
t 

h3,7 = + 
-I 

$ (bzz + b33) - [+ (bzz - b33>' + bz3b32] 
l/2 92 

1 

A = 5 (bll) 92 
496 

The B.. can be obtained from the solution of the characteristic 
1J 

equation. They are given by 

B 
ij = 1, B2. = 0, B3. = 0, b4. = 0 

J J J 

for j = 1,5 

(ii: - &5>&1, 
B1.= J 

+ $25264 

3 
(221 - hi' 

, B2. =^a65 -h; , 
? 

^a64265 + <A! - $65)&l, 

B3. = - $64, B4. = 1 

J J 
($21 - A;) 

for j = 2,3,6,7 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 
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and 

Bl = = = = . 
J 

0, BP. 
J 

0, Bs. 
J 

0, Bq. 1 
3 

for j = 4,8 (46) 

The A.. 
=J 

are related t'o the B.. by Eqs. (36)-(39); they are 
1J 

Al * 
J 

= 1, 1\2. = x A3 = ($slB1 
3 j' j j 

+ &4B2. + zs5B3 
3 j 

+ &TB,~)/A~B~ ., 
3 

A4. 
J 

= B2j/Bl., A,. = Bsj/B1., AS. = 'jB3j/Bl., A7. = B'j'B'.' 
J 1 3 J J J J 

Ag. = (&3~,Bn + &35B3 + &7B4.)/X.B1. (47) 
3 j j 3 3 J 

These eigenvectors are normalized such that 

ZOI = t 
j=l 

cjexp(hjy) at Y = Y, 

4.2 Boundary Conditions 

The boundary conditions at infinity (34) demand the constants 

c5, C6, c7, and cg be zero. To set up these boundary conditions for numerical 

solution, we first solve Eqs. (36) for the c.exp(X.y) and obtain 
J J 

cjexp(Xjy) = i ,fijZO. 1 for j = 1,2,...8 
i=l 

(48) 

where the matrix [fij] is the inverse of [ Aij]. Setting c5=c6=c7=cg=o in 

Eq. (48) leads to 

i e..Z 
i=l 1J Oi 

= 0 for j = 5,6,7,and 8 at y = ye (49) 

Equations (49) replace the boundary conditions Eqs. (34). 

23 



The boundary conditions at the wall (33) can be set up for numerical 

solution by writing them in the form 

i e..Zl. 
j=l 13 J 

= 0 for i = 1,2,...8 (50) 

where the e.. 
1J 

are the elements of an 8 x 8 matrix with only four nonzero 

elements. 

4.3 Integration and Orthonormalization 

For the spatial stability problem, we assign values to w and R and 

two relations among oor, ooi, B or, and Bo. 
1’ 

where ~10 = ~10 r + iao. and 1 

BO = Bar + Soi. Then, we guess the remaining two relations. We determine 

the f.. in Eqs. 
1J 

(49) and use this boundary condition to construct a linear 

combination of the general solution given by Eqs. (36). As y + *, the four 

growing solutions in Eqs. (36) are eliminated. A variable step size algorithm 

developed by Scott and Watts (1977), based on the Runge-Kutta-Fehlburg 

fifth-order formulas, is used to integrate Eqs. (32) from y = ye to the wall. 

A straightforward integration fails to produce four linearly independent 

solutions because of the buildup of parasitic errors among the different 

solutions. To overcome this difficulty, the integrator used is coupled with 

an orthonormalization test that is based on the modified Gram-Schmidt proce- 

dure. 

Since testing for independence after each integration step is 

expensive, we use a modified algorithm (Darlow et al, 1977) and choose a 

preselected set of points where orthonormalization is performed. These 
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points are assigned a priori by using information about the points where 

orthonormalization is needed. 

At the wall, the values of the linearly independent solution vectors 

are linearly combined to satisfy all but one of the wall boundary conditions. 

The last wall boundary condition can only be satisfied by this combined solu- 

tion when the exact remaining relations among cloy, ooi, fior, and bo. have 1 

been found. A Newton-Raphson procedure is used to determine these relations. 

With the eigenvalue determined to within the desired accuracy, the eigen- 

functions can be recovered using the stored solution vectors. This solution 

can be expressed in the form 

'0 i = A(Xl,zl) Ci (xl, y,zl) for i = 1,2,...,8 (51) 

4.4 Solvability Condition and the Adjoint 

With the solution of the zeroth-order problem given by (511, the 

first-order problem becomes 

azIi 
-- 
ay j 

=G ?k+E aA 
i ax, i aZ, 

- + DiA for i = 1,2,...8 (52) 

Zll = 213 = 215 = 217 = 0 at = 
y 

0 (53) 

Zll, 213, Z15, 217 + 0 asy+m (54) 

where the G., E i' and D 
1 

i are known functions of the c., oo, Bo, and mean- 
1 

flow quantities; they are defined by 

G1 
aA --+ El 
ax1 

aA + DlA = 0 
aZ1 

(55a) 
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G3 

G5 

G7 

G8 

=+E 
ax1 

aA + D2A = 2 aZl 
- ifooT I -h12 

s 1 (55b) 

aA 
axl + E3 aZ, 

%- + D3A = TsIl 
(55c) 

ii&-s + E4 
ax1 

k + DsA = rX(- 2 + 2 - 
Ts au 

aTS 

aZl 1-1, aY ay )I 
a 

1 + rxT 1 + Lix 13(55d) 
say1 1-I 

S 

aA aA - + E5 - + DsA = 0 
ax1 aZl 

aA 
- + Es 
ax1 

aA + l&A = - 
aZl 

aA aA 
- + E7 - + D7A = 0 
axI aZl 

aA aA 
axl + E8 a~, + DsA = - 

where 11 - Is are defined by Eqs. 

Since the homogeneous parts 

(55e) 

y I5 (55f) 
S 

(55g) 

ifBoTsI1 - > '4 
S 

(55h) 

(27)-(30). 

of (52)-(54) are the same as (32)-(34) and 

since the latter have a nontrivial solution, the inhomogeneous Eqs. (52)-(54) 

have a solution if, and only if, a solvability condition is satisfied. In 

this case, the solvability condition is 

Irn i [G; i$ + Ei 5 + DiA] jidy = 0 
0 i=l 

h 

where the W.(xl,y,zl) are solutions of the adjoint homogeneous problem 
1 

corresponding to the same eigenvalue. Thus, they are solutions of 

ai. 
L+ 
aY 

!a; ji j = 0 for i = 1,2,...,8 
j=l 

(56) 

(57) 
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5;2 = ;, = 5;6 = fjs =0 aty=O (58) 

k6 , 8 ‘0 asy-fa (59) 

We solve the adjoint problem, Eqs. (57)-(59), following the same 

numerical procedure used to solve the zeroth-order problem. Outside the 

boundary layer (at y = ye>, Eqs. (57), has constant coefficients and 

its solution can be written in the form 

! ATjcgexp(Xjy) for i = 1,2,...,8 
j=l 

(60) 

where the X 
j 

are the same as those for the zeroth-order homogeneous problem, 

Eqs. (32)-(34), but the APj are different from the Aij. The APj can be 

obtained analytically in the same way we obtained the A... The A?. 
1J 1J 

components are given by 

I\:. 
J 

= 1, A;. = - (B;. + &2B:j)/XjB;., Azj = - 8b3B;j/XjB;j, 
3 J J 

+< ;v< 1 I I 
A4. 

J 
= Bzj/B;., A;. = Byj/B;., A;. = - (&6$ 

3 J J J 
+ B;j)/XjR;. , 

J 

.‘- -‘- 
A7. - (hat,~Bz. 

J 
= B;~,B;., A;. = 

3 J J 
+ Btj)/XjB;. 

J 

where 
.'- (x:-&5)&4+&5&4 

B1 . 
J 

= 1, B;. = , 
3 (~65-h~)(b22-hT)-~6~b23 

3 

-'< &4b23-(b22-h%25 
B3. = , By. = 0 

3 (~65-x~)(b22-x~)-ps~b23 3 

for j = 1,5 

(61) 

(62) 
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-‘< * 5; 
B1 . = 0, BP. = -&,B; = b22-X?, B4. = 0 

J J j J J 

for j = 2,3,6,7 

and 
-2 

= 0, B;, = 
(h2-265)&L, + &5$64 

B1 . 
J 3 

J J (~65-X~)(b22-hf)-Ps,b23 
J 

-2 &4b23-(b22-X:)&5 
B3. = 3 , By. = 1 

3 
(p65-x5)(b22-x~)-~6,b23 

J 

for j = 4,8 

(63) 

(64) 

In solving the adjoint problem, the eigenvalue relations we found 

before are used in one integration to produce the adjoint solution. The 

solution of the adjoint problem can provide an independent check 

on the eigenvalues obtained earlier. Moreover, solving the adjoint problem 

provides an easier and accurate way of calculating the group velocity 

instead of the approximate and lengthy finite difference techniques. 

4.5 Amplitude and Wavenumber Equations 

Substituting for G., E., and D. from Eqs. (55) in the solvability 1 1 1 

condition (56), we obtain the following equation for the modulation of the 

wave amplitude A with position 

Ql e + 42 ;&- = HIA 

where 

QI =: i GiWidy 
0 i=l 

28 
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Q2 = $ ; 
i=l 

Eiiidy 

H1 = Dijidy 

(67) 

(68) 

Here, Ql and Q2 are proportional to the components of the group velocity 

ati 
(acto, ii+ 

To determine HI, we need t0 evaluate aaolaxl, aaoiazl, aBo/ax,, aBo/aZ1, 

xi/k, and aiqaz,. To accomplish this, we replace Zi by ci in (32)- 

(34), differentiate the result with respect to x1, and obtain 

i 
a6 . aa0 300 

j=l 
aij(&) = Gi ax, + Ei ax, + Sxi for i = 1,2,.,8 (69) 

x1 _ x3 _ x5 _ x7 _ o at y = o -_-- 
ax, ax1 ax1 ax1 

ah x3 ac5 ac7 -, ax1 axly axI -,~+O,asy+m 

(70) 

(71) 

Similarly, differentiation of (32)-(34) with respect to z1 yields 

i a. 
j=l 

(3) = Gi $ff- + Ei e + Szi for i = 1,2,...,8 (72) 
ij aZ1 

xl x3 x5 x7 _ -=-c-z-- 
aZ1 aZ1 aZl az, 

0 aty=O 

ah 
3-y Zl 

a53 as5 XL -+ 0 as y + m 
a' Zl a, 21 aZl 

(73) 

(74) 
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Here Gi, Ei, and Si are known functions of ci, ~10, 50, and the basic-flow 

quantities; they are given by 

Gi = i = 

j=l B 
i 

0, Xl j=l 0 
,zl for i = 1,2,..,8 (75) 

= 
i d 5 

aa.. 
E 1J 

-I = 
j w. 

; 
j=l a0 9x1 j=l 

ao,zl for i = 1,2,..,8 (76) 

S xi 

aa.. 

' zi = i c -Q lcl" ,-j. j aZl 
for i = 1,2,..,8 (77) 

3 j=l 

Again, applying the solvability conditions to (69)-(71) and (72)-(74), 

we obtain equations for the modulation of the wavenumber with position 

Ql & aao _ 
ax1 + Q2 - - H2 aZl 

Ql w. w. _ - + Q2 - - H3 
ax1 aZ1 

(79) 

(78) 

where Q1 and 42 are given in (66) and (67) and H2 and H3 are given by 

Hz = i j* ; SxjWjdy (80) 
0 j=l 

H3 = i rrn ; SzjGjdy (81) 
0 j=l 

The quantities HI, Hz, H3, Q1 and Q2 in Eqs. (65), (78), and (79) are 

slowly varying functions of x and z. For a parallel mean flow, the H's 

vanish and the Q's are constant.. Nayfeh and Padhye (1979) derived equations 
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similar to (65), (78) and (79) f or incompressible nonparallel three- 

dimensional flows. 

In the spatial theory ~10 and B. are complex and w is real. We 

define a real wavenumber vector of magnitude k o and direction IJJ according 

to 

zo = (aor, Bar), @ = tanml(Borlaor) (82) 

and a real spatial amplification-rkte vector of magnitude oo and direction 

$ according to 

go = (aoi, Boi), $ = taIl-l(~O;/CXO i) (83) 

The solution of the eigenvalue problem, gives the complex dispersion 

relation 

w = wd, ,uo ,x,z) (84) 

For fixed W, x, and z, there are four real parameters, ko, Q, U, and $. 

Two of them can be determined from the eigenvalue calculation. 

In general, the direction of the wave propagation $ is different 

from the direction of the wave amplification $. The propagation angle $ 

can be used as an input parameter, while the question of determining the 

direction of the amplification $ is still open. Mack (1977) chose the 

direction given by the real part of the group velocity angle to be the 

direction of amplification. He showed that for two-dimensional basic flows, 

the direction of the group velocity deviates by a few degrees from the 

streamwise direction. This deviation decreases as the Mach number increases. 
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Lekoudis (1979) and Runyan and George (1979) chose the direction of 

amplification to be the direction of the local potential flow. An 

amplification direction given by the real ratio of the complex group 

velocities was derived by Nayfeh (1979). For a parallel mean flow, the 

amplification direction is given by the real ratio of aao/aBo, which was 

derived by Cebeci and Stewartson (1979) and Nayfeh (1979). For a mono- 

cromatic wave generated by a source oscillating at frequency w at x = 0 

to penetrate large values of x and z, the ray equation 

gzQ$= a real quantity (85) 

defines the direction of the wave amplification for the physical problem 

of real x and z. The wave amplitude and wavenumber will vary along the 

ray as 

A = A0 exp( / H1 dS ) (86) 

a0 = / H2 dS (87) 

Do = / H3 dS (88) 

Equations (86)-(88) are derived from Eqs. (65), (78), and (79) by using 

dxl- 
dc - Q1 and 3 

dS = 42 (89) 

Using Eqs. (lb), and (86)-(88) in Eq. (51), we obtain 

ZO i = AoCi(xl,y,zl) exp + B. 2 ' %) dx-iwt 
-I' Ql 1 + O(E) (90) 

where Z,-,i 1s related to the disturbance variables by (35), and the 

constant A0 is determined from the initial conditions. It is clear from 

(90) that, in addition to the dependence of the eigensolution on x1 and ~1, 

the amplification of the disturbance is a function of the normal distance 

from the wall. 
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