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SUMMARY

For non-homogeneous or non-linear problems, a major difficulty in applying the boundary element
method (BEM) is the treatment of the volume integrals that arise. An accurate scheme that requires no
volume discretization is highly desirable. In this paper, we describe an efficient approach, based on the
precorrected-FFT technique, for the evaluation of volume integrals resulting from non-homogeneous
linear problems. In this approach, the 3-D uniform grid constructed initially to accelerate surface
integration is used as the baseline mesh for the evaluation of volume integrals. As such, no volume
discretization of the interior problem domain is necessary. Moreover, with the uniform 3-D grid, the
matrix sparsification techniques (such as the precorrected-FFT technique used in this work) can be
extended to accelerate volume integration in addition to surface integration, thus greatly reducing the
computational time. The accuracy and efficiency of our approach are demonstrated through several ex-
amples. A 3-D accelerated BEM solver for Poisson equations has been developed and has been applied
to a 3-D multiply-connected problem with complex geometries. Good agreement between simulation
results and analytical solutions has been obtained. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The need for efficient solutions to large-scale problems, such as those encountered in micro-
electromechanical systems (MEMS), has led to the development of fast algorithms. Integral-
based methods have the advantage in reduced dimensionality and problem size and thus are
good candidates as efficient methods for large-scale problems with complex 3-D geometries.
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Moreover, this type of approaches can be attractive for problems with unbounded domains
and/or moving boundaries, etc. One drawback of integral-based methods is that they generate
fully populated system matrices. Solving them requires O(n3) operations (n is the system size)
if direct methods are employed or O(n2) operations if iterative methods are used. Recent
development of matrix sparsification techniques such as fast multipole method (FMM) [1, 2]
and precorrected-FFT (p-FFT) technique [3–5] has reduced the computational complexity to
O(n log n) or O(n). Based on the accelerated boundary element method (BEM), fast solvers
for electrostatic problems [6], Stokes problems [7–10], etc. have been developed and applied
successfully in solving practical problems, for example, in the design of very large scale
integration (VLSI) circuits [11] and in the modelling of complex MEMS devices [12].

It is perhaps fair to say that to date most applications of the BEM have been limited to linear
and homogeneous problems. This is largely due to the difficulties associated with the evaluation
of volume integrals in the boundary integral formulations that result from non-homogeneous
or non-linear problems. Efficient and accurate treatment of these volume integrals is the major
bottleneck in the extension of the BEM to non-linear or non-homogeneous problems. The
challenge and the significance of this problem have attracted the attention of many researchers,
and over last several decades, various approaches have been proposed and developed [13–28].
For a detailed review, readers are referred to a paper by Hsiao et al. [28]. In summary,
these approaches can be classified into two main categories: domain discretization-free methods
(or meshless methods) and cell-based direct integration schemes. Domain discretization-free
methods such as particular solution methods (PSM) [14, 16] and dual reciprocity methods
(DRM) [13, 19] or most recently multiple reciprocity formulation (MRM) [17] use different
techniques to either eliminate the volume integrals [14, 16] or (approximately) transform them
into boundary integrals [13, 19]. The major advantage of this type of methods is that the
boundary-only nature of the BEM is retained. However, as pointed out in References [24, 28]
and also based on our own experience, the quality of these methods depends on the quality of the
radial basis functions (RBF) approximation. Finding the optimal methods for approximations
is still an active research topic. In addition, very large, fully populated and often poorly
conditioned matrices are generated [26], resulting in a significantly high computational cost.

Cell-based direct integration schemes employ an interior volume mesh to directly perform the
integration. A major advantage of this type of schemes is the high accuracy. Such approaches
may also be efficient, as matrix sparsification techniques can be employed to accelerate volume
integration. In a paper by Ingber et al. [24], a comparison of the different integration schemes
has been performed. It was found that the classical cell-based direct integration method coupled
with FMM may be significantly better (in terms of computational accuracy and efficiency) than
both the dual reciprocity method and PSM. However, a major disadvantage of cell-based direct
integration schemes is the requirement of volume discretization of the problem domain. Unless
the volume integral exists only in a small region of the problem domain or the domain is of
simple geometry, such approaches would lose the main advantage of the BEM, namely the
boundary-only discretization and therefore would be less attractive for problems with complex
geometries. In an attempt to reduce the complexity caused by volume discretization, auxiliary
domain subtraction method [26, 28] has been developed to simplify the mesh generation for
multiply-connected problems. Such a method is effective only when the inclusions or holes are
of simple geometries, for which volume discretization can be easily performed.

It seems that an ideal approach for the treatment of volume integrals would be the one that
has the accuracy and the efficiency of the cell-based direct integration methods and yet does
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not have the high cost associated with volume discretization. In this paper, we describe a new
approach based on the p-FFT technique for the evaluation of volume integrals. This approach
uses the 3-D uniform grid built initially for the purpose of rapid evaluation of surface integrals
as the baseline volume cells to perform volume integration. The advantage of this approach is
two-fold. First no volume discretization of the interior domain is needed. The required inputs
are the surface mesh and the uniform 3-D grid that encompasses/encloses the problem domain.
Second, with the uniform 3-D grid, volume integration can be accelerated the same way as
surface integration, resulting in a fast volume integral evaluation.

In order to illustrate the proposed approach clearly, we first give a brief introduction of the
p-FFT technique. This technique is used to accelerate both surface and volume integrals in this
work. A description of the proposed volume-integration approach is presented next followed
by a collection of numerical techniques for the implementation of this approach. In Section 3,
results for volume integrals evaluated on a simple geometry, namely a sphere, are presented
first to illustrate the accuracy and efficiency of the proposed schemes. A 3-D Poisson solver has
been developed and applied to a 3-D multiply-connected problem and the results are compared
with analytic solutions. Finally, we summarize our work in Section 4.

2. VOLUME-INTEGRATION APPROACH

2.1. The boundary integral formulation

For the purpose of clarity, we use the Poisson equation to illustrate our approach. The general
form of the Poisson equation reads

�u = b(x) (1)

where u is the potential and b is the source term or inhomogeneous term. The Poisson equation
in Equation (1) is subject to appropriate boundary conditions, and can be cast into a boundary
integral formulation

c(x)u(x) +
∫

��

�G(x, y)

�n(y)
u(y) dS(y) −

∫
��

G(x, y)
�u(y)

�n(y)
dS(y) = −

∫
�

G(x, y)b(y) dv(y) (2)

where

c(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x ∈ �

0, x /∈ (� ∪ ��)

�, x ∈ ��

In (2), � is the domain of the problem with boundary ��, n(y) is the unit outward normal
vector at the field point y, x is the evaluation point and G(x, y) is the Green’s function of the
Laplace operator. In a 3-D space, it is given by

G(x, y) = 1

4�r
where r = |x − y|
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Figure 1. Side view of a sphere encompassed by a parallelepiped with a 3 × 3 × 3 array of cubes.

2.2. The precorrected-FFT technique

In the p-FFT technique, a parallelepiped is constructed to enclose a 3-D problem domain after
it has been discretized into n surface panels. This parallelepiped is then subdivided into a
k × l × m array of small cubes so that each small cube contains only a few panels. Figure 1
shows a discretized sphere, with the associated space subdivided into an 3 × 3 × 3 array of
cubes. It should be pointed out that the surface panels and the p-FFT cubes can intersect with
each other. There is no need to maintain any consistency between the surface panels and the
cubes.

The acceleration of surface integration is achieved by exploiting the fact that the kernels in
the surface integrals such as those in Equation (2) have piecewise-smooth convolutional form.
Thus with the aid of the uniform grid formed by the cubes in the parallelepiped, these integrals
can be computed approximately using the Fast Fourier Transform technique. To ensure accuracy,
such an approximation is only employed for far-field interactions (i.e. integrals in which the
evaluation point is far away from the field panel). For nearby interactions, direct evaluation is
required. For a detailed description of this technique, readers are referred to Reference [3].

2.3. Approach for volume integration

The evaluation of the volume integral on the right-hand side of (2) requires volume discretization
of � if a standard cell-based direct integration scheme is employed. In our approach, we use
the uniform 3-D FFT grid (see Figure 1), which was set initially for accelerating the surface
integration, to perform the volume integration. To do so, let b̃(y) = b(y) if y ∈ � and b̃(y) = 0
if y ∈ B\�, where B denotes the uniform grid. The volume integral in (2)

∫
� b(y)G(x, y) dv(y)
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Figure 2. 2-D illustration of relationship between problem domain and the uniform FFT
grid—shaded area is the problem domain �, B is the uniform grid.

can then be replaced by a volume integral performed on the grid, i.e.
∫
B

b̃(y)G(x, y) dv(y).
Since B consists of a set of cubes (see Figure 2), this integral is also equivalent to the sum
of integrals evaluated on each cube, i.e.∫

B

b̃(y)G(x, y) dv(y) = ∑
i

∫
Ci

b̃(y)G(x, y) dv(y) (3)

where Ci is the ith cube of B. Now the integration domain has been transferred from the
complex problem domain (�) to a regular grid (B) consisting of a set of cubes.

2.3.1. Evaluation of
∫
Ci

b̃(y)G(x, y) dv(y). If volume integrals present in the integral formula-
tion are also of convolutional form (which is true for many engineering problems), the p-FFT
technique can be used to accelerate volume integration in addition to surface integration. For
example, the integral

∫
Ci

b̃(y)G(x, y) dv(y) with evaluation point x located inside cube Cj can
be approximated by∫

Ci

b̃(y)G(x, y) dv(y) ≈ ∑
�

W�

(∫
Ci

b̃(y)G(x�, y) dv(y)

)
(4)

in which x� represents �th grid point on cube Cj and W� is an interpolation operator that
interpolates function value at x based on values at surrounding grid points (x�).

The integral
∫
Ci

b̃(y)G(x�, y) dv(y) in Equation (4) can be further approximated as∫
Ci

b̃(y)G(x�, y) dv(y) ≈ ∑
�

G(x�, y�) · b̃(y�) = ∑
�

G(x�, y�) ·
∫

Ci

P�(b̃(y)) dv(y) (5)

In (5), P� is a projection operator that projects the source term b̃ located at y onto the �th
grid point (y�) located on cube Ci . As such the original integral

∫
Ci

b̃(y)G(x, y) dv(y) is now
replaced by ∫

Ci

b̃(y)G(x�, y) dv(y) ≈ ∑
�

W�
∑
�

G(x�, y�) · b̃(y�) (6)
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In summary, three major steps are involved in the evaluation of
∫
Ci

b̃(y)G(x, y) dv(y):

• Projection: project b̃(y) to produce b̃(y�) according to Equation (5).
• Convolution: evaluate

∑
� G(x�, y�) · b̃(y�) using FFT.

• Interpolation: obtain
∫
Ci

b̃(y)G(x, y) dv(y) using values at surrounding grid points

(
∫
Ci

b̃(y)G(x�, y) dv(y)) by interpolation as illustrated in Equation (4).

Obviously, the above procedure will produce accurate results only when the evaluation cube
Cj and the field cube Ci are reasonably far away. When they are close, direct evaluation of∫
Ci

b̃(y)G(x, y) dv(y) is to be performed.

2.3.2. Implementation schemes. The general scheme for the implementation of the accelerated
approach to evaluate volume integrals is similar to that of surface integrals [3, 8]. A polynomial
interpolation scheme is used to project sources inside cubes to the surrounding grid points as
well as to interpolate values from grid points back to the evaluation points. For the convolution,
the fast Fourier transform technique is used. The major difference between volume and surface
integration, and the most challenging task, is the direct evaluation of volume integrals on the
cubes. Such calculations are needed in the direct calculation of nearby interactions and also in
the projection step.

If the cube is totally inside the problem domain � (i.e. b̃(y) = b(y)), regular Gauss quadrature
may be employed to evaluate the volume integral if it is not singular. When the cube intersects
with �� or when the integral is singular, special schemes must be developed to accurately and
efficiently compute the integrals.

Consider a volume integral defined on a cube that intersects with the problem domain �i .
The integrand is non-zero inside �i (shaded region shown in Figure 3(a)) and zero outside
�i . The only given information about �i is the surface mesh (triangular panels shown in

Figure 3. (a) A partially filled boundary cube, �i is the problem domain; and
(b) a partially filled cube with surface panels.
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Figure 3(b)). To evaluate this integral, a ‘projection + transformation’ scheme that uses only
the existing surface elements has been developed. This scheme can also be readily extended
to accurately evaluate singular integrals.

2.3.2.1. The ‘projection + transformation’ scheme. In the ‘projection + transformation’ scheme,
prisms are formed by projecting surface elements to one side of the cube. The projection di-
rection is determined automatically in the code based on the consideration of efficiency. For
example, the optimal projection strategy for the case shown in Figure 3(b) is to project panels
down to the bottom face of the cube. Further division of the prism along the projection direction
is performed if necessary to maintain a good aspect ratio of prisms. These prisms serve as the
fine ‘volume elements’ and integration is performed on these elements. With proper addition
or subtraction of integrals over these prisms and the compensation volume (i.e. the volume
which is not covered by prisms, for example, the purple region on the right in Figure 3(b)),
the desired volume integral on the cube can be obtained. For the case shown in Figure 3,
the integral over �i is the summation of the same integral evaluated on prisms and on the
compensation volume.

To evaluate integrals on prisms, if the integral is non-singular, a coordinate transformation is
applied to transform prisms into regular domains shown in Figure 4 and Gaussian quadrature
is then employed to perform the integration.

For singular integrals, i.e. the integrand approaches to infinity at certain point (when x ∈ Ci),
the above scheme will not produce accurate results even when the Gauss points do not coincide
with the singular point. To improve accuracy, the singularity is first removed from the integral
before the Gaussian quadrature is applied. This is achieved by performing an additional prism
subdivision before transformation, and then applying a transformation whose Jacobian cancels
the singularity. As illustrated in Figure 5, after projection, the singular prism is separated
into three smaller prisms (Figure 5(a)), each with the evaluation point as one of its vertices
(Figure 5(a)). A transformation similar to the one described in Reference [29] is then performed

Figure 4. Transformation of a prism into a regular domain.
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Figure 5. (a) A singular prism being divided into three smaller prisms; (b) a smaller prism with
the evaluation point located on one of its vertices; and (c) coordinate transformation: prism 1 is

transformed into a regular domain. Similar transformations can be done for prisms 2 and 3.

for each smaller prism (Figure 5(b)) to remove the singularity analytically (Figure 5(c)) and
Gaussian quadrature is then applied to evaluate the resulting non-singular integrals.

2.3.2.2. Issues in the implementation of the ‘projection + transformation’ scheme. In the im-
plementation of the ‘projection + transformation’ scheme, one issue has arisen due to the fact
that the surface elements and the p-FFT cubes can intersect with each other. As shown in
Figure 6, both surface panels �1 and �2 cross the cube boundaries. Based on the locations of
their centroids (light grey dots (red dots in online version) in Figure 6), panel �1 is assigned
to cube C2 and �2 is assigned to cube C4. When the projection directions in two neighbouring
cubes are different, it is possible to have a region on which the integration has been performed
twice. For example, in Figure 6, if the panels in cubes C1 and C2 are projected down while
panels in cube C4 are projected to the left, the small region shaded by strips is double counted
which will cause errors (so-called ‘overlapping’ errors) in the volume integration if no care is
taken.

The current strategy to deal with this issue is to truncate the panels that cross the cube
boundaries (Figure 7) and to form a new set of surface panels. This is done by identifying the
intersections between panels and the cube, which can be readily obtained since the geometries
of both the panel and cube are given. The projection is then performed on the new set of panels.
This approach guarantees that in the new mesh, no panel will cross the cube boundaries and
therefore the scenario described above will not occur. One drawback of such an approach is that
it increases the number of panels. As shown in Figure 7, one panel has become three panels
after truncation. Nevertheless the increased number of panels will not dramatically increase the
computational cost since the new mesh is only used for the evaluation of volume integrals
on the boundary cubes. Integration on interior cubes does not need any mesh and surface
integration is still performed using the original surface mesh.

Another implementation issue is the identification of the compensation volume. As mentioned
before, the compensation volume is part of the problem domain (�i ) that is not covered by
the prisms formed from surface panels. This identification is accomplished by utilizing the new
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Figure 6. Illustration of scenario in which overlapping errors may occur.

Figure 7. Panel truncation using cube boundaries

surface mesh to find the intersection curves of the problem domain and the cube as shown
in Figure 8. Integration is then performed by the ‘projection + transformation’ scheme for
non-singular integrals as described above.

2.3.3. Complexity of volume integration. The complexity analysis of volume integration based
on the p-FFT accelerated technique is similar to that of surface integration. In the direct ap-
proach (as shown in Figure 9(a)), for each evaluation point, m volume integrals need to be
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Figure 8. Illustration of the compensation volume.

Figure 9. (a) Illustration for direct approach; and (b) illustration for p-FFT acceleration:
(1) projection, (2) convolution, (3) interpolation, (4) nearby interactions.

performed, where m represents the number of cubes. Thus the complexity of volume integration
for n evaluation points is O(nm). The p-FFT accelerated approach illustrated in Figure 9(b)
requires O(m) + O(m log m) + O(n) operations to perform the same integration. About O(m)
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operations are used to perform projection. The convolution step takes about O(m log m) opera-
tions. Both interpolation and direct calculations for nearby interactions require O(n) operations.

When the number of evaluation points n which is related to the number of panels is larger
than or equivalent to the number of cubes m (typically this is the case), acceleration in volume
integration based on the p-FFT technique is achieved.

2.4. Numerical implementation scheme for solving the Poisson equation

The integral equation shown in Equation (2) was solved using a BEM together with the p-FFT
acceleration technique. For simplicity, a piecewise constant collocation scheme is used to
discretize the integral equation. The surface of the structure is discretized into small panels.
On each panel, u and �u/�n are assumed to be constant. A system of equations for the panel
unknowns is then derived by insisting that the integral equations are satisfied at each panel
centroid. The result is a linear system which relates the known quantities (u in our example)
to the unknown quantities (q = �u/�n), as in Equation (7)

G ·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q1

q2

...

qn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d1

d2

...

dn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+ F ·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1

u2

...

un

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7)

In (7), the load vector d consists of the volume integrals shown in (2). The linear system in
(7) is solved using GMRES [30] and the procedure is accelerated using the p-FFT technique.

3. RESULTS AND DISCUSSION

3.1. Volume integration

3.1.1. Singular integrals—convergence study. The proposed prism subdivision combined with
‘projection + transformation’ scheme for handling singular volume integrals was tested by
integrating 1/‖x − y‖ on the singular prism shown in Figure 5(b) with x being the evaluation
point and y being the field point. The convergence plot is shown in Figure 10 together with the
results obtained by applying Gauss quadrature directly without removing the singularity (direct
Gauss quadrature scheme). With order of 19, the result obtained by the proposed scheme
converges to at least 4 digits while the direct Gauss quadrature scheme fails to converge even
with the order of 100. This clearly indicates the influence of singularity on the integration and
the success of the proposed scheme for handling the singular integrals.

3.1.2. Non-singular integrals—direct method versus accelerated method. The accuracy of the
p-FFT accelerated technique when applied to evaluate volume integrals is tested on several field
cubes that have different distances from the evaluation points. Two approaches are compared
here: direct evaluation using Gauss quadrature and the p-FFT accelerated integration. The
integral tested is again

∫
Ci

(1/‖x − y‖) dv(y), evaluated on cubes Ci, i = 1, 2, 3, 4. Both C1
and C2 are fully filled cubes, corresponding to the cases when the cubes are totally inside
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Figure 10. Convergence of evaluation schemes for singular volume integrals.

Table I. Accuracy of
∫
Ci

(1/‖x − y‖) dv(y).

Test cubes Distance Direct GQ p-FFT Error

C1 0.61 0.0952561 0.0952363 0.0208%
C2 1.1867 0.0606677 0.0606677 0.0000%
C3 1.6117 0.0106495 0.0106488 0.0066%
C4 2.1734 0.000117512 0.00011751 0.0009%

the problem domain. C3 and C4 are chosen to be partially filled cubes to test cases when
the cubes intersect with the domain boundary. Thus the integrand is zero in some parts of
C3 and C4. In all the cases considered, the evaluation point is the same and is located
at (−0.68449, −0.451469, −0.565426). Table I compares the results of

∫
Ci

(1/‖x − y‖) dv(y)

obtained from the direct Gauss quadrature (GQ) approach and the approximate method using
the p-FFT technique. The relative errors together with the distances from the evaluation point
to the cube in each case are also listed. It is clear from the table that errors introduced by the
acceleration are negligible in all cases shown and in general errors decrease when the distance
between the cube and the evaluation point increases. The reason that errors in C3 and C4 are
slightly larger than that in C2 is due to the fact that in C3 and C4 the integrands are not
smooth (zero in parts of the cubes).

In general, the accuracy of the p-FFT technique depends on the accuracy of the interpolation
scheme used to project sources to grid points and to interpolate values back to the evaluation
point. If the polynomial interpolation scheme is used, the acceleration error depends on the
order of the polynomial order of polynomial interpolation (the number of grid points), the
location of the cube relative to the boundary and of cause the complexity of the source term.
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Figure 11. Log–log plot of relative error of
∫
Ci

(1/‖x −y‖) dv(y) versus 1/r · (h/r)p+1, where p = 1.

For a source term of 1/r , the error introduced in the approximation is roughly proportional
to 1/r · (h/r)p+1, where r is the distance between a evaluation point and a field cube, h is
the space between two nearest grid points and p is the order of polynomial interpolation. This
is supported by Figure 11 in which the relative errors of

∫
Ci

(1/‖x − y‖) dv(y) evaluated at

different cubes as a function of 1/r · (h/r)p+1 are plotted. As expected, a linear relationship
with a slope of one in the log–log plot is observed.

3.1.3. Complete volume integral. The accuracy and efficiency of the proposed volume-
integration scheme were tested on

∫
�(1/‖x − y‖) dv(y) for � a solid sphere with a radius

of 1, shown in Figure 12. The evaluation point x is the centroid of first surface panel in the
data structure. Three approaches are compared.

I. Direct calculation using the ‘projection + transformation’ scheme. Since there is
no approximation, results obtained by using this approach serve as the reference
and errors are calculated based on it.

II and III. Acceleration for volume integration
II. Integration over the singular cube and its nearest neighbours are performed

directly. Integration on all other cubes is performed approximately.
III. Only the singular cube is treated directly.

Results of the integrals evaluated using the different schemes are listed in Tables II and III.
Three different surface discretizations were used, formed based on three original sets of surface
panels with the total number of panels being 192, 768 and 3072, respectively. Figure 12(a)
shows one original set of 768 surface panels. Figure 12(b) shows the corresponding mesh after
truncation and Figure 12(c) shows the FFT grid on the mesh in (b). Recall that the purpose
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Figure 12. A solid sphere domain: (a) original surface mesh (768 panels); (b) new surface mesh
(2244 panels); and (c) sphere with the 3-D uniform grid.

in forming a new set of panels is to eliminate the overlapping errors. In the case of 192, no
panels intersect with cubes therefore the new set of panels is the same as the original one.
From Table II, it is clear that errors introduced by approximation are negligible particularly
when approach II is used. In the case of 192, the error is zero when II was used and 0.63%
when III was used. This is due to the fact that in this case the total number of cubes is 8, i.e.
2/side. Thus all the cubes are the nearest neighbours to each other and according to II, they
are calculated directly. In III, however, only the singular cube is evaluated directly, resulting in
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Table II. Accuracy of different integration schemes.

No. of
surface Error Error
panels Evaluation point (x) I II (II − I)/I III (III − I)/I

192 (−0.686838, −0.439644, 0.633815 0.633815 0% 0.637835 0.63%
−0.550755)

2244 (−0.68449, −0.451469, 0.658263 0.658288 0.04% 0.654849 0.52%
−0.565426)

5376 (−0.715191, −0.654795, 0.664413 0.664473 0.01% 0.660061 0.66%
−0.237605)

Table III. CPU time of different schemes (s).

No. of
surface
panels I II Ratio (II/I) III Ratio (III/I)

192 0.0194 0.0194 100% 0.0151 77.8%
2244 0.2074 0.1859 89.6% 0.0338 16.3%
5376 0.7969 0.2863 35.9% 0.0340 4.26%

a different value from those obtained from I and II. In the cases of 768 and 3072, the number
of cubes per side is five. Thus there are cubes that are not the nearest neighbours to each other.
This is the reason why there are differences between the results obtained by different schemes.

Table III gives a comparison of the computational cost associated with volume integration of
each method. All the calculations were performed on a PC with Pentium 4 1.8 GHz processor.
The savings in CPU time when acceleration is performed is evident from the results and more
efficiency is achieved when the discretization is finer.

Overall, the case study (i.e.
∫
� (1/‖x − y‖) dv(y) on a solid sphere) shown in this section

has demonstrated the accuracy and efficiency of the accelerated approach.

3.2. Poisson problems

Based on the proposed volume-integration scheme, a 3-D Poisson solver has been developed.
This solver uses a uniform 3-D grid (FFT grid) as the coarse mesh to perform volume integra-
tion. Same grid is also used to accelerate the evaluation of both surface and volume integrals.
The accuracy and efficiency of the solver are demonstrated through two examples described in
the following sections. In both cases, Dirichlet boundary conditions are prescribed. The solu-
tions found through simulations are the normal flux at the boundaries. Results are compared
with the exact solutions and errors measured using the L2-norm (Equation (8)) are reported.

Error =
√√√√ N∑

i=1

(
�us

�n
− �ue

�n

)2

dsi

/ √∫ (
�ue

�n

)2

ds (8)

where superscript s indicates simulation and e represents the exact solution.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:1775–1795



1790 J. DING, W. YE AND L. J. GRAY

Figure 13. The L2-norm errors in �u/�n of Poisson Example 1.

3.2.1. Example 1—a solid sphere with radius 1 (Figure 12). The problem solved in this example
is ∇2u = 1 with the boundary conditions of u = x2/2. The analytic solution for the normal flux
at the boundary is �u/�n = x · nx where nx is the x-component of the outward normal vector.
Similar to the previous case study, four approaches are compared:

I. Direct calculation for both surface and volume integration, uses only the original
surface mesh (Figure 12(a)).

II. Acceleration for surface integration only, uses original surface mesh (Figure 12(a))
for surface integration and new mesh (Figure 12(b)) for volume integration.

III and IV. Acceleration for both surface and volume integration, uses original surface mesh
(Figure 12(a)) for surface integration and new mesh for volume integration
(Figure 12(b)).

III. Integration on the singular cube and its nearest neighbours is performed directly.
Integration on all other cubes is performed approximately.

IV. Only the singular cube is treated directly.

The errors in the normal flux at the boundaries are plotted in Figure 13, together with a
line of O(h), where h is the panel size. There are no data points corresponding to the original
discretization of 3072 for approaches I and II due to exhaustion of machine memory. It is
interesting to see that errors in approaches I–III are very close. This further confirms our
previous observation that errors caused by acceleration are negligible. In addition, the errors
seem to come mostly from the surface integration. Figure 14 shows a similar error plot for the
Laplace problem (only results from the accelerated approach are plotted). The level of errors
is comparable with that of the Poisson problem. The convergence rate in all the approaches
except IV is around O(h). This is consistent with the constant element used in this work.
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Figure 14. L2-norm errors in �u/�n of the Laplace problem.

Approach IV, on the other hand, fails to converge in this example. Despite the great savings
in the CPU time, this approach is therefore not recommended. It is worth pointing out that in
all the calculations, the order of Gauss quadrature formula used is 3. Obviously, the accuracy
will further improve when a higher order of Gauss quadrature formula is used. For complicated
source terms, high-order quadrature rules are recommended to ensure accuracy.

Figure 15 gives the CPU times used for solving the Poisson problem using the different
approaches. Recall that the only input to the code is the surface mesh. Thus the recorded CPU
time includes the time for setting up the FFT grid, generating new mesh, etc. The data points at
3072 for I and II are extrapolated. At coarse discretizations particularly in the cases of 48 and
192, the accelerated schemes are more costly. This is because the additional overhead needed
for generating new meshes, performing projection, convolution and interpolation offsets or even
overpowers the time saved by the acceleration. When the discretization becomes finer, the
savings by the acceleration picks up, resulting in a much less CPU time. Thus, the acceleration
scheme is, as expected, more efficient for large-scale problems.

3.2.2. Example 2—a solid ellipsoid with two spherical exclusions. This example is similar to
the benchmark problem 1 studied in Reference [28] except a solid ellipsoid is used instead
of a parallelepiped region (see Figure 16). The lengths of the semi-axes of the solid ellipsoid
are a = 2, b = 4, c = 2, and the diameter for the spheres is 1 with centres at (0, −0.5, 0) and
(0, 1, 0), respectively.

The governing equation is

∇2u = (2y3 + 6y)e(x+z) (9)
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Figure 15. CPU time for solving the Poisson equation on a spherical domain.

Figure 16. Surface mesh of the problem domain for Example 2—a solid ellipsoid with two
spherical exclusions. The total number of surface panels shown is 1152.

One solution to this problem is shown in Equation (10). This solution is used to prescribe
the Dirichlet boundary conditions (i.e. u = y3e(x+z)) at all surfaces (ellipsoid and two spheres).
It also serves as the reference for the calculation of errors (measured in L2-norm) in the
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Figure 17. Accuracy and convergence for Poisson Example 2.

simulated �u/�n

u = y3e(x+z), q = �u

�n
= e(x+z)(y3nx + 3y2ny + y3nz) (10)

Figure 17 plots the error versus the number of panels as well as a dash line that represents the
linear convergence, i.e. E ≈ O(h). Three discretizations were tested (one is shown in Figure 16).
With a total of 3456 constant surface elements (3072 for the ellipsoid and 192 for each sphere),
the error is reduced to 0.92% and the associated overall CPU time is 1029 s. The reported
error for a similar problem in Reference [28] is around 2.3% and the CPU time is 750 s
using the auxiliary domain method (ADM). (The authors have shown in Reference [28] that
the ADM performs better than the Dual Reciprocity Method for this particular case.) Although
it is difficult to directly compare the performance of our approach and the ADM based on
these results, different computers, different boundary conditions, etc. Nevertheless, these results
indicate that our approach is accurate and efficient. Again, the convergence rate is around O(h).

4. CONCLUSIONS

In this paper, we described an efficient numerical approach for computing volume integrals
present in the boundary integral formulations of non-homogeneous linear problems with 3-D
complex domains. A 3-D uniform grid constructed initially to accelerate surface integration
is used for the evaluation of volume integrals. As such, no volume discretization of the inte-
rior problem domain is necessary. In addition, the precorrected-FFT technique is extended to
accelerate volume integration, resulting in a much reduced computational time. Several tech-
niques have been developed to handle issues arising from the implementation. In particular a
‘projection+transformation’ scheme is used to accurately evaluate singular volume integrals and
to perform integration on partially filled cubes. The accuracy and efficiency of these techniques
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are demonstrated through several examples. It has found that the errors caused by the acceler-
ation are very small and more efficiency is achieved when the discretization is finer, indicating
the developed approach is suitable for large-scale problems.

An accelerated BEM solver for Poisson equations has been developed based on our approach.
In this solver, the only required input is the surface mesh of the problem domain. The accuracy,
efficiency and convergence of this solver are first demonstrated through an example with a
spherical domain. A 3-D multiply-connected problem was then solved to illustrate the capability
of the solver for handling problems with complex geometries. The results were compared
with those obtained using the ADM on a similar problem. Although it is difficult to judge
which method performs better, due to the differences between the two studied cases, the good
performance of our approach is nevertheless clearly demonstrated. In addition the approach
developed in this paper is applicable to any domain geometry.
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