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1. BACKGROUND

t

Multidisciplinary design optimization (MDO) is an important step in the design and evaluation of
launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective
in MDO is to search the design space to determine the values of design parameters that optimize
the performance characteristics subject to system constraints.
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Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis
tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle
performance characteristics can be determined by the use of these computerized analysis tools.
The next step is to optimize the system performance characteristics subject to multidisciplinary
constraints. However, most of the complex sizing and performance evaluation codes used for
launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in
general, difficult to integrate and use directly for MDO.
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An alternative has been to utilize response surface methodology (RSM) to obtain polynomial
models that approximate the functional relationships between performance characteristics and
design variables. These approximation models, called response surface models, are then used to
integrate the disciplines using mathematical programming methods for efficient system level design
analysis, MDO and fast sensitivity simulations. A second-order response surface model of the
form given below (1) has been commonly used in RSM since in many cases it can provide an
adequate approximation especially if the region of interest is sufficiently limited.
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y=bo+F bixi+ bjjx 2+ T bjjx;x; (1)
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In (1), the x; terms are the input variables that influence the response (performance characteristic
such as weight) y, and by, bj, and bjj are estimated model coefficients. The cross terms represent
two-parameter interactions, and the square terms represent second-order non-linearity.

Over the last five years, various design-of-experiments (DOE) based response surface methods
have been utilized for efficiently constructing the second-order model (1). These were Taguchi
methods [1], central composite designs [2,3,4] and minimum point D-Optimal designs [2,5,12].
These RSM methods were applied successfully to many launch vehicle multidisciplinary design
optimization problems at VAB [6,7,8,9,10,11,14]. Current research and applications at VAB on
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RSM indicates that “Augmented D-Optimal Designs” may be a good approach for response
surface model building using computerized analysis codes [13,15].

The results of the application of RSM have been faster design times, rapid multidisciplinary design
optimization and integration of many of the disciplinary analysis codes. Most of this research and
applications of RSM have focused on weights and sizing, propulsion and structures disciplines.

2. TECHNICAL OBJECTIVE

A major advantage of using RSM is that it enables the integration of disciplines for rapid MDO
using mathematical programming methods. |n the applications at VAB, the number of design
parameters studied ranged from four to seven. The disciplines involved were weights & sizing,
aerodynamics, propulsion and geometry modeling, with the objective performance characteristics
usually being dry weight. In these applications, the fitted second-order model (1) predicted the
analysis results with good accuracy within the region studied, especially in weights & sizing.

However, in a number of the applications, the prediction accuracy of the aerodynamics related
response surface models have been barely adequate, leading to problems in estimating optimum
conditions. This indicated that the aerodynamics response surface is more complex or more
nonlinear than can be adequately represented by the second order approximation model (1). The
objective of this study was to conduct research in an effort to improve the accuracy of the
aerodynamics approximation models integration and MDO.

3. METHODOLOGY AND RESULTS
3.1. Aerodynamics Data for a Generic Hypersonic Vehicle Design

The data used in this study involved 3160 wind tunnel data points at subsonic, transonic,
supersonic and hypersonic speeds for a generic hypersonic vehicle design. There were 351 data
points at each Mach speed of 0.8, 0.9, 0.95, 1.05, 1.50, 2.48, 3.94, 5.94, and 9.93. The data was
provided for lift (CL), drag (CD) and pitching moment (Cm) coefficients in terms of angle-of-attack
(Alpha) and elevon-deflection (Delev). Alpharanged from -10 to 16, and Delev ranged from -10 to
20 in a full factorial form. The data was provided in Excel® spreadsheet format. The data was
then exported to a statistical analysis software package, JMP® and initial screening analysis was
conducted.

3.2, Approximation Model forms

3.2.1. Second Order Model Form: Initial approximation (response surface) model form tried with
the data was the second order RSM model (1). CL, CD and Cm data was regressed against Mach
speed (Mach), elevon deflection (delev) and angle-of-attack (Alpha) using multivariate least
squares regression analysis. The resulting model fits were poor with adjusted R Square values
around 0.32, which indicated litle correlation.

A study by Scott and Olds [17] has addressed approximation models for vehicle aerodynamic data
sets. In this study, they presented a method of transforming aerodynamic data sets generated by
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APAS into approximating models [17]). The authors noted that APAS is a very useful tool for
conceptual level vehicle aerodynamic design, however, APAS is difficult to integrate into a MDO
framework. Hence the need for approximation models [17]. Their research showed that
aerodynamic data sets generated in APAS for a given vehicle might be successfully reduced to a
set of approximating functions through methods of linear regression. The resulting accuracy of the
parametric equations was very good for data set fransformations involving force coefficients as a
function of Mach number only [17]. However, the accuracy of the equations generated by fitting
force coefficients as a function of Mach number and a geometric parameter (wing aspect ratio in
this case) was less accurate [17]. They concluded that regression analysis might not applicable in
the latter case, “at least not using a regression model of the form used”. Their conclusion was that
further research would be required to determine a more suitable model, perhaps using additional
predictor variables, in order to obtain parametric equations whose accuracy is within an acceptable
error range [17].

Utilizing this information, the regression analyses were repeated using the second order model
form in terms of Alpha and Delev only, for each Mach number (keeping Mach number fixed). This
has significantly improved model fit with adjusted R Square values improving to 0.97 to 0.99. This
indicated that better fitting approximation models may be obtained if Mach number was fixed (or
within the same Mach number).

3.2.2. Higher Order Polynomial (Taylor Series) Form: Even though, adjusted R Square values
of up to 0.99 was obtained, experience indicated that prediction accuracy was still low in many
cases and models with better prediction sum of squares (PRESS) was needed. In an effort to
improve model accuracy, higher order terms (third, fourth and fifth order) for main effects
(parameters) and interactions (cross terms) were included in the models constructed using the
data. Forthe data setin hand, it was possible to do that because there were enough data points
and the data was available at many levels (values) ranging from -10 to 16 for Alpha and from -10 to
20 for Delev. In general, one will need data with at least k levels to obtain a model to the k-1
degree. As an example, data with at least three levels (k=3) is needed to obtain a second order
model.

With the higher order models, in general, the Adjusted R Square values were much improved
(except in transonic speeds) ranging from 0.998 to 0.999, also improving PRESS and root mean
square (RMS) errors. These results indicated that the aerodynamic model forms are more
complex than a second order model can capture alone.

Appendices one, two and three display the results of the analyses with JMP®, together with the 3-
D response surface plots for CL, CD, and Cm as a function of Alpha and Delev for Mach 0.8, 0.95,
2.48 and 5.94.

As can be seen from the 3D plots in Appendix-1, for CL, CD and Cm for the fransonic speeds
(Mach 0.8 and 0.95), the surface is very complex. It will be hard to capture this surface accurately
with a polynomial approximation model within the range studied. The plots for the Predicted CL,
CD and Cm are much smoother than the actual surface. When discussed with the VAB engineers,
it was mentioned that this behavior can be expected in transonic speeds.
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Appendix-2 displays the results for Mach 2.48. At this supersonic speed, the approximation model
fits are very good for all coefficients, with Adjusted R Square values ranging from 0.999 to 0.9999.
This can also be seen from the well matching plots for the actual data and plots for predicted
values using the approximation models. The approximation model form and model coefficients are
displayed in the JMP® “Screening Fit” output on the box identified as “Parameter Estimates”. As
can be seen, model forms are slightly different but in general similar, with higher order terms of, 3+
order, 4" order and 5% order.

Appendix-3 displays the results for Mach 5.94. At this hypersonic speed, the approximation model
fits are also very good for all coefficients, with Adjusted R Square values ranging from 0.998 to
0.999. This can also be seen from the well matching plots for the actual data and plots for
predicted values using the approximation models. The approximation model form and model
coefficients are displayed in the JMP® “Screening Fit” output on the box identified as “Parameter
Estimates™. As can be seen again, model forms are slightly different but in general similar, with
higher order terms of, 3 order, 4" order and 5% order.

In summary, it appears that approximation model accuracy can be improved (at least for the data in
hand) by including higher order terms in the model over the second-order RSM model (1).
Discussions with the aerodynamics experts in VAB also suggested that the inclusion of higher order
terms in the model is appropriate.

3.3. Improving the Approximation Model

Many studies in the literature suggest the use of transformations for improving model fit and
accuracy and give details of the transformations that can be utilized [2, 3, 4, 5]. However, most of
these transformations (e.g.

log Alpha) were not applicable in this case since the aerodynamic data included negative values
for Alpha and Delev.

Roux, Stander and Haftka [18] note that “in choosing an approximating function one should
consider the functional form of the response under consideration, since there might be an
analytical relationship that may be utilized. The function form should be chosen using engineering
knowledge of the true functional form of the response. An example of using previous engineering
results is provided by Vanderplaats™[18,19).

Other useful findings and suggestions from the literature are;

- The use of more experimental points may not improve model accuracy if the model form is
not appropriate.

- Approximation model accuracy is largely dependent on the choice of the model and on the
region studied [18].

- The selection of sampling points from the design space or the choice of the experimental
design has an important influence on the accuracy and the cost of constructing the
response surface [18].
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- Multiplicative, exponential and power functions can also be used [18].

- The response surface should in general be used only to approximate the part of the
response for which the true functional relationship is not available, too difficult to calculate
or integrate [18].

3.4. Orthogonal Array Based Latin Hyper cube Designs

The results suggest that the choice of an approximation model's functional form should utilize
engineering knowledge of the true form of the response. The results also suggest that
approximation model accuracy can be improved by including higher order terms (up to 5t order) in
the model over the second-order RSM model (1).

In prior MDO studies using RSM at VAB, central composite designs (CCD) [2,3,4] and D-Optimal
designs [2,5,12] were utilized to sample the design space for constructing second-order
approximation models for aerodynamics using APAS. The CCDs used were mostly “face centered”
[2,3] designs, generating experimental designs at three levels (values). So were the D-optimal
designs, sampling the design space at three levels.

One will need data with at least six levels to obtain a model to the 5" degree, and the experimental
designs. However, constructing CCD and D-Optimal designs at six or more levels would increase
the number of data points or APAS runs required in orders of magnitude and would be prohibitive in
most all VAB applications. The question then is how to construct experimental designs that can
sample the design space efficiently (without increasing the number of data points or APAS runs
required) at six or more levels in order to build approximation models with up to 5t order terms in it.

One way to construct multilevel experimental designs is to utilize the computer programs given by
Owen [24, 25]. Owen [25] lists a set of randomized orthogonal arrays (OA) for computer
experiments. The Statlib computer programs (http:/lib.stat.cmu.edu/designs/) to generate these
multilevel orthogonal arrays are also listed by Koehler and Owen [24]. However, these OA may
require more experiments than central composite designs at six or more levels.

Tang [20] presents an approach to construct experimental designs efficiently at multiple levels
called “Orthogonal Array based Latin Hyper cubes.” He [20] notes that experimental designs
developed for physical experiments (such as CCDs) may not be appropriate for deterministic
computer experiments (such as using APAS).

Using OA based Latin hypercube designs (LHD), one can construct experimental designs at nine
levels utilizing a three level OA without increasing the number of points required. As an example,
Table-1a displays a three level OA for two parameters (X1 and X2). This OA has 9 rows, indicating
that 9 design points (e.g. APAS runs) are necessary to construct a second order approximation
model. Using Tang's algorithm [20], this OA was converted to an OA based LHD (Table-1b). As
can be seen from the Table, there are still nine rows, however, the number of levels have increased
to 9, enabling the construction of a higher (i.e. fourth or above) order model efficiently.



Table-1: 3-Level and 9-Level Orthogonal Arrays

€

X1 X2 X1 X2
1 1 1 1 1 3
- 2 2 1 2 2 6
3 3 1 3 3 9
_ 4 1 2 4 4 2
: 5 2 2 5 5 5
el 6 3 2 6 6 8
7 1 3 7 7 1
- 8 2 3 8 8 4
- 9 3 3 9 9 7
- a) Three level OA b) Nine level OA based LHD
— OA based Latin hypercube experimental designs were utilized by Booker [21] in a Helicopter Rotor
% optimization study. Booker [21], notes that, OA based LHD for computer experiments, have an
) appealing “space filling” property which enable a more thorough sampling of the design space as
%4 compared with traditional experimental designs such as central composite designs. With a face
: g centered CCD, most of the sampling is done at the outer edges of the parameter design range.
Therefore, these experimental designs appear to be a very good choice and better suited for
= conducting experimentation and for approximation model building.
= 3.5. Constructing OA based Latin Hypercube Designs
= OA based Latin hypercube designs can be constructed using the algorithm given by Tang
[20]. Tang’s algorithm as given in [20] generates "random” OA based LHD's. The non-
B uniqueness of OA based Latin Hypercube designs poses a problem of choosing a desirable
B design. Tang discusses this problem and proposes “correlation” and “distance” criteria [22,
23]. Thus one can generate several designs for given number of variables, and then choose
= one that has largest “distance” [22, 23].
For selecting a LHD using the correlation criteria, Tang [22] introduces a polynomial canonical
B correlation of two vectors and suggest that a design which has a small polynomial canonical
= correlation for each pair of its columns is preferred. He provides an algorithm for reducing

polynomial canonical correlations of a Latin hypercube. Tang [23] also uses the Maximin
distance criteria for selecting an OA based Latin hypecube. He notes that it is commonly
recognized that uniformity of design points is a favored property of a design in cases of little
knowledge of the underlying model [23]. Therefore, Tang [23] argues, any criterion oriented
: toward uniformity can be used for the selection of OA based LHDs. He provides a theorem
- for this purpose [23].

B 4. CONCLUSIONS.
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The models presented in the Appendices and accompanying results are only valid for the data set
in hand and the parameters studied. However, some general conclusions may also be drawn as
follows:

The results suggest that the choice of an approximation model's functional form should utilize
engineering knowledge of the true form of the response. The results also suggest that
approximation model accuracy can be improved by including higher order (more than three) terms
in the model over the second-order RSM model (1).

Using OA based Latin hypercube designs multiple levels experimental designs can be constructed
without increasing the number of points required (in reference to the base OA used), enabling the
building of fifth order approximation models efficiently. As aresult, OA based Latin hypercube
designs appear to be a very good choice for conducting wind tunnel experiments and for
experimentation using analysis codes for approximation model building.

5. FUTURE WORK

There is a lot of further research needed in modeling and capturing vehicle aerodynamics. This
study has been limited in focusing on the data available, and in the number of parameters included.
Also, we were unable to conduct an applied design study using APAS as anticipated. Nevertheless,
a contribution was made by the literature findings. A practical approach was added to the RSM
toolkit at VAB for generating multiple level experimental designs that can be utilized for
approximation model building for vehicle aerodynamic and for MDO studies.
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Appendix-1a

Results for Mach 0.8
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Screening Fit

~
= |[summary of Fit) Mach 0.8
RSquare 0.998831
Z: RSquare Adj 0.998793
¥ Root Mean Square Error 0.006574
Mean of Response 0.030451
Observations (or Sum Wgts) SSZJ
( ] 3 ﬁ
[Analysus of VarlanceJ
- Source DF Sum of Squares Mean Square F Ratio
= Model 11 12.552150 1.14110 26401.8
Error 340 0.014695 0.00004 Prob>F
- C Total 351 12.566845 0.0000
s {
(Lack of Fitj]
(=] [Parameter EstimatesJ
7 Term Estimate Std Error t Ratio Prob>Iti
§ Intercept -0.057709 0.000919 -62.78 <.0001
(=] Alpha 0.0226172 0.000172 131.32 <.0001
Delev 0.0071657 0.000088 81.51 <.0001
== Alpha*Alpha -0.000315 0.000038 -8.39 <.0001
- Delev*Delev -0.000045 0.00001 -4.67 <.0001
Alpha*Alpha*Alpha 0.00001863 0.000003 5.33 <.0001
- Delev*Delev*Delev -0.000002 5.624e-7 -3.96 <.0001
:j Alpha*Alpha*Delev -0.000004 0.000001 -3.38 0.0008
- Delev*Delev*Alpha -0.000004 5.038e-7 -8.53 <.0001
Alpha*Alpha*Alpha*Alpha 0.0000018 3.458e-7 5.08 <.0001
= Alpha*Alpha*Alpha*Delev -2.445e-7 6.994e-8 -3.50 0.0005
w Alpha*Alpha*Alpha*Alpha*Alpha -6.611e-8 2.114e-8 -3.13 0.0019
.
(
= L(Effect TestJ]
d ; ~
.. |[Prediction Profile ]
0.3792
B | g 0040736 - —
= -
-0.3879 -
E T T T T T T T T
- © 206307 & 2 495739 &
= Alpha Delev
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Screening Fit

)

(Summary of Fit] Mach 0.8

RSquare 0.99746

RSquare Adj - 0.987385

Root Mean Square Error 0.001723

Mean of Response 0.05153

Observations (or Sum Wgts) 352

[Analysis of Variance)

Source DF Sum of Squares Mean Square F Ratio

Model 10 0.39739163 0.039739 13390.24

Error 341 0.00101201 0.000003 Prob>F

C Total 351 0.39840364 0.0000

1 -

(Lack of Fit)

[Parameter EstimatesJ

Term Estimate Std Error t Ratio Prob>itl
Intercept 0.0155442 0.000218 71.36 <.0001
Alpha -0.001655 0.00002 -81.80 <.0001
Delev -0.000049 0.000024 -2.07 0.0388
Alpha*Alpha 0.0004328 0.000005 95.40 <.0001
Delev*Delev 0.0000814 0.000003 32.17 <.0001
Delev*Delev*Delev -8.224e-7 1.474e-7 -5.58 <.0001
Alpha*Alpha*Delev -0.000002 2.889e-7 -6.28 <.0001
Delev*Delev*Alpha -0.000003 1.505e-7 -20.95 <.0001
Alpha*Alpha*Alpha*Alpha 0.0000001 1.982e-8 5.34 <.0001
Alpha*Alpha*Alpha*Deiev -8.741e-8 2.56e-8 -3.41 0.0007
Alpha*Delev 0.000252  0.000003 81.80 <.0001 |
[Effect Test]J

kk

{ N

(Prediction ProfiIeJ

0.1713
8 0.019487 - /
0.0129- N -
T 1 T 1
o 2.96307 € 2 495739 &
Alpha Delev
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Screening Fit
p

[Summary of Fii) Mach 0.8
RSquare 0.991311
RSquare Adj 0.991082
Root Mean Square Error 0.00264
Mean of Response 0.000722
Observations (or Sum Wgts) 352
[Analysis of Variance)
Source DF Sum of Squares Mean Square F Ratio
Model ] 0.27194428 0.030216 4335.333
Error 342 0.00238364 0.000007 Prob>F
C Totali 351 0.27432792 0.0000
h -
(Lack of Fnt]J
[Parameter Estimates]
Term Estimate Std Error t Ratio Prob>itl
Intercept 0.0141343 0.000311 45.47 <.0001
Alpha -0.00356 0.000069 -51.57 <.0001
Delev -0.002833 0.000031 -90.53 <.0001
Alpha*Alpha 0.0000491 0.000004 11.50 <.0001
Delev*Delev 0.0000165 0.000004 427 <.0001
Delev*Delev*Delev 0.0000008 2.258e-7 3.47 0.0006
Delev*Delev*Alpha 0.0000014 1.991e-7 7.00 <.0001
Alpha*Alpha*Alpha*Delev 0.0000001 1.638e-8 8.53 <.0001
Alpha*Alpha*Alpha 0.000015  0.000001 13.98 <.0001
Alpha*Alpha*Alpha*Alpha*Alpha -4.016e-8 3.458e-9 -11.61 <.0001J
.
[Effect TestJ]
O —

E— -
[Prediction ProfiIeJ

0.0766 —
§ -0.00902 -

-0.0511 =

! | T ' T
© 296307 & © 495739 &
Alpha Delev
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Appendix-1b

Results for Mach 0.95
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Screening Fit

(1)
( - ) 0.95
[Summary of F|t]
RSquare 0.998189
RSquare Adj 0.99813
Root Mean Square Error 0.008222
Mean of Response 0.021629
Observations (or Sum Wgts) 351 )
[Analysis of Variance]
Source DF Sum of Squares Mean Square F Ratio
Model 11 12.631651 1.14833 16987.15
Error 339 0.022916 0.00007 Prob>F
C Total 350 12.654568 0.0000
([Parameter Estimates)
Term Estimate Std Error t Ratio Prob>litl
Intercept -0.07296 0.000953 -76.60 <.0001
Alpha 0.0238654 0.000097 246.04 0.0000
Delev 0.0079703 0.000188 42.46 <.0001
Aipha*Delev -0.000063 0.000015 -4.25 <.0001
Alpha*Alpha -0.000212  0.000022 -9.66 <.0001
Alpha*Alpha*Delev -0.000006 0.000001 -4.13 <.0001
Delev*Delev*Alpha -0.000003 7.253e-7 -3.77 0.0002
Delev*Delev*Delev -0.000005 0.000002 -2.74 0.0066
Alpha*Alpha*Alpha*Alpha 0.0000012 9.499e-8 12.16 <.0001
Delev*Delev*Delev*Delev -3.244e-7 1.058e-7 -3.07 0.0023
Alpha*Alpha*Alpha*Delev -3.39e-7 1.232e-7 -2.75 0.0063
Delev*Delev*Delev*Delev*Delev 1.7269e-8 4.327e-9 3.99 <.0001
Effect_Test)|
> ~ ~
(Prediction Profile_)
0.3709 -
3 0.034403 4 e
-0.3981
T 1 | 1
=) 3 2 e 5 &
Alpha Delev
L J
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Screening Fit

(co]
(Summary of Fit ) 0.95
RSquare 0.99491
RSquare Adj 0.994745
Root Mean Square Error 0.002482
Mean of Response 0.052775
Observations (or Sum Wgts) 351
[Analysis of Variance]
Source DF Sum of Squares Mean Square F Ratio
Model 11 0.40826307 0.037115 6023.508
Error 339 0.00208880 0.000006 Prob>F
C Total 350 0.41035187 0.0000 )
( _ = )
(Parameter Estlmates]
Term Estimate Std Error t Ratio Prob>litl
Intercept 0.020622  0.000288 71.71 <.0001
Alpha -0.001311 0.000029 -44.77 <.0001
Delev -0.00019  0.000057 -3.35 0.0009
Alpha*Delev 0.0002659 0.000004 59.65 <.0001
Alpha*Alpha 0.0003619  0.000007 54.73 <.0001
Alpha*Alpha*Delev -0.000003 4.248e-7 -7.67 <.0001
Delev*Delev*Alpha -0.000002 2.19e-7 -9.87 <.0001
Delev*Delev*Delev 0.0000019 5.932e-7 3.12 '0.0019
Alpha*Alpha*Alpha*Alpha 0.0000003 2.868e-8 10.65 <.0001
Delev*Delev*Delev*Delev 0.0000005 3.195e-8 16.51 <.0001
Alpha*Alpha*Alpha*Delev -5.5946-8 3.72¢-8 -1.50 0.1335
Delev*Delev*Delev*Delev*Delev -2.269e-8 1.306e-9 -17.37 <.0001
L[Effect Test ]]
r - - - )
[Predlctlon ProflleJ
0.1811 —
8 0.023184
0.0143~ >
I T ) I r L] L) |
=) 3 e e 5 &
Alpha Delev
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Screening Fit

- [Summary of FitJ 0.95
RSquare 0.982486
= RSquare Adj 0.982128
. Root Mean Square Error 0.003996
Mean of Response 0.0034
s Observations (or Sum Wgts) 351 )
[Analysis of Variance]
T Source DF Sum of Squares Mean Square F Ratio
- Model 7 0.30724512 0.043892 2748.693
Error 343 0.00547715 0.000016 Prob>F
B C Total 350 0.31272227 <.0001
< |[(Parameter Estimates |
= Term Estimate Std Error t Ratio Prob>It!
= Intercept 0.0169912 0.000383 44 .42 <.0001
Alpha -0.002994 0.000046 -65.39 <.0001
= Delev -0.00298 0.000036 -83.15 <.0001
% Alpha*Alpha 0.0000832 . 0.000004 22.79 <.0001
Delev*Delev*Alpha 0.0000015 2.99e-7 5.04 <.0001
o Delev*Delev*Delev*Delev 0.0000002 4.122e-8 5.24 <.0001
[ =| Alpha*Alpha*Alpha*Delev 0.0000003 2.445e-8 12.71 <.0001
- Delev*Delev*Delev*Delev*Delev -7.748e-9 2.05e-9 -3.78 0.0002
= ||(Effect Test]]
=
{, Ty
= Prediction Proflle]
0.0856 —
E | § -000579 - \
= ] ,
- -0.0515 T~
= T — T T T
bt e 3 2 2 5 &
= Alpha Delev
-
=
=
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((Resid Cm J

0.01
0.00
-0.01
[Quantiles )
maximum 100.0% 0.00965
99.5% 0.00911
97.5% 0.00707
90.0% 0.00467
quartile 75.0% 0.00266
median 50.0% 0.00059
quartile 25.0% -0.0024
10.0% -0.0059
2.5% -0.0092
0.5% -0.0116
minimum 0.0% -0.0121
\.
Mean -0.0000
Std Dev 0.0040
Std Error Mean 0.0002
Upper 95% Mean 0.0004
Lower 95% Mean -0.0004
N 351.0000
Sum Weights 351.0000
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Appendix-2

Results for Mach 2.48
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Screening Fit
(—
-
% 'Y - ™
[Summary of FltJ
= RSquare 0.999903
E RSquare Adj 0.9999
) Root Mean Square Error 0.001472
- Mean of Response 0.021387
B Observations (or Sum Wgts) 351
B ([Analysis of Variance)
% Source DF Sum of Squares Mean Square F Ratio
B Model 10 7.5676005 0.756760 349461.9
Error 340 0.0007363 0.000002  Prob>F
= C Total 350 7.5683367 0.0000
= 4
N [Parameter Estimates]
= Term Estimate Std Error t Ratio Probs>ltl
- Intercept -0.041273 0.000189 -218.6 0.0000
Alpha 0.0169315 0.000038 451.13 0.0000
= Delev 0.0026815 0.000017 160.07 0.0000
= Alpha*Alpha -0.000201 0.000008 -23.91 <.0001
Delev*Delev -0.000014 0.000001 -13.55 <.0001
= Alpha*Aipha*Alpha 0.0000291 6.884e-7 42.27 <.0001
Alpha*Alpha*Delev -0.000007 2.438e-7 -27.59 <.0001
Alpha*Alpha*Alpha*Delev 0.0000002 1.753e-8 12.57 <.0001
- Alpha*Alpha*Alpha*Alpha 0.0000011 7.802e-8 14.58 <.0001
= Delev*Delev*Delev*Alpha -3.411e-8 6.045e-9 -5.64 <.0001
= Alpha*Alpha*Alpha*Alpha*Alpha -1.043e-7 4.753e-9 -21.94 <.0001
= [Effect TestJ]
| =} L™
{ '
= [Prediction Profilej
= 0.294
= g 002133 =
[=] -
-0.2621
= T —T T ™
- e 3 2 @ 5 &
= Alpha Delev
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Screening Fit

-

r[Summary of FitJ

RSquare
RSquare Adj

Root Mean Square Etrror
Mean of Response
Observations (or Sum Wgts)

0.999329
0.999309
0.000655
0.056921

351

[Analysis of VarianceJ

Source DF Sum of Squares Mean Square F Ratio
Model 10 0.21682298 0.021682 50607.32
Error 340 0.00014567 0.000000 Prob>F
C Total 350 0.21696865 0.0000
(Parameter Estimates)
Term Estimate Std Error t Ratio Prob>litl
Intercept 0.0298352  0.000075 398.88 0.0000
Alpha -0.000619 0.000016 -38.49 <.0001
Delev 0.0000522 0.000008 6.71 <.0001
Alpha*Alpha 0.0003262 0.000002 174.09 0.0000
Delev*Delev 0.0000343 4.749e-7 72.24 <.0001
Alpha*Alpha*Alpha -0.000004 2.004e-7 -18.70 <.0001
Alpha*Alpha*Delev -8.91e-7 1.144e-7 -7.79 <.0001
Alpha*Alpha*Alpha*Delev -9.373e-8 1.014e-8 -9.24 <.0001
Alpha*Alpha*Alpha*Alpha 0.0000003 1.41e-8 23.77 <.0001
Delev*Delev*Delev*Alpha -2.46e¢-8 3.346e-9 -7.35 <.0001
Alpha*Delev 0.0001061 0.000001 81.56 <.0001
[Effect Tesﬂ]
; N\
(Prediction Profile )
0.1437
8 0.033487 A
J \— ]
0.0286
L 1 Pt Yoo
=) 3 e o 5 &
Alpha Delev
\, J
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Screening Fit

p
[Summary of FitJ

RSquare 0.999395

RSquare Adj 0.999377

Root Mean Square Error 0.000401

Mean of Response 0.01163

LObservations {or Sum Wgts) 351

( ™

[Analysis of Variance)

Source DF Sum of Squares Mean Square F Ratio

Model 10 0.09021670 0.009022 56184.29

Error 340 0.00005459 0.000000 Prob>F

C Total 350 0.09027130 O.OOOOJ

G -

arameter Estimates

Term Estimate Std Error t Ratio Prob>It]
Intercept 0.0197154 0.000051 385.93 0.0000
Alpha -0.001846 0.00001 -176.7 0.0000
Delev -0.00118 0.000005 -252.6 0.0000
Alpha*Alpha 0.0000518 0.000002 22.59 <.0001
Delev*Delev 0.0000056 2.758e-7 20.16 <.0001
Alpha*Alpha*Alpha 0.0000006 1.885e-7 3.30 0.0011
Alpha*Alpha*Delev 0.0000024 7.002¢-8 34.55 <.0001
Alpha*Alpha*Alpha*Delev -9.58e-8 6.207e-9 -15.43 <.0001
Alpha*Alpha*Alpha*Aipha -2.393e-7 2.125e-8 -11.26 <.0001
Alpha*Delev 0.0000036 6.398e-7 5.68 <.0001
Alpha*Alpha*Alpha*Aipha*Aipha 4.509e-9 1.294e-9 3.48 O.‘OOOSJ
[Effect Test ]J

Lk

( A

(Prediction Profile]

0.0508 —
§ 0.009032 - B
-0.0213
T L T T 7
= 3 © e 5 &
Alpha Delev
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Appendix-3

Results for Mach 5.94
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Screening Fit

7

= | )
[Summary of Fit)
£: || RSquare 0.999897
=] RSquare Adj 0.999894
Root Mean Square Error 0.001064
= Mean of Response 0.036868
= | Observations (or Sum Wgts) 351
f . - )
= [Analysns of Varlancej
= Source DF Sum of Squares Mean Square F Ratio
Model 12 3.7248770 0.310406 274297.1
- Error 338 0.0003825 0.000001 Prob>F
% kC Total 350 3.7252595 0.00M
- [Parameter Estimatesj
- Term Estimate Std Error t Ratio Prob>lti
intercept -0.007874 0.000134 -58.94  <.0001
. Alpha 0.0135424  0.000029 461.35 0.0000
= Delev 0.0013063 0.000015 87.08 <.0001
o Alpha*Delev 0.000028 0.000002 12.93 <.0001
Delev*Delev -0.000007 0.000002 -4.04 <.0001
Alpha*Alpha -0.000007 0.000002 -3.77 0.0002
Alpha*Alpha*Alpha -0.000005 4.415e-7 -11.27 <.0001
Delev*Delev*Delev 0.0000011 9.785e-8 11.62 <.0001
= Alpha*Alpha*Delev -0.000004 1.859e-7 -23.14 <.0001
% Delev*Delev*Alpha 0.0000031 1.994e-7 15.42 <.0001
o Alpha*Alpha*Alpha*Alpha*Aipha 4.712e-9 1.396e-9 3.38 0.0008
s Alpha*Alpha*Alpha*Delev 0.0000001 1.648e-8 6.32 <.0001
% LDelev‘*Delev‘*DeIev"Alpha -1.69e-7 1.172e-8 -14.41 <.0001
% {
_ |(Ettect_Test))
—.
w [ .
IPredictlon ProfileJ]




r6°'G HoBpy Je | paloipald

[7e) w
o

aaaaai
1777

UL TN
NNNNRRRN

A)

0 ™D o ~ (s} \D
N ~.
o )

\

iy R W Ny THID JED

iED

nis

it

i

I
Wl R

RED



SRR TR S ' T 1111 S AP T Il T2V ) T VY SO [ QO v N 1111 SO i O e 1 O s S SO <11 O e e 1




- Screening Fit

-
= L[Summary of Fit)]
©i||analysis of Variancej
Lo (Parameter Estimates]
;,; Term Estimate Std Error t Ratio Prob>itl
Intercept 0.0200184 0.000063 319.04 0.0000
v Alpha 0.0005059 0.000012 41.57 <.0001
e Delev -0.000017 0.000007 -2.43 0.0157
= Alpha*Delev 0.0000598 9.898e-7 60.40 <.0001
- Delev*Delev 0.0000281 7.232e-7 38.91 <.0001
£ Aipha*Alpha 0.0002655 0.000001 187.23 0.0000
& Alpha*Aipha*Alpha 0.0000008 1.517e-7 5.18 <.0001
Delev*Delev*Delev 0.0000001 4.321¢-8 3.21 0.0015
= Alpha*Alpha*Delev -4.956e-7 8.656e-8 -5.72 <.0001
= Alpha*Aipha*Alpha*Delev -7.011e-8 7.673e-9 -9.14 <.0001
Delev*Delev*Delev*Alpha 1.7945¢-8 2.573e-9 6.97 <.0001
- Alpha*Alpha*Alpha*Alpha -6.687e-8 1.067e-8 -6.27 <.0001
= (Effect Test]]
Lk
= ’ )
- [Prediction Profile]
- 0.1186—
“ | 8 0.025449 -
0.0195 >
] L] ) I | 1 1 l
= 3 e o 5 &
hd Alpha Delev
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Screening Fit

’(Summary of Fitj

RSquare
RSquare Adj

Mean of Response

Root Mean Square Error

Observations (or Sum Wgts)

0.998213

0.99815

0.000408

0.002674
351 )

:[Analysis of Variancen

’
[Parameter Estimates]

-0.016

10 —

Alpha

16 —
10 -
o

Delev

20 -

Term Estimate Std Error t Ratio Prob>lti
Intercept 0.006842  0.000051 133.47 <.0001
Alpha -0.001176  0.000011 -104.4 <.0001
Delev -0.000613 0.000006 -106.4 <.0001
Alpha*Delev -0.000013 8.298e-7 -15.95 <.0001
Delev*Delev 0.0000045 6.386e-7 6.98 <.0001
Alpha*Alpha 0.0000226 7.566e-7 2984 <.0001
Alpha*Alpha*Alpha 0.0000036 1.694e-7 21.54 <.0001
Delev*Delev*Delev -4.706e-7 3.755e-8 -12.53 <.0001
Alpha*Alpha*Delev 0.0000013 7.133e-8 18.85 <.0001
Delev*Delev*Alpha -0.000001 7.651e-8 -15.74 <.0001
Alpha*Alpha*Alpha*Alpha*Alpha -8.767e-9 5.36e-10 -16.37 <.0001
Alpha*Alpha*Alpha*Delev -3.835e-8" 6.323e-9 -6.07 <.0001
Delev*Delev*Delev*Alpha 4.497e-8 4.498e-9 10.00 <.,0001
(Ettect_Test)|
LL
> N
(Prediction Profile

0.0246
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