Experience curves as policy tool The case of PV

Edited by Gerrit Jan Schaeffer, ECN Policy Studies, interim coordinator EU-Photex project

Contributions by Project Partners: GENEC (F), FhG-ISE (D), ISET (D), UU-STS (NL), CESI (I), ECN Solar Energy (NL)

EXCETP-EXTOOL workshop "Experience Curves: A Tool for Energy Policy Analysis and Design" Paris, 23 January 2003

Photex

- General objective
 - to further develop experience curve approach as a policy and analysis design tool
- Specific objectives and characteristics
 - focus on one technology and its components (PV)
 - study the effects of different policy schemes on technology progress
 - advise on a right balance between R&D and D&D spending
 - analyse sources and mechanisms of technology learning

PV has experienced a very fast growth over recent years

ear		Growth rate
	1986	35%
	1987	27%
	1988	24%
	1989	23%
	1990	22%
	1991	21%
	1992	18%
	1993	16%
	1994	16%
	1995	15%
	1996	15%
	1997	19%
	1998	20%
	1999	21%
	2000	25%
	2001	27%

1990	
1991	19.1%
1992	4.5%
1993	5.2%
1994	14.0%
1995	11.8%
1996	14.2%
1997	42.0%
1998	23.1%
1999	30.0%
2000	42.9%
2001	35.8%

What progress ratio do we need?

Effects of different progress ratios on break-even costs and cumulative production (*Van der Zwaan and Rabl, 2002*)

Progress	Cum.	Cum. Production	Surplus cost of reaching
Ratio	Production	[% of 3300 GWp = current world	break-even
	[GWp]	capacity]	[USD billion]
0.7	23	0.7%	15
0.75	48	1.5%	27
0.8	148	4.5%	64
0.85	957	29%	288
0.9	39700	1200%	7110

Assumptions: Current costs \$5/Wp; break-even costs \$1/Wp (implies kWh cost of 0.05 – 0.01 \$/kWh); initial cumulative production is 1 GWp

Progress ratio should be between 0.75 and 0.8?

First progress ratio results from Photex

Systems in Germany (Source: ISET)

Timeframe	Progress Ratio	Database
1988-2001	94%	Current Photex
1990-2001	91.6%	Photex price + general capacity data
1991-2001	93%	ISET

IEA-PVPS, Task 1

Capacity between 1992 and 2001 grown 5 times; Prices from about 10 \$/kWp to 7 \$/Wp; →Progress ratio 93%

(Preliminary) intermediate conclusion

- To keep costs and deployment efforts to a reasonable level the PV-progress ratio should not be higher than 80%
- Current PV-systems progress ratio seems to be slightly above 90%
- Current progress ratio PV-Systems seems to be too high!
 - if price developments reflect cost developments!

Precautions to the conclusion

- Do price developments reflect cost developments?
- It has been difficult to gather a substantial amount of reliable data. Monitoring activities such as done in IEA-PVPS is therefore essential and should be intensified!

Do costs reflect prices?

Photex data: Database overview: status December 2002 (*Source UU-STS*)

Photex data: System cost data (Source UU-STS)

]2

Photex data: increasing the database

- Projects before 1990 (possibly via EU-DGTREN)
- Module data: Strategies Unlimited report
- Incorporating IEA-PVPS Task 2 data

Differences in BOS and module learning in past decade

- Module prices have come down slightly
- BOS prices have come down substantially

Module prices (Source UU-STS)

An increase since 1999

BOS prices in Germany (*Source ISET*)

BOS prices Photex database

(Source UU-STS)

<u>]</u>E

BOS is learning fast, especially in Germany (*Source: FhG-ISE*)

Cost distribution of residential PV systems (1999/2002)

System size	1 kV	/p	5 kV	Vp	2 k	Wp	3 kWp	5 kWp	50 kWp
year	1999		1999		20	2002		2002	2002
	Euro	%	Euro	%	Euro	%	%	%	%
modules	4000	48	3800	56	4100	68	> 70		
inverter	1100	13	900	13	650	11			
mounting structure, installation material	1400	17	1100	16	500	8			
installation labour	1270	15	780	11	650	11			
planning, documentation	500	6	250	4	100	2			
Total [Euro]	8270		6830		6000		5800	5500	< 5000

•Similar trends e.g. in NL and US: the result of reaching a critical mass in volume sales!

Relative cost distribution of residential PV systemsinstaller in Germany

(Source: FhG-ISE)

ECN

Sources of BOS cost reduction in Germany (*Source: FhG-ISE*)

- Standardisation
 - 2 kW standard mounted roof system has lowest installation costs in Germany
 - standardised planning procedures
 - standardised mounting procedures
 - standardised material
 - installation knowledge widespread also to low-cost personnel
- Further reduction in BOS possible, expected and needed
 - inverters (volume)
 - DIY-kit for installation
 - further (small) innovations and learning

Questions with regard to BOS-costs

- Is BOS-learning local or global in character?
 - Inverter part is at least (partially) international market
 - Several manufacturers deliver inverters to several countries in Europe
 - Different national standards for dealing with islanding
 - Different national standards for connectors
 - Differences in building norms and practices and policy result in non-ideal spill-over effects between countries
 - e.g. mounted roof systems versus building integrated PV
- Positive effect on costs expected from more EUwide harmonisation on standards and policy

How to reduce module prices?

- Observations
 - Module prices have come down barely during the last 5 years
 - Module prices constitute 70%-80% of system prices
- Uncertainties
 - Have module *costs* come down?
 - Are module producers still not making a pro

Latest news on module price developments (Source: solarbuzz.com)

Cost Break Down x-Si (90% of market)

Module Direct Manufacturing Cost Cast Polycrystalline Silicon

The direct manufacturing cost of cast polycrystalline silicon modules is ~\$2.10/Wp.

Silicon wafer Cell Efficiency Module materials Labour

(Note: Direct manufacturing cost do not include overhead such as R&D, Sales, Maintenance and Staff Departments)

Wafer cost

Feedstock 30% Scrap from IC Indusry 20 - 30 €/kg Fluctuating Independent supply needed => 15 - 20 €/kg Si (mg Si 2 \$/kg) Silicon content 2000 17 g/Wp 2010 10 g/Wp sheets (EFG, RGS), wafer thickness Crystallisation cast, sheets Wafering

Si feedstock for PV: supply and demand (Source: ECN Solar Energy)

Effect of Plant Size on Price

ECU'96/Wp

Margin
Module Manufacturing
Cell Manufacturing
Slicing
Growing
Source, Alonso et al., 1995

(Music-FM study)

Some conclusions

- PV-systems prices do not go down fast enough
- PV-BOS prices have come down very fast, especially in high volume markets
- PV-BOS prices still need to come down further
- Module prices make up 70%-80% of systems and need most focus for cost reduction efforts
- Material costs most important part of module costs
- Building up an own feedstock production is absolutely necessary for PV-industry
- Insecure relationship with ICT-industry will remain: needs more analysis

Implications for policy: how to get progress ratio back on track?

- Progress ratio is a statistical correlation between costs (prices) and cumulative production as a result of a learning process
- Progress ratio can be enhanced by
 - Establishing a better balance between R&D and deployment efforts
 - Enhancing R&D-efforts on PV
 - Ensuring a healthy growth rate of PV
 - Too fast: what is learned cannot be implemented timely in practices of production and use, resulting in prohibitive progress ratio
 - Too slow: learning process stops or reverses (e.g. BOS-learning experience shows learning needs minimum critical mass)
 - Improvement of the learning process itself
 - analyse the learning process
 - improve learning feed-back loops and geographical spill-over ECP

Improving the learning cycle for PV: a first try to describe it (Source: *UU-STS*; with a few additions from ECN PS)

Dynamic model of PV technology investments and learning

In conclusion

- The case of PV demonstrates the importance of an experience curve approach to policy analysis and design
 - shows need for *combined* RD&DD efforts
 - most substantial cost reduction in BOS by learning by doing induced by aggressive deployment strategies
 - shows need for *balanced* RD&DD efforts
 - If DD gets over R&D too much, it effects progress ratio negatively, to an extent cumulative costs become prohibitive.