ASP Science Highlight Overview of the Aerosol Chemistry Module MOSAIC

Rahul Zaveri Pacific Northwest National Laboratory Richland, WA

ASP Science Team Meeting Alexandria, VA, November 1, 2005

Objective

Develop an aerosol chemistry module that is accurate, computationally efficient, and wellevaluated using laboratory and field measurements for inclusion in regional and global climate models

Anatomy of a Climate Model-Worthy Aerosol Chemistry Module

Reliable, robust, and efficient treatments for:

- Gas-phase mechanism
- All the globally important species
- Size-resolved dynamics (modal/sectional/moments)
- Nucleation
- Thermodynamics
- Dynamic gas-particle partitioning
- Heterogeneous reactions and aerosol aging

MOSAIC: Candidate for Climate Models

Model for Simulating Aerosol Interactions and Chemistry

UNIQUE

MOSAIC Sub-modules:

- Activity coefficients
- Solid-liquid equilibrium
- Gas-particle partitioning

Activity Coefficients

Multicomponent activity coefficients are needed in solidliquid and gas-liquid partitioning calculations.

Model or Mixing Rule	Basis	Pros and Cons
Bromley [1973]	Binary activity coeffs at the same ionic strength as the mixture solution	Efficient and easy to use, but accuracy deteriorates at low RH. Most commonly used.
Kusik & Meissner [1978]		
Pitzer & Mayorga [1973]	Molal-scale ion interaction model	Accurate, but typically valid only up to 10-15 mol/kg
Pitzer-Simonson-Clegg [1986, 1998]	Mole-fraction scale ion interaction model	Highly accurate over entire RH range, but computationally too expensive
Metzger et al. [2002]	Mean binary activity coeffs as a fn of a_w	Highly efficient, but generally not accurate below ~80% RH.
MTEM Zaveri et al. [2005]	Linear mixing rule for Metzger's approach	Efficient, easy to use, and accurate at low RH

MTEM: Multicomponent Taylor Expansion Method

A compact, linear mixing rule for Metzger's approach

$$\log \gamma_A(a_w) = \sum_E \zeta_E \log \gamma_{A-E}^0(a_w)$$

where

 $\log \gamma^0_{A-E}(a_w) = \text{activity coeff of } A \text{ in a binary solution of } E \text{ at } a_w$ $\zeta = \text{ionic mole fraction}$

Zaveri, R.A., R.C. Easter, and A.S. Wexler, A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols, JGR, 110, D02201, 2005.

Bisulfate Dissociation Equilibrium

 $HSO_4^- \xleftarrow{K_d} H^+ + SO_4^{2-}$

Ionic-strength based methods such as KM, Bromley, and PSC require an iterative Bisection or Newton's method to solve this equilibrium.

MTEM directly gives activity coeffs at a given RH. Therefore, we only need to solve a simple quadratic eqn to obtain the equilibrium H⁺ ion molality

$$m_{\rm H^+}^2 + bm_{\rm H^+} + c = 0$$

$$b = K_d \frac{\gamma_{\text{H}_2\text{SO}_4}^3(a_w)}{\gamma_{\text{HHSO}_4}^2(a_w)} + (m_{\text{Na}^+} + m_{\text{NH}_4^+} - m_{\text{NO}_3^-} - m_{\text{Cl}^-} - m_{\text{SULF}})$$

$$c = K_d \frac{\gamma_{\rm H_2SO_4}^3(a_w)}{\gamma_{\rm HHSO_4}^2(a_w)} (m_{\rm Na^+} + m_{\rm NH_4^+} - m_{\rm NO_3^-} - m_{\rm Cl^-} - 2m_{\rm SULF})$$

Performance Evaluation

Benchmark: PSC model

Performance Ratio PR

$$\mathbf{R}_{A,X} = \frac{\gamma_A^X(a_w)}{\gamma_A^{\mathrm{PSC}}(a_w)}$$

X = MTEM, KM, Metzger

Test Case

Test Case

MTEM: Computational Efficiency

CPU requirements of MTEM w.r.t. KM and PSC

Solid-Liquid Equilibrium

MDRH = function of which salts are present CDRH = function of relative amounts of the salts present

Solid-Liquid Equilibrium Solvers

Model/Solver	Method	Pros and Cons
SCAPE2 & ISORROPIA	Various assumptions	Efficient at the cost of accuracy
EQUISOLV II	Nested iteration of equilibrium equations	Efficient and accurate
GFEMN & AIM2	Direct minimization of Gibbs free energy	Very expensive but highly accurate
MESA	Pseudo-transient Continuation (PTC) method + parameterized MDRH (lookup table)	Very efficient and accurate

MESA: Multicomponent Equilibrium Solver for Aerosols

Pseudo-Transient Continuation Technique

Formulate the non-linear equilibrium problem as a pseudo-transient system (precipitation and dissolution) described by a set of ODEs, and solve it to steady-state to obtain the equilibrium solution.

$$E_{(s)} \xrightarrow{k_d \atop k_p} v_M M_{(l)} + v_X X_{(l)}$$

$$K_E^{sl} = k_d / k_p$$

 \rightarrow MDRH(T) = parameterized as a function of particle composition. Therefore, no need to solve below MDRH.

Zaveri, R.A., R.C. Easter, and L.K. Peters, A computationally efficient multicomponent equilibrium solver for aerosols (MESA), JGR, in press, 2005.

MESA Accuracy Using AIM as Benchmark

Deviations in EQUISOLV II are due to errors in activity coefficients

MESA Accuracy Using AIM as Benchmark

Deviations in EQUISOLV II are due to errors in activity coefficients

MESA: Computational Efficiency

RMS Relative Convergence ErrorsMESA = 0.14%EQUISOLV II = 3.7%

16 Test Cases			
Statistic	MESA Speedups Relative to EQUISOLV II		
Minimum	1.7		
Maximum	17.0		
Average	5.8		

Platform: Intel Xeon 3.0 GHz Compiler: Portland Group Fortran 77/90

Because MESA directly predicts MDRH(T), it is ~30 to 40 times faster than EQUISOLV II when RH < MDRH. An important computational advantage at lower temperatures where MDRHs are typically high.

Dynamic Gas-Particle Partitioning

Aerosol-Phase

Gas-Phase

$$\frac{d[A]_{i,T,m}}{dt} = k_{i,m}([G]_i - [G]_{i,m}^*) \qquad \frac{d[G]_i}{dt} = -\sum_m k_{i,m}([G]_i - [G]_{i,m}^*)$$

$$k_{i,m} = 2\pi \overline{D}_{p,m} N_m F(Kn, \alpha_i) \qquad [s^{-1}]$$

$$i = \text{species index}$$

$$m = \text{aerosol bin index}$$

$$D_n = \text{aerosol diameter}$$

 N_m = aerosol number concentration

 G^* = equilibrium surface concentration

- Set of implicit non-linear ODEs
- Time scales for species/bins may vary over 3 orders of magnitude
- Extremely stiff and computationally expensive to solve

Gas-Particle Partitioning Solvers

Model/Solver	Method	Pros and Cons
SCAPE2 & ISORROPIA	Gas-Liquid-Solid Equilibrium	Efficient but not accurate. Does not give size distribution
PNG-EQUISOLV II [Jacobson, 2005]	Fully dynamic using implicit Euler method	Can take long time steps, but prone to unknown errors at low LWC, especially in small particles
MADM-Hybrid & MADRID	Combination of equilibrium and dynamic methods	Relatively efficient, but still prone to errors in small particles with equilibrium assumption
ASTEEM	Fully dynamic using explicit Euler method	Very efficient and accurate for all particle sizes and at all LWCs and RH

ASTEEM: Adaptive-step Species Time-split Explicit Euler Method

Algorithm:

- 1. Integrate H₂SO₄ and NH₃ analytically over all bins for transport time interval, e.g., 5 minutes
- Compute Time Splitting Interval (τ), e.g., 1 minute, such that gas concentrations don't change more than by ~10%.
- 3. Solve Solid-Liquid equilibrium with MESA and integrate HNO_3 , HCI, and NH_3 mass transfer over each aerosol bin separately over τ using an adaptive time stepping scheme.
- 4. Synchronize all bins at τ and continue Step 3 until the transport time interval is reached for all bins (5 minutes).

ASTEEM Accuracy Using AIM as Benchmark

```
Single bin: N = 185 cm<sup>-3</sup>, D_p = 0.5 \mu m, RH = 62%, T = 298 K
```


Lines = MOSAIC (Rigorous dynamic) Circles = AIM (Equilibrium) [Wexler and Clegg, 2002]

Multiple Bins:

Lines = MOSAIC (ASTEEM Dynamic) Circles = MOSAIC (Rigorous Dynamic)

Gas Phase

Lines = MOSAIC (ASTEEM Dynamic) Circles = MOSAIC (Rigorous Dynamic)

ASTEEM: Computational Efficiency

ASTEEM gives accurate temporal solutions for all aerosol bins with much fewer steps!

MOSAIC: Evaluation Using SCAQS 1987 Data

Zaveri R.A., R.C. Easter, J.D. Fast, and L.K. Peters, A new model for simulating aerosol interactions and chemistry (MOSAIC), to be submitted to JGR.

Summary

- All MOSAIC modules/algorithms are robust, mass conserving, and positive definite.
- Look up tables and simple parameterizations are used where possible for maximum efficiency.
- MOSAIC is more accurate and efficient than other similar modules used in air quality or climate models.
- MOSAIC framework is flexible for both modal and sectional dynamics.
- MOSAIC (and gas-phase mechanism CBM-Z) have been implemented in WRF-Chem.

Path Forward

- Add a comprehensive secondary organic aerosol treatment in collaboration with Sasha Madronich.
- Work with other ASP PIs to add heterogeneous chemistry, aging processes, and nucleation.
- Collaborate with ASP and NSF participants to evaluate comprehensive MOSAIC using field data.
- Implement a simplified version in WRF-Chem, and also make it available to regional and global climate modelers.

Acknowledgements

- Simon Clegg, University of East Anglia, U.K., for assistance in implementing the PSC model.
- Anthony Wexler, University of California, Davis, for many helpful discussions on various topics in aerosol modeling.
- Mark Z. Jacobson, Stanford University, for his efforts in the intercomparison of MESA and EQUISOLV II.
- Carl Berkowitz, Jerome Fast, Steve Ghan, and Len Peters for their continued support for this work.
- DOE's Atmospheric Science Program and NASA Earth Science Enterprise for funding major portions of this work.