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1. INTRIODUCTION 

 

In a recent article [1], C. Montag et.al. compare frequencies observed when studying beam position 

displacements, with frequencies of mechanical vibrations of the cryostat tank containing the dipoles D0 and 

the quadrupole lenses Q1, Q2 and Q3. They find agreement for several of the observed  frequencies, and they 

conclude that quadrupole mechanical oscillations, if not mitigated, will affect horizontal beam position 

stability in ways that will limit future RHIC performance. Using finite element analysis they also compute 

expected eigenmode frequencies for the oscillatory motions of decoupled cold masses, and they find many 

lines, some in general agreement with measurements and beam observations. 

 

Here we prefer to concentrate exclusively on the main vibration modes, solely due to the flexibility of the 

supporting plastic posts. We use a simple model, similar to the one suggested by Montag, et.al. [2]. 

Understanding these modes and the associated spring constants is important in order to device solutions to 

this problem. We then use the obtained spring constants to specify stiffeners that will increase the resonant 

frequencies by factors of 2 or 3, and we estimate the associated heat losses. 

 

Finally we suggest several active damping arrangements that should be very effective in increasing the 

mechanical stability, incurring negligible heat loss penalties and that appear thus to be preferable to the static 

support solutions. 

 

 

2. MECHANICAL OSCILLATION MODES 

 

We adopt the same simple mechanical model used before [2], in which the individual quadrupole magnets 

are assumed to be rigid cylinders of length L0 with two elastic suspensions, each located a distance s form 

the center. These elastic suspensions, consisting of ULTEM posts, provide restoring forces against horizontal 

displacements characterized by certain spring constants k. The magnets are assumed to oscillate 

independently, since the coupling between magnets is week in the transverse direction [1,2]. There are two 

degrees of freedom for horizontal motions, and correspondingly two oscillation modes. In the “rolling mode” 

both ends of the cylinder oscillate in phase, while in the “yawing mode” they move with opposite phases. 

(These are the “dipole” and “quadrupole” modes of reference [2], but we don’t  use these terms here to avoid 

confusion with magnets having the same names.) In both modes the restoring forces are provided by elastic 

deformations of the ULTEM posts, but the spring constants will be quite different. To see this we consider 

the two types of deformation illustrated in Figs.1 and 2. 

 

The predominant deformation for the rolling mode will be one where the top flange of the posts are allowed 

to rotate, while this rotation will not occur in the yawing mode because it would imply twisting the cylinder 

which is assumed to be rigid to very good approximation. In fact values for these two spring constants where 

obtained experimentally in 1989 [3]. Figure 3 shows an old sketch of the experimental arrangement. Posts 

are shown while they are being tested in pairs and therefore the central flange common to both posts moves 

parallel to the base, and is thus not allowed to rotate. This spring constant determined be measuring 

deflection as function of applied force  is relevant to our yawing oscillation One of the posts was then 



removed and the deformation as function of applied force was again measured to get an approximate value of 

the spring constant relevant to our rolling mode. The values obtained are 60,000 lb/inch for the yawing mode 

(also used in [2]) and between 30,000 and 35,000 lbs/inch for the rolling mode [3]. 

 

 

 
 

Fig. 1  Schematic representation of the two main oscillation modes. 

 

 

 
 

Fig. 2 ULTEM post assemblies shown un-deformed to the left, and deformed in the middle and to the 

right where the upper surface is respectively constrained or not constrained to remain parallel to the 

base. Respective measured spring constants are indicated. 

 

 

In the yawing mode, since there is no rotation around the longitudinal cylindrical axis, the restoring forces 

will only depend on the horizontal deflection, and not on the vertical position of the oscillating object. This is 

not true for the rolling mode, where the restoring forces transmitted to the center of mass of the object will 



depend of the height of that center-of-mass. This is illustrated in Fig.4 where we also show the simple 

equations used to obtain the effective spring constant corresponding to the center-of-mass height. 

 

Strictly speaking the rolling oscillation is better represented by a rotation around a line through the center 

height of the posts, and the restoring forces represented by the spring constant are transformed into restoring 

torques. Frequency calculations were carried out both ways and the results were similar differing only by 3 

or 4%. The more accurate values, obtained with the second method are the ones shown in Table 1.   

 

Table 1 

 

Lens Calculated frequency for 

the rolling oscillation(Hz) 

Calculated frequency for the 

yawing oscillation (Hz) 

Q1 7.8 16.3 

Q2 5.2 14.5 

Q3 5.6 14.5 

 

 
Figure 3   1989 sketch showing the arrangement used to measure the spring constant of the ULTEM 

posts. One of the posts was removed to measure the spring constant when the end of the post is free to 

rotate. 

 



 
Fig. 4  Simplified schematic representing the flexible post of height h (green) connected to a rigid 

support of height H, where h + H is the height of the center of mass. The effective spring constant k’ 

corresponding to the center of mass position is calculated from spring constant k measured at the top 

of the post.



The frequencies in table 1 are now compared with the beam motion frequency spectrum taken from [1] and 

the results are shown in Fig. 5 

 

 
 

Fig. 5   Frequency spectrum encountered in the BPM data [1] compared to the frequencies predicted 

here for the two main oscillation modes of Q1, Q2 and Q3. The red lines numbered 1,2,3 at the center 

of the figure correspond to the expected yawing-mode oscillations and the lower frequency ones to the 

left are for the rolling mode. 

 

There is fairly good agreement for all of the lines, including the lowest observed frequencies. But there are 

more lines in the beam spectrum suggesting that either sources other than quadrupole lens vibrations may 

also perturb the beam or that the hypothesis of independent motion for the individual cold masses may not be 

a very good approximation. There is some experimental evidence for this last possibility from observed 

frequency spectra [6] measured with an accelerometer attached to one of the magnets while coupled to the 

neighboring ones. 

 

In the following sections, we briefly discuss ideas for passive and active methods that may be considered to 

effectively reduce the vibration amplitudes by counteracting the effects of the driving forces. Identifying and 

reducing the driving forces is of course another approach, but this possibility is not addressed here.   



3. MITIGATION BY STIFFENING THE SUPPORTS 

 

Stiffening or supplementing the mechanical supports of the magnet will increase the resonant frequencies. 

To understand the effects of increasing the resonant frequencies we write down the steady-state solutions for 

a driven damped harmonic oscillator of mass M, spring constant k and “quality factor” Q.  In equation 1, 

F(f) is the amplitude of a driving force of frequency f, producing a steady-state oscillation amplitude A(f), 

where the resonant frequency f0, is given by equation 2 
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If there are forces present of various frequencies then the total amplitude is obtained by summing or 

integrating the amplitude contributions given by 1) taking into account the correct phases. 

 

For a “white” spectrum of driving frequencies (F(f) =  constant) we see from 3) that the resonant amplitudes 

will be reduced quadratically as the resonant frequency is increased, but, according to 2), only linearly with 

respect to the corresponding increases in the spring constant.  

 

With an unknown driving force spectrum, one can not predict how the vibration amplitude will change when 

stiffening the structure. On the one hand the result may be much better than indicated above if one moves the 

resonant frequencies away from predominant driving frequencies, but it may also be worse if the opposite 

happens. 

 

We will use Q2, the heaviest magnet, as an example of what it would take to increase the resonant 

frequencies, and we will consider the arrangement shown in Fig. 6. Two tie-rods are fastened to the top of 

each end of a Q2 magnet, and are connected to pre-tensioning devices attached to a rigid frames supported 

from the tunnel floor. The rods either traverse and are welded to the end-flanges of two small bellows, or 

they are otherwise attached so as to preserve the integrity of the insulating vacuum. Tension is applied when 

the magnet is cold by rotating the threaded support-caps, perhaps using load cells (not shown) as guidance. 

When the magnet warms up, thermal expansion will remove the tension and the rods are free to move into 

the support cavity, as indicated at the top of the drawing. There will be an arrangement such as the one 

shown in Fig. 6 close to each end of the magnet.  

 



We considered stainless steel and G10 as possible materials for these rods. The room-temperature elastic 

modulus (Young’s modulus) for 304 SS is 2.1E11 Pa and 1.72E10 Pa for G10. We use room temperature 

values for our calculations without taking credit for the increased stiffness (by some ~ 30% at 4
0
K [3]) that 

will increase the spring constants slightly when a portion of each rod is at cryogenic temperatures. However 

a room temperature approximation can not be used for the thermal conductivity that changes drastically as 

shown in Fig. 9  [4]. We choose the cross-sections of these rods to provide equal spring constants, and 

therefore the cross sections of the longer rods will be larger. The lengths of the rods shown in Fig. 5 are 690 

mm and 320 mm.  

 

The equivalent spring constant for the rolling mode before installing the tie-rods, calculated now at the top of 

the magnet where the tie-rods are fastened is 6,100 lb/in, while it is reduced to 40,000 lb/in for the yawing 

mode from the previously discussed value of 60,000lb/in by locating the tie-rods closer to the end of the 

magnet than the post locations. These are the spring constant values that will be incremented by the presence 

of the tie-rods, and the resonance frequencies will increase accordingly. The results of these calculations are 

shown in Figs. 7 and 8. 

 

 

 
 

Fig. 6   Tie-rod system to increase the resonant frequency. Two arrangements as the one shown here 

would be used per magnet, one located close to each end. 



  
Fig. 7    The diameters of the short tie-rods are 68% of the long tie-rod values. 

 

 

 
Fig. 8  The diameters of the short tie-rods are 68% of the long tie-rod values. 

 

 

 

 



 
Fig . 9 

 

 
Fig. 10 



 

Figure 10 shows the heat load results for stainless steel obtained by using the thermal conductivity data [4] 

shown in Fig.9. Similar plots can be generated for other materials such as G10. Heat losses will be smaller 

for G10 for equal resonant frequency increments. 

 

While heat loads may be tolerable for significant stiffening of the magnets, it is not entirely clear by how 

much the resonant frequencies need to be increased, as was discussed above. Also the rigid support frame 

shown in Fig. 6 needs to be quite massive to provide the required rigidity. We want to increase the present 

effective spring constants, which are of the order of 60,000 lb/in by at least a factor 10 without being limited 

by the support structure. Therefore the spring constant of this structure, measured at the height of the tie-rod 

connections will need to be at least 10
6
 lb/in.   

 

 

4. MITIGATION BY DAMPING  

 

Passive or active damping seem to be a good alternatives because more attenuation can be achieved, at least 

in principle, and because of the above mentioned uncertainties about the effects of increasing the resonant 

frequencies without knowing the driving frequency spectrum. More importantly the forces involved will be 

much smaller, thus allowing much thinner rods (or wires) and much weaker supports. The result will be less 

heat load and cheaper implementation. 

 

To estimate the magnitude of the damping forces we use 3) to find the amplitude of the driving force that 

will cause a certain vibration amplitude at resonance. The required damping forces (at that frequency) should 

have the same amplitude. 
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For the 5.2Hz rolling oscillation of the 3110 Kg  Q2 mass, assuming an amplitude A = 10µm and Q=100 we 

get a 3.1 Newton force amplitude or 0.69 lb force. Much higher values of Q have been reported [5] leading to 

even smaller forces. Therefore only very thin wires need to be used, instead of the ~½” thick tie-rods 

considered before. Also, the forces are so small that there is no good reason for balancing them pulling from 

both sides. The systems suggested in this section all consist of pairs of sensors, actuators or dampers, all 

located on a single side of each magnet, and close to its ends. 

 

Heat-load consideration will not be a large factor in designing these systems. Even for e.g. 1 mm diameter 

304 SS wires, which have a yield strength of  ~50 lb, and are therefore probably thicker than necessary, the 

heat loads per magnet will only be ~0.02 W and ~ 0.5 W from 4
0
 to 55 

0
K and from 55

0
 to 300 

0
K, 

respectively for a geometry similar to the right side of Fig. 6, and using four wires per magnet.    

 

 



4.1 Passive damping 

 

Passive damping systems are the more effective the large the Q-values are. The Q-value can then be easily 

reduced by a large factor resulting in considerable attenuation as can be seen from Eq. 3.  Figure 11 

schematically shows an example of such a system where the energy-dissipating device has been located 

outside of the vacuum. The problem is that so far we have not been able to find a commercial “shock 

absorber” type of device adequate for this application. 

 

 

 
 

Fig. 11   Example of passive damping system using a linear shock absorber. The spring attached to the 

vertical support must be strong enough to keep the wire taut by overcoming the pressure-induced 

force on the small bellows flange.  

 

A 1 mm diameter stainless steel wire would be more than adequate to couple the cold mass to the shock 

absorber for the forces estimated in the previous section, which were based on a hypothetical Q-value of 100 

and driving forces close to the resonance frequency.  It is unlikely that a larger diameter wire will be 

required, but further measurements and tests would be required to be sure.



4.2 Active Damping 

 

In this section we sketch in a qualitative way several possible configurations for sensing magnet motions to 

actively feed back damping forces. Research of available transducers, sensors and actuators, and detailed 

calculations and tests will be required to estimate performance and costs. The conceptually simplest systems 

are those where the wires used for sensing and those used for driving are kept separate to avoid having to 

contend with signal components due to variable wire stretching. Such are the systems illustrated by  Fgs 12 

through 14 below; with pairs of sensing and driving wires located close to each end of the magnet. At the end  

(Fig. 15) we briefly touch on the possibility of combining sensing and driving wires. 

 

 

 
 

Fig 12  Active feedback system where a damping force proportional to the velocity is generated by 

amplifying the signal from velocity transducer. The springs have sufficient strength and length to 

always keep the wires taut, under all conditions of cryostat temperatures and linear solenoid 

generated forces.  The stationary part of the velocity transducer is supported, through a bellows, by 

means of a floor-mounted column.  This is a much weaker and cheaper structure than the frame 

shown in Fig. 6. A system similar to the one shown here can be designed by replacing the velocity 

transducer by a linear position transducer, and using a signal differentiating stage before the amplifier 

to generate the velocity signal. 

  



 

 

 

 
 

Fig. 13  Active feedback system where a damping force proportional to the velocity is generated by 

integrating the accelerometer signal. The springs have sufficient strength and length to always keep 

the wires taut under all conditions of cryostat temperatures and linear solenoid generated forces. 

Advantages of this system are that no floor-mounted support is required and that commercially 

available compact accelerometers are probably suitable for this application. 

 



 
 

Fig. 14   Active feedback arrangement where a damping force proportional to the velocity is generated 

using a  Michelson interferometer that uses the wall of the tunnel as position reference. This system is 

no doubt superior to the ones described above, but it is probably much better than required and too 

expensive. 

 

 

 



 
 

Fig 15  Active feedback system similar to the one of Fig 13, where a damping force proportional to the 

velocity is generated by integrating the accelerometer signal, but using a single wire. This wire can 

now have a cross section twice as large as before for the same heat loads. If nevertheless, stretching of 

the wire is still significant, electronic compensation can be applied by differentiating the force signal 

that is proportional to the elongation. This differentiated signal is then proportional to the speed of 

elongation and is added with the correct sign so as to cancel its effect on the velocity signal. 

 

 

We should note that for all the active feedback systems except the last one (Fig. 15), elastic stretching of the 

wires is of no concern since motion sensing is independent of such stretching as long as the spring constant 

of the tensioning spring is much smaller than the wire’s spring constant. For the case of Fig. 15, wire 

stretching is electronically compensated, but may in principle become a limiting factor if the required 

compensation becomes too large. Because of the same considerations mentioned in section 4.1, this is not 

expected to be the case for 1 mm diameter stainless steel wires.  

 

It should also be noted that the electronic circuits shown as simplified block diagrams in figs 12 through 15 

will in reality be somewhat more complicated since the usual band-pass and/or low-pass filters will be 

required to prevent high frequency oscillations. 

 

Both interferometer-based and accelerometer-based systems are being considered at SLAC for damping 

vibrations of the last lens preceding the Linear Collider interaction point where the beam size will be ~1nm. 

At the LIGO project such techniques are pushed even much further. That is the state of the art. We are 

aiming for a 0.1 mm beam sizes and are concerned about 1 µm vibrations.  It shouldn’t be too difficult or too 

expensive to solve this problem. 

 

We conclude that the active damping schemes, especially the one of Fig.13, offer a very attractive alternative 

to possible solutions based on stiffening the supports. The heat loads are much smaller, the results will be 

better, and the implementation is probably easier and cheaper. 
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