HYPER-LUMINOUS INFRARED GALAXIES

An X-ray view

Ángel Ruiz Camuñas

<u>F. Panessa, F. Carrera</u>

Cargèse – 7 April 2006

HLIRGs: Introduction

>LIRGS: $L_{IR} > 10^{11}L$

>ULIRGS: L_{IR} > 10¹²L

≻HLIRGs: L_{IR} > 10¹³L

HLIRGs: Introduction

~50 detected HLIRGs, ~100-200 estimated with 60µm flux >200 mJy over the whole sky.

Unique laboratories to investigate extremely high star formation (~1000 M /yr) and its conection to supermassive black holes.

➢ Evolutionary conection: QSO ↔ ULIRG ↔ HLIRG

Cosmic X-ray and infrared background.

HLIRGs: Introduction

Three hypothesis:

- A. High-luminosity tail of the ULIRGs: starburst and/or AGN triggered by interactions and mergers.
- B. Very young galaxies during their maximal star formation episode.
- C. IR emission via other mechanism (different new class of object): e.g. transient IR luminous phase in the QSO evolution.

HLIRGs: Samples

Sub-samples from Rowan-Robinson (2000):

Farrah et al. 2002:

Detected HLIRGs in FIR or submm surveys. Complete, homogeneous and unbiased to AGNs. (8 sources with our own XMM data in the future)

XMM-sample:

All sources with public data in the XMM-Newton archive in December 2004, and redshift between ~0.3 y ~1.5. (9 sources, 2 from Farrah sample)

Previous results suggest that some sources could be highly obscured and no direct X-ray emission is detected: Compton-thick sources.

Franceschini et al. 2003: ULIRGs comparison sample.

HLIRGs: Sample

Source	Туре	Z	RA	DEC
IRAS F00235+1024	Starburst	0.575	00 26 06.5	+10 41 32
IRAS 00182-7112	LINER	0.327	00 20 34.7	-70 55 27
IRAS 09104+4109	Seyfert 2	0.442	09 13 45.4	+40 56 28
IRAS 12514+1027	Seyfert 2	0.3	12 54 00.8	+10 11 12
IRAS F15307+3252	Seyfert 2	0.926	15 32 44.0	+32 42 47
PG 1206+459	QSO	1.158	12 08 58.0	+45 40 36
IRAS F14218+3845	QSO	1.21	14 23 55.0	+38 32 14
IRAS 16347+7037	QSO	1.334	16 34 28.9	+70 31 33
IRAS 18216+6418	QSO	0.297	18 21 57.3	+64 20 36

HLIRGs: Objectives

Determine the relative contribution of AGN and starburst emission to the bolometric luminosity and their interplay.

X-ray study contributes:

Search of "hard" (2-10 keV) non thermal emission (associated to AGN or HMXB from the starburst).

Search of "soft" (0.2-2 keV) emission using thermal models (probably associated to starburst): Thermal emission.

Search of absorption features and FeK emission lines.

IRAS 00182-7112

IRAS 12514+1027

IRAS 09104+4109

keV

Norm. Counts s

0.01

PG 1206+459

IRAS F15307+3252

1

Energy / keV

2

5

0.5

IRAS18216+6418

IRAS 16347+7037

HLIRGs: Spectral analysis

Source	Model	kT	$\operatorname{Log} L_{po}$	$\operatorname{Log} L_{th}$
IRAS F00235+1024	-	0.5	<44.3	<42.4
IRAS 00182-7112	LINE + NTH	0.6	44.8	<41.9
IRAS 09104+4109	LINE + NTH	0.6	44.5	<43.0
IRAS 12514+1027	TH + NTH	0.35 ^{+0.17} -0.07	43.3	42.2
IRAS F15307+3252	NTH	0.6	43.7	<43.1
PG 1206+459	NTH	0.6	45.1	<44.0
IRAS F14218+3845	NTH	0.6	44.6	<43.8
IRAS 16347+7037	TH + NTH	1.53 ± 0.18	46.0	45.7
IRAS 18216+6418	TH + NTH	$\boldsymbol{0.49 \pm 0.09}$	45.6	45.1

TH: Thermal model NTH: No thermal model LINE: FeK emission line

HLIRGs: Discussion (I)

HLIRGs: Discussion (II)

AGN and Star Strigt confirminagith fation SED Roward the Bind of (2000)

HLIRGs: Discussion (II)

Relative contribution to the infrared emission from the AGN

HLIRGs: Discussion (II)

> Two hypothesis:

AGN in HLIRGs have a different SED from a local QSO (Elvis et al. 1994).

Compton-thick sources.

Source by source analysis.

HLIRGs: Discussion (III)

HLIRGs: Discussion (IV)

HLIRGs: Conclusion

- Heterogeneous sources.
- Thermal component detected only in three sources. Two of them can not be starburst.
- "Mixed" AGN + starburst sources.
- Local quasars SED not valid in three sources (intrinsic AGN infrared excess).
- Absorption detected with XMM data only on two sources. Multi-wavelength analysis reveals five Compton-thick sources.
- Estimating the AGN contribution is hard with X-ray observations only.
- This results in detail will be publish in A. Ruiz et al. 2006 (in preparation).