
An Implementation of a Commercial Messaging System Standard for a
Space Mission Application

Carlos Carrion
Mission and Systems Architecture Section

Jet Propulsion Laboratory
Pasadena, California 91109
carlos.carrion@jpl .nasa.gov

Abstract

Standardization of interfaces between on board spacecraft subsystems, operation control centers,
and ground terminals is seen as a way to reduce overall mission development, integration and
operations costs. Messaging systems used in the electrical utility, petrochemical, and automotive
industries look promising for application to space based systems for command, control, and
communications. These messaging systems provide a baseline set of capabilities useful for space
based systems and mature protocol standards that have been shown to be applicable to space
missions.

This paper describes work that is being done to use a currently available commercial standard
messaging system to command, control, and communicate with several distributed systems
generally used in unmanned space missions. These include a simulated ground terminal, a
simulated control center, and a set of simulated spacecraft subsystems/devices. The messaging
system services are implemented for each device in software modules that are referred to as
‘virtual devices’ containing the externally visible attributes (those that can be controlled or
monitored) of the “real” device.

A rudimentary imaging mosaic mission scenario was implemented with less than 25% of the full
messaging system services provided. As a result of this implementation, modifications to the
messaging services used may be needed specially for deep space mission applications.

Introduction

Information interchange between on board spacecraft subsystems is one of the key problems in a
space mission that is given high priority. A great deal of effort and resources are spent in
developing a solution to this problem. This solution must be developed despite constraints placed
on spacecraft development that are not typically put on ground system implementations. Such
constraints usually are things like mass, volume, radiation hardened technology, and power. More
often than not the solution is project specific and reusability or interoperability of a mission’s data
system and data interfaces is not a prime concern, at least in the deep space mission world.

In the commercial world where increasing profits and getting a return on investment are of prime
concern, ways in which processing and manufacturing costs can be lowered are usually in
demand. Thus in the early 1980’s a group of device vendors began to propose draft standards for
the transfer of digital information in the manufacturing environment. This work led to the
development of 1S0 (International Standards Organization) standard 9506, the Manufacturing
Message Specification (MMS)l. MMS and similar messaging systems are used in the automotive,
petrochemical, manufacturing, and electric utility industries.

The application of commercial messaging system standards is not new to the space mission
environment. Work has been done to apply MMS to the Space Station Freedom,z and a prototype
monitor and control MMS based system for the Jet Propulsion Laboratory’s (JPL) Deep Space
Station 13 was done several years ago] which is still operational.

1

.

Applicability of Messaging Systems

One of the reasons messaging systems were developed was to lower the cost of integrating smart
devices built by different vendors into a factory. A factory floor can be looked at as a set of
distributed heterogeneous intelligent devices that need to communicate with each other. If one
views a spacecraft as a set of interconnected devices that need to communicate with each other
then there is inherently little difference between the two and therefore the use of messaging
systems in space missions makes sense.

Since work had been done at JPL using MMS and expertise was available, it was chosen as the
messaging system for this task. No other reason other than its availability was used to select MMS
and the vendor which supplied the software.

Manufacturing Message Specification

In the 0S1 (Open Systems Interconnection) network communications model, MMS lies in the
application layer (see Figure I). This means that MMS does not provide connectivity functions
(e.g., data routing and packet retransmission). Those functions are left to the layers below. MMS
as an application layer protocol provides definition, structure, and meaning to messages being
passed between devices. Applications like reasoning engines and analysis software are placed on
“top” ofa messaging system like MMS.

MMS is built upon a model called the Virtual Manufacturing Device (VMD). The VMD (see
Figure 2) specifies how MMS devices (called servers) behave as viewed from an external MMS
client application, This model defines objects (variables, events, and semaphores for example) that
are contained in a server, the services that are used to manipulate objects, and the behavior of the
server when requests are received from a client. In short the VMD is a representation of the
network visibIe attributes (both controllable and monitorable) of the “real” device. A vendor of an
MMS compatible device would deliver to the customer a package shown by the dashed outline
box in Figure 2

———

.:, .$,?. ST?:.. .
Application

Presentation

Session

Transport

Network

Data [,ink

Physical
. . . - .

.

t
Appli~ation
Functions

I

1.
Connectivity

Functions

I.

1--<Presentation

Session

Transport

1-”----Network

Data Link
L . . - . . . - . . . 1

[
Physical

,_ -----

.- . . . -.

Figure I h {MT in the O.VI N&st wwk (’ottir~)ltrlic<ttion.s hfwlel

2

When a client issues a request (see Figure 2), the server receives the request (indication), does
whatever it is programmed to do upon the receipt of the indication, generates an “answer”
(response) to the client’s request, and the client receives the “answer” (confirmation) from the
server. MMS provides for unsolicited responses from the server as well. This means that in certain
cases a server doesn’t have to receive a request from a client to take action and issue a message.

Request 3. Sewer
takes

v
M

1
I
I
I
#

--l I
I
I
t..,*, —;

would &n, crL h,, PA*. I
---- ---- ---- _-

1

Figure2 VA4DModel &Client/Server Relationship

MMSprovides 86services ranging from initiating co~]nections, towriting variables ataserver, to
creating token semaphores, to Inanaging shared resources (see Table l).

Table 1 A4MS Service Categories and Functions

Categories of MMS Services
Context Management Services

VMD Support Services
Variable Access and Management Services

—.
File Access and Management Services

Event and Alarm Management Services

Domain Management Services

Program Invocation Management Services

Functions Performed
Used for initiating and concluding connections
between a client and a server
LJsed for szettinrz information about a server. .
Used for reading and writing variables at a
server
Used for reading, obtaining, and getting
information about files at a server
Used to define, enroll, and get information

ba out events at a server
Used for uploading, downloading and getting
information about domains at a server.
Domains are regions of server memory that
populate Program Invocations.
[Jsed for starting, stopping, and getting
information about Program Invocations at a
server. Program Invocations are regions of

3

r’__— server memory that are executable~l
I I Invocation may contain one or more domains. IrSemap~ore Management Services Used to control, and get information about

token semaphores at a server. Semaphores are

I I used to manage shared resources (printers)l

t--

mass storage, etc.).
OperaGr Communication Services +Used to obtain inputs from and display output

E I to a human operator at a server.
Journal Management Services +I Used to read, write, and get information from a

I journal at a server. I
Scenario

Refer to Figure 3 for this discussion. The scenario that was chosen was the monitor and control of
a mosaic (a set of images of size m rows by n columns) centered on a target. We used the Flight
System Testbed (FST) at JPL for our simulated spacecraft. We chose to use two spacecraft
subsystems: the Attitude and Articulation Control Subsystem (AACS) and the Camera Simulation.
The Low Earth Orbit Tracking Station workstation (LEO-T) was used for the ground terminal
server. The Simulated Mission Operations Control Center (SMOCC) was used as the development
and runtime environment.

The functional blocks in the scenario are: a client that is used by the user to run the scenario, a
mosaic controller that controls the execution of the mosaic, a camera that takes each image in the
mosaic, an attitude control subsystem that performs the spacecraft turns to point the camera, and a
ground terminal that informs the client of its status. The ground terminal was not used to establish
the client to spacecraft communications link.

To start the scenario, the user connects to the mosaic controller, camera simulator and ground
terminal. The user dctines the mosaic by specifying the number of rows, number of columns,
amount of overlap between images in each direction, and the target quatemion. This is done by
writing to variables in the mosaic controller. The user then sets the exposure time, and selects the
imaging filters for the images by writing to variables in the camera simulator. The user can also
direct the camera simulator to compress the “images”. The user also initializes the simulated
spacecraft via a setup script which starts the dynamics simulation (world model), the spacecraft
radio, the spacecraft’s computer flight software (including the attitude control software), and the
ground data system.

The user then directs the mosaic controller to start the mosaic execution. The mosaic controller
then connects to the attitude control subsystem and to the camera simulator. The mosaic controller
builds the mosaic command from the variables that were written by the user and sends the mosaic
command to attitude control. The attitude control subsystem takes care of the interface to the
simulated spacecraft in the FST and the spacecraft begins the turns. From this point on the
execution is controlled by the mosaic controller which instructs the camera simulator to take an
image afler each turn completion. After the execution is complete, the mosaic controller informs
the client that the mosaic has been completed.

4

At this point, the user can do several things: for example, download the “images” from the camera
simulator, delete the “images” from the camera simulator file store, instruct the camera simulator
to execute one of two stored maintenance scripts which can be overwritten by the user via the
client. I’he user then closes the connections to the mosaic controller, camera simulator, and
ground terminal. The mosaic controller then closes its connections to the attitude control
subsystem and camera simulator.

..—

~ The arrows between functional
; blocks represent messages being

passed back and forth,

Figtire 3 Mosaic Scenario Conrgtirotion

Implementation

An 0S1 network communications stack software packa~e (Sun Microsystems’ SunLink 0S1.-
version 8.1) was installed in the SMOCC hosting the client, the mosaic controller, the attitude
control subsystem, and camera simulator servers to provide the network communication layers
needed by MMS. RFC- 1006, provided by the stack package, was used as the network device to
access the TCP/lF’ network at the transport layer (see Figure I). This was done to use the TCP/IP
network already in place at JP1. and to use simple internet addresses for the client and the servers.
The MMS implementation (MMS-EASE- 133-015 V6.O.3) was procured from Systems Integration
Specialists Company, Inc. All code was compiled and linked with standard Sun Solaris utilities.

Since the FST environment is not MMS based, modifications to the FST camera simulation code
were clone to make it MMS compatible. The basic functionality of the camera was kept, including
image compression, but to keep this scenario simple, the camera simulator interface to the world
model software was removed. Thus the images the camera simulator returns are strings of bytes.
The modified camera simulator code was moved from the FST to the SMOCC and compiled.

The attitude control server that was built t’or this scenario acts as the interface to the spacecraft in
the FST. I’he attitude control server receives the mosaic command from the mosaic controller,
passes each individual turn command to the 1’S1’, and receives event notifications from the FST

(e.g., turn begin and turn end) based on the computations done by the simulated spacecraft’s flight
software and the world model software. The attitude control server itself does no attitude
computations.

The LEO-T MMS server was not built specifically for this scenario, but it was used as a passive
device to demonstrate the applicability of MMS to monitor and control the subsystems at a ground
terminal. The LEO-T server is not controllable at this time. Only monitor information is received
from the server. The LEO-T was not used to establish any kind of client to spacecrat?
communications link.

18 user defined variables were used in the scenario (see Table 2). The 4 variables used in the
ground terminal server to report monitor data to the client are data structures and as such were not
part of the MMS-EASE standard data types (i.e., float, double, integer16, integer32, urrsigned8,
byte, . ..). They had to be defined both in the client and ground terminal server. MMS-EASE
provides for user defined data types (i.e., arrays, structures, nested structures, . ..).

Table 2 User De-fined Variables in the Mosaic Scenario

MMS Server
Mosaic Controller

Attitude Control

Camera Simulator

Ground Terminal

User Defined Variables
nrows
ncols
x_overlap
y__overlap
center_ quat
start mosaic
sacs cmd
pict~rc_taken
image_compression
tilter_wheel_pos_l
filter_wheel__pos_2
camera_exposure
camera status—
transmit_ inlage
AntennaData
SchedulingData
FramingData
PassInfoData

5 events were defined and enrolled for notification (see Table 3).

Toble 3 Events Lk-17ncd In the Afmaic Scenario

I

MMS Server Events Defined by Notify
Mosaic Controller MosaicBegin Client Client

MosaicEnd Client Client
Attitude Control TurnBegin Mosaic Controller Mosaic Controller

TurnEnd Mosaic Controller Mosaic Controller
C=era Simulator ShutterClosed Client Client

Mosaic Controller——

2 domains were created and defined in the camera simulator. 2 program invocations were created
and defined in the camera simulator. Errch program invocation contains one domain.

Table 4 Domuins and Program lrrvoca!ions De)ned in the Mosaic Scenario

MMS Server Domains Program Invocations
Camera Simulator script 1 run_script 1

script2 run_script2 ~

Client AACS Server
● initialize logging
● configure comm channels
● start MMS
● initialize VMD

● initialize event mgmt
● fill data structures

.

.

.
● start comm_serveo

——

dosaic Controller Serve
● initialize logging
● configure comm channels
● start MMS
● initialize VMD

● create variables
● initialize event mgrnt
. fill data structures

.

.

.

● start comm_serveo
.——

● initialize logging
● configure cornm channels
● start MMS
● initialize VMD

● create variables
● initialize event mgmt
● fill data structures
● start trurnel proxy

.

.

.
● start eomm_serveo

LEO-T Server

● local initialization
. initialize logging

Camera Simulator Server——— I

● configure comm channels
● start MMS
● initialize VM[)

● create variables
● fill data structures

.

.

.

0 start comm_serveo
_.—

. start camera_simul ator
o initialize lowing
● configure comm channels
. start MMS
. initialize VMD

. create variables
● initialize event mgmt
. till data stmctures
s create & initialize domains
● create & initialize programs

.

0 start comm_scrveo

FST

. sequence mgr

. sacs software

Figure 4 Initialization ofkfosaic Scenario Client & Servers

ItWLizat.km of ClienLand S@ ers (see F _v inlre 4k
1. The client and all the servers are started by a simple UNIX script. Upon execution each server

and client initializes the MMS logging features, communication channels, and whatever local
initialization needs to bc done, e.g., the camera simulator and the LEO-T. Then MMS is
started and each VMD is initialized (variables are created, events are defined, domains are
created, program invocations are created, populated with domains, and set to the correct state,
etc.).

2. The MMS-EASE event loop, conm_serveo, is started for the client and each server.
3. The simulated spacecraft and its environment are started and initialized in the FST.

—— ——

initiate inlti<llc
request iocllccllim

— —*
Mosaic Controller

Server
Client

dctine event
cm]dltion(s)
–~

. ..2’7enroll client
in went(s)
——~

L

initiate request

initiate confirmation initiate response
●

.—— J

initiale request initiate indication ———
— .

initiate confirmation initiate response
Camera Simulate:

● Server

define event
condition(s)— *
eoroll client
in event(s) —~

. _ . ———. —

Figure 5 Initiation of Connections by the Client

~.
of connections with the svace craft and eroundtermioalbvthe Client (see F-

4.
5.
6.
7.

8.
9.
10.
11.
12.

13.

14.
15.
16.
17.
18.
I 9.

The Client initiates a connection with the Ground Terminal.
The Ground Terminal responds positively to the inifiafe message.
The Client requests the Ground Terminal to identify itself.
The Ground Terminal responds with identifying information. As soon as the connection is
established, the Ground Terminal starts sending information reports to the Client.
The Client initiates a connection with the spacecraft’s Mosaic Controller.
The Mosaic Controller responds positively to the initiafe message.
The Client requests the Mosaic Controller to identify itself.
The Mosaic Controller responds with identifying information.
The Client sends MosaicBegin and MosaicEnd event definition requests to the Mosaic
Controller. For each event definition there is an indication received by the Mosaic Controller,
a response generated by the Mosaic Controller, and a confirmation received by the Client.
The Client sends requests notifying the Mosaic Controller that for each event, the Client
would like to be notified when the event is triggered. For each request, a response is
generated by the Mosaic Controller and a confirmation is received by the Client.
The Client initiates a connection with the spacecraft’s Camera.
The Camera responds positively to the initicltc message.
The Client requests the Camera to identify itself.
The Camera responds with identifying information.
The Client sends a Shu[terC/osed event definition request to the Camera.
The Client sends a request notifying the Camera that the Client would like to be notified when
the event is triggered. A response is generated by the Mosaic Controller and a confirmation is
received by the Client.

lnitiakn ofco~-!ZQar~QL@14Scd@tllQ
20. Variables in the Camera arc written by the Client: it~/cJcqc_c[~t?lprt’.~.si[jn, jilter_ wheel~os_l,

jiit,’r_w’}lc’e[Jo.s_2, and c’Jt~l’)r(J_,’.Y/~(J.vllrc’.

8

21. For each write variable request by the Client, there is an indication received by the Camera.
‘The Camera generates a response, and the Client receives a confirmation of the write variable
request.

22. Variables in the Mosaic Controller are written by the Client: mwvs, ncols, x_overfap,
y_overlap, and center_quat.

23. For each write variable request by the Client, there is an indication received by the Mosaic
Controller. The Mosaic Controller generates a response, and the Client receives a
confirmation of the write variable request.

24. The Client sends a request to the Mosaic Controller commanding the spacecraft to execute the
mxn mosaic by writing to the variable sfar/_rnosaic.

25. The Mosaic Controller upon receipt of the request builds the mosaic command from the
variables that were written by the Client.

Client

t

wile var.
image_cOm press i On,
fil[cr_wheel_~s_ 1,
tiltcr_whecl_pos_2,
camcra_cxp05ure

—

TI

info reports
AntennaData
Scheduling[>ata
Fram i ngData
PassInfoData

.1

L E O - T

S e r v e r

— .
—.—— —.

write var.

center_quat,

nrows,
ncols,
x_overlap,
y_overlap
——+

write var
start mosaic.—

Mosaic
Controller

Server

b

; compute

; sacs

command

AACS
S e r v e r

initiate initiate
b— ——.

request indication
.

initiate initiate 4—.

confirmation response

.

.

define event “

-Q!~!~O~

enroll clien[
in event s

-!i2q@3

.

Figure 6 Initiation oJConnection.~ On Board the Spacecraj7

26. The Mosaic Controller initiates a connection with the spacecraft’s Camera
27. The Camera responds positively to the inifiote message.
28. The Mosaic Controller requests the Camera to identify itself.
29. The Camera responds with identifying information.
30. The Mosaic Controller sends a request notifying the Camera that it would like to be notified

when the ShutterClosed event is triggered. A response is generated by the Camera and a
confirmation is received by the Mosaic Controller.

31. The Mosaic Controller initiates a connection with the AACS.
3z, The AACS responds positively to the initiate message.
33. The AACS establishes a connection to the FS-I’.
34. The Mosaic Controller requests the AACS to identity itself.
35. The AACS responds with identifying information.

36. The Mosaic Controller sends 7’urrrBegirr and Turrr&rd event definition requests to the AACS.
For each event definition there is an indication received by the AACS, a response generated
by the AACS, and a confirmation received by the Mosaic Controller.

37. The Mosaic Controller sends requests notifying the AACS that for each event, it would like to
be notified when the event is triggered. For-each request, a response is generated by the
AACS and a confirmation is received by the Mosaic Controller.

‘-1Client

l=––event notify

MosaicBegir

k-
w7ite var
start_mosaic

l--event notify.
MosaicEnd

—.

[[J
—

LEO-T Server
info
reports

L _ _ . _ . . _ . ----—

Mosaic
Controller

Server

B

B
d--’ :

,,,,,.,,

!,

d-~
wite_var
aacs_cmd

-,
v,Tite_var

picture_taken

—

‘)ti
event notify. ~ ,’

,’
TurnEnd ~ ;

star

~ T u r n
Turn Starf
En —

FST
L–l

wTite var.

T

camera_exposure Camera Simulator
Server

e~fent notify.
ShutterClosed

—..
I— .–——

Figure 7 Mosaic Execu[ion

Ekxut.iQo of the mosaic ccmma d (see Fn i~ure 7k
38.
39.

40.

41.
42.
43.
44.

45.

46.

47.
48.

The AACS sends the first turn command to the FST.
The FST spacecraft and world model perform all the computations to turn to the desired
attitude.
The FST informs the AACS that the turn to attitude has begun. The AACS issues a TurnBegin
event notification to the Mosaic Controller. If it is the first turn then the Mosaic Controller
issues a MosaicBegin event notification to the Client.
When the attitude is reached, the FST informs the AACS that the turn has been completed.
The AACS issues to the Mosaic Controller a TurnEnd event notification.
The Mosaic Controller directs the Camera to take an image.
The Camera exposes the CCD for a duration of time specified in the camera_exposure
variable, and then issues a Shut[erClosed event notification to the Mosaic Controller.
The Camera reads the CCD and if image_compression is turned on then applies the image
compression algorithm to the raw data and stores it in a local buffer.
The Mosaic Controller directs the AACS to continue with the mosaic execution by writing to
the AACS variable picfure_tuken.
These last 9 steps continue until all images have been taken.
When the last image has been taken, the Mosaic Controller issues a Mo.~aicEnd event
notification to the Client.

10

———
Client mMosaic

Controller

1-4close Close
request indication

———

close close
confirmation respnx

I AACS I
Server ,,0= Server.1. X

--J
request md!catm”

b

::3

terminate
CI09C Close conncctio.
confirm.al,on response

c lose Close
request

‘“d’ca’iok Camera
c lose .,O= Simulator
C“”firm@’”n ‘e’p”n= Server

—

Figure 8 Termination oJConnection On Board the Spacecraji

MM of ccmmz@m on-board the spacecraft (see FM
49. The Mosaic Controller concludes the connection to the Camera.
50. The Camera responds positively to the conclude message.
51. The Mosaic Controller concludes the connection to the AACS.
52. The AACS responds positively to the conclude message.
53. The AACS terminates the connection to the FST.

Client

write var reqt]est write var indication
— b

obtain file obtain file*
indication request

.

delete tile delete tile
request indication

E

delete tile delete tile
confirmation respmsc

“+--- 1-

LEO-T
,.z~ S e r v e r

L-—_ ______ .1 * = unsoll cated SCIVICe

Figur<’ 9 ltnagc File Tran.sj<jrjrotn [hc C’unwra [o the Client

11

54. The Client directs the Camera to return all images by writing to the Camera’s (rurrsrnit_irnage
variable. The Camera issues a response and the Client receives the confirmation.

55. The Camera issues an obtain file indication to the Client (this is an unsolicited message, i.e.,
the Client did not issue an obtain file request first).

56. The Camera sends the image files to the Client using the MMS file transfer services.
57. The Client issues a delete file request to the Camera for each image file. For each request the

Camera receives an indication, generates a response and the Client receives the confirmation.

Client

[’
start PI request start P1 indication

info reports

Lstart PI
contimation start PI respme

—— I
Camera Simulator

Server

I——. —.— .—
Figure 10 Mointerrcrnce Script Execution by the Camera Simulator

58.

59.

60.

The Client sends a start program invocation request. The Camera receives the indication,
searches the name of the requested program invocation, and if found and if the program
invocation state is IDLE then the program is executed.
The run_scriptX programs are implemented as simple scripts that are parsed by a function
named do_maintenanceo in the Camera. These scripts can be overwritten by the Client. The
Camera issues information reports to the Client reporting the status of the maintenance script
execution.
After the execution of the run_scriptX programs the Camera issues a program invocation start
response and the Client receives a confirmation.

12

.— ——
:–1———

Client Camera Simulator
Server

close connection close connection
request indication

—~ *

close connection close connection
confirmation response

4 4 .

LEO-T Server
close connection close connection
request indication

> b

close connection close connection

confirmation response
4 4

—

.———

Figure 11 Termination o$Camera and LEO-T Connections by the Client

Ikmniaatkm of conntxt OnS by the Cknt&@l@re Llli
61. The Client concludes the connection to the Camera by sending it a corrchtde request.
62. The Camera responds positively to the concfride message.
63. The Client concludes the connection to the Ground Terminal.
64. The Ground Terminal responds positively to the concfude message.

Configuration

The mosaic scenario was implemented using the following configuration:
● Client, Mosaic Controller Server, Camera Simulator Server:

● SUN Spare Solaris 2.4 (smocc 1)
● MMS-EASE 133-015 V6.O.3
● SunI.ink 0S1 8.1

. Attitude Control Server:
● SUN Spare Solaris 2.4 (smocc 1)
● MMS-EASE 133-015 V6.O.3
● SunLink 0S1 8.1
● Tramel 3.1 proxy (used to communicate with the FST)

● FST Spacecraft Flight Software (rtcO):
● Heurikon HKV4F Board

● M68040 Processor
● VxWorks 5.2
● Tramel 3. I (FST based messaging system)
● TCP/lP

● Ground Terminal (Ieo-t I)
● SUN Spare Solaris 2.4
● MMS-EASE 133-015 V6.O.3

13

● SunLink 0S[8. I

Below is a table of the 18 MMS services used to implement this scenario.

Table 5 MMS Services Used in [he Mosuic Scenario

=“’”’;’’==tz===lVMD Support Services
GetNameList

Variable Access and Management Services Write
Read ----1

------tIsiii --lFile Access and Management Services

FileDirectory
Event and Alarm Management Services Define Event Condition

“Managementservic~
Terminate Download

Program Invocation Management Services Create PI
Start

Results

Only 219’. of the services provided by MMS were used to implement this imaging mosaic
scenario. The Operator Communication and Journal Management Services were not used.
Although it seems like the Journal Management Services may provide capabilities that would be
useful, for example, in downlinking engineering telemetry summaries to the ground. The File
Access and Management Services were used to downlink the image files to the client, but it may
be more efficient to use native file transfer services for this function.

From this rudimentary application of one commercial messaging system to a typical deep space
mission science scenario, commercial messaging systems look promising for use in space mission
environments and thus further study would be beneficial. The capabilities offered by messaging
systems offer a comprehensive set of services needed by spacecraft intracommunications: variable
access, program execution, shared resource management, and event management,

This scenario assumed several things that are not quite true in deep space missions. One major
assumption is the “real-time” feel to the mosaic commanding and execution. In reality due to the
long delay times, such a mosaic command would be uplinked ahead of time, stored on board the
spacecraft, and executed at a later time. Thus the dialogue between the client and the mosaic
controller for a variable write request, domain download, or event notification, indeed for any
request that requires a confirmation would be untenable. The protocol for confirmed services
WOLLICI need to be modified to take into account long light time delays or even communication
breaks that would exist in the ground to space link,

On board the spacecraft the issue of time critical control loops comes up. For tight control loops
like those that exist in spacecraft attitude maintenance dialogues between devices, we have not
shown that an MMS-like messaging system would be appropriate. Further work is planned to try
to answer such questions as these.

14

/

This work was done at the Jet Propulsion Laboratory, California Institute of Technology, under
contract to the National Aeronautics and Space Administration.

References

1 Systems Integration Specialists Company, Inc. “Overview and Introduction to the Manufacturing Message
Specification (MMS)”, Revision 1.0, June 1994.

2 D. Gilchrist and L. Neitzel. “The Applicability and Compatibility of MMS (ISO 9506) to Space Station
Return Link Path Service”. Space Station Freedom Contract NAS 9-18200, Work Package-2. June 1989.

3 W. Randy Heuser. “The Adaptation of Industrial Protocols for a Space Messaging Service”. International
Conference on Reducing the Cost of Spacecratl Ground Systems and Operations, Rutherford Appleton
Laboratory, Ox fordshire, England, September 1995.

15

