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1. BACKGROUND

Multidisciplinary designoptimization(MDO) is an important step in the design and evaluationof
launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective
in MDO is to search the design space to determine the values of design parameters that optimize
the performance characteristics subject to system constraints.

Vehicle Analysis Branch (VAB)at NASA Langley ResearchCenter has computerizedanalysis
tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle
performance characteristics can be determined by the use of these computerized analysis tools.
The next step is to optimize the system performance characteristics subject to multJdisciplinary
constraints. However, most of the complex sizing and performance evaluation codes used for
launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in
general, difficult to integrate and use directJyfor MDO.

An alternative has beento utilizeresponse surface methodology (RSM) to obtainpolynomial
models that approximate the functional relationships between performance characteristics and
design variables. These approximation models, called response surface models, are then used to

integrate the disciplines using mathematical programming methods for efficient system level design
analysis, MDO and fast sensitivity simulations. A second-order response surface model of the
form givenbelow (1) has been commonly used in RSM since in many cases it can provide an
adequate approximationespecially if the region of interest is sufficiently limited.

y = bo * _ bixi + _ biixi 2 ÷ _ _ bijxi xj (1)

In (1), the xi terms are the inputvariablesthat influencethe response (performance characteristic

such as weight)y, and bo, hi, and bij are estimated model coefficients. The crossterms represent

two-parameter interactions, and the square terms represent second-order non-linearity.

Over the lastfive years, various design-of-experiments (DOE) based response surface methods
have been utilized for efficiently constructing the second-order model (1). These were Taguchi
methods [1],centralcomposite designs [2,3,4] and minimum point D-Optimal designs [2,5,12].
These RSM methods were applied successfully to many launch vehicle multJdisciplinarydesign

optimization problems at VAB [6,7,8,9,10,11,14]. Current research and applications at VAB on
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RSM indicates that "Augmented D-Optimal Designs" may be a good approach for response
surface model building using computerized analysis codes [13,15].

The results of the application of RSM have been faster design times, rapid multidisciplinary design
optimization and integration of many of the disciplinary analysis codes. Most of this research and
applications of RSM have focused on weights and sizing, propulsion and structures disciplines.

2. TECHNICAL OBJECTIVE

A major advantage of using RSM is that it enables the integrationof disciplines for rapid MDO
using mathematical programming methods. In the applications at VAB, the number of design
parameters studied ranged from four to seven. The disciplines involved wereweights & sizing,
aerodynamics, propulsion and geometry modeling, with the objective performance characteristics
usually being dry weight. In these applications, the fitted second-order model (1) predicted the
analysis results with good accuracy within the region studied, especially in weights & sizing.

However, in a number ofthe applications, the prediction accuracy of the aerodynamics related
response surface models have been barely adequate, leading to problems in estimating optimum
conditions. This indicated that the aerodynamics response surface is more complex or more
nonlinear than can be adequately represented by the second order approximation model (1). The
objective of this study was to conduct research in an effort to improve the accuracy of the
aerodynamics approximation models integration and MDO.

3. METHODOLOGY AND RESULTS

3.1. Aerodynamics Data for a Generic Hypersonic Vehicle Design

The data usedin this study involved3160 windtunnel data points at subsonic,t_ansonic,
supersonicandhypersonicspeeds for a generichypersonicvehicledesign. There were 351 data
points ateach Mach speedof 0.8, 0.9, 0.95, 1.05, 1.50, 2.46, 3.94, 5.94, and9.93. The datawas
provided for lift(CL), drag (CD) andpitchingmoment(Cm)coefficientsintermsof angle-of-attack
(Alpha)andelevon-deflection(Delev). Alpha rangedfrom -10 to 16, andDelevrangedfrom -10 to
20 in a full factorial form. The data wasprovidedin Excel@spreadsheetformat. The datawas

thenexportedto a statisticalanalysissoftwarepackage, JMP® and initialscreeninganalysiswas
conducted.

3.2. Approximation Modelforms

3.2.1. Second Order Model Form: Initial approximation (response surface)model form bied with
the datawas thesecondorder RSM model(1). CL, CD andCm datawas regressedagainstMach
speed (Mach),elevondeflection(delev)andangle-of-attack(Alpha)usingmultivariateleast
squaresregressionanalysis. The resultingmodelfitswere poorwithadjustedR Square values
around0.32, whichindicatedlittlecorrelation.

A study by Scott andOlds [17] has addressedapproximationmodels for vehicleaerodynamic data
sets. In this study, they presented a method oft]ansforming aerodynamic data sets generated by
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APAS into approximating models [17]. The authors notedthat APAS is a very useful tool for
conceptual level vehicle aerodynamic design, however, APAS is difficult to integrate into a MDO
framework. Hence the need for approximation models [17]. Their research showed that
aerodynamic data sets generated in APASfor a given vehicle might be successfully reduced to a
set of approximating functions through methods of linear regression. The resulting accuracy of the
parametric equa'donswas very good for data set transformations involving force coefficients as a
function of Mach number only [17]. However, the accuracy of the equations generated by fitting
force coefficients as a function of Mach number and a geometric parameter (wing aspect ratio in
this case) was less accurate [17]. They concluded that regression analysis might not applicable in
the latter case, "at least not using a regression model of the form used'. Their conclusion was that
further research would be required to determine a more suitable model, perhaps using additional
predictor variables, in order to obtain parametric equations whose accuracy is within an acceptable
error range [17].

Utilizingthis information,the regression analyses were repeated usingthe secondordermodel
form in terms of Alpha and Delev only, for each Mach number (keeping Mach numberfixed). This
has significantly improved model fit with adjusted R Square values improving to 0.97 to 0.99. This
indicated that better fi_ng approximationmodels may be obtained if Mach number was fixed (or
within the same Mach number).

3.2.2. Higher Order Polynomial (Taylor Sedes) Form: Even though, adjusted R Square values
of upto 0.99 was obtained,experienceindicatedthat predictionaccuracywas stilllowin many
casesand modelswithbetterpredictionsumof squares(PRESS)was needed. In an effortto
improvemodelaccuracy,higherorderterms(third, fourthandfifthorder)for maineffects
(parameters)andinteractions(crossterms)were includedin the models constructedusingthe
data. Forthe dataset in hand,itwas possibleto dothat becausethere wereenoughdata points
and the data was availableat manylevels(values) ranging from-10 to 16for Alpha and from -10 to
20 for Delev. In general,onewillneeddata withat least k levelsto obtaina modelto the k-1
degree. As an example,data withat leastthree levels(k=3) is neededto obtaina secondorder
model.

With thehigherorder models,in general,theAdjusted R Square valueswere much improved
(exceptin transonic speeds)rangingfrom 0.998to 0.999, alsoimprovingPRESS and root mean
square (RMS) errors. Theseresultsindicatedthatthe aerodynamicmodelforms are more
complexthana secondordermodelcan capturealone.

Appendices one, two and three display the results of the analyseswithJMP®, together withthe 3-
D response surface plots for CL, CD, and Cm as a function of Alpha and Delev for Mach 0.8, 0.95,
2.48 and 5.94.

As can be seen from the 3D plotsin Appendix-I, for CL, CD and Cm for the transonic speeds
(Mach 0.8 and 0.95), the surface is very complex. It will be hard to capture this surface accurately
with a polynomial approximation model within the range studied. The plots for the Predicted CL,
CD and Cm are much smoother than the actual surface. When discussed with the VAB engineers,
it was men_onedthat this behavior can be expected in tTansonicspeeds.
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Appendix-2 displays the results for Mach 2.48. At this supersonic speed, the approximation model
fits are very good for all coefficients, with Adjusted R Square values ranging from 0.999to 0.9999.
This can also be seen from the well matching plots for the actual data and plots for predicted
values using the approximationmodels. The approximation model form and model coefficients are
displayed in the JMP® "Screening Fit"output on the box identified as "Parameter Estimates". As
can be seen, model forms are slightly different but in general similar,with higher order terms of, 3rd
order, 4t" order and 5thorder.

Appendix-3displaysthe results for Mach 5.94. At this hypersonic speed, the approximation model
fits are also very good for all coefficients, with Adjusted R Square values ranging from 0.998 to
0.999. This can also be seen from the well matching plots for the actual data and plots for
predicted values usingthe approximation models. The approximation model form and model
coefficients are displayed in the JMP® "Screening Fit" output on the box identified as "Parameter
Estimates". As can be seen again, model forms are slightly different but in general similar, with
higher order terms of, 3r_order, 4t"order and 5t"order.

In summary, it appears that approximation model accuracy can be improved (at least for the data in
hand) by including higherorder terms in the model over the second-order RSM model (1).
Discussions with the aerodynamics experts in VAB also suggested that the inclusion of higher order
terms in the model is appropriate.

3.3. Improvingthe Approximation Model

Many studiesin the literature suggestthe useof transformationsfor improving modelfit and

accuracy and give details of the transformations that can be utilized [2, 3, 4, 5]. However, most of
these transformations (e.g.
log Alpha) were not applicable in this case since the aerodynamic data included negativevalues
for Alpha and Delev.

Roux,Stander andHaftka [18]note that"in choosing an approximatingfunction oneshould
considerthe functional form of the response under consideration,since there might be an
analytical relationship that may be utilized. The function form should be chosen using engineering
knowledge of the truefunclJonalform of the response. An example of using previous engineering
results is provided by Vanderplaats'[18,19].

Other usefulfindings andsuggestionsfrom the literature are;

The use of more experimentalpoints may notimprove model accuracy if the model form is
not appropriate.

Approximationmodel accuracyis largely dependent on the choiceofthe model and onthe
region studied [18].

The selectionof sampling points from the designspaceor thechoiceof the experimental
design has an important influence on the accuracy and the cost of constructing the
response surface[18].

m



Multiplicative, exponential and power functions can also be used [18].

The response surface should in general be used only to approximate the part of the
response for which the true functional relationship is not available, too difficult to calculate
or integrate [18].

3.4. Orthogonal Array Based Latin Hyper cube Designs

The results suggest that the choice ofan approximation model's functional form should utilize

engineering knowledge of the true form of the response.The results also suggest that
approximationmodel accuracy can be improved by including higher order terms (up to 5thorder) in
the model over the second-order RSM model (1).

In prior MDO studies using RSM at VAB, central compositedesigns (CCD) [2,3,4] and D-Optimal
designs [2,5,12]were utilized to sample the design space for constructing second-order
approximation models for aerodynamics using APAS. The CCDs used weremostly "face centered"
[2,3] designs, generating experimental designs at three levels (values). So were the D-optimal
designs, sampling the design space at three levels.

One willneed data withat least six levels to obtaina model to the 5thdegree, and theexperimental
designs. However, constructing CCD and D-Optimal designs at six or more levels would increase
the number of data points or APAS runs required in orders of magnitude and wouldbe prohibitive in
most all VAB applications. The question then is how to construct experimental designs that can
sample the design space efficiently(without increasing the numberof data pointsor APAS runs
required) at six or more levels in order to build approximation models with up to 5thorder terms in it.

One way to construct multilevelexperimental designs is to utilizethecomputerprograms givenby
Owen [24, 25]. Owen [25] lists a set of randomized orthogonal arrays (OA) for computer
experiments. The Statlibcomputerprograms (http://]ib.stat.cmu.edu/designs/)to generate these
multilevel orthogonal arrays are also listed by Koehler and Owen [24]. However, these OA may
require more experiments than central composite designs at six or more levels.

Tang [20] presents an approach to constructexperimental designs efficientJyat multiple levels
called =OrthogonaiArray based Latin Hyper cubes." He [20] notes that experimental designs
developed for physical experiments (such as CCDs) may not be appropriate for deterministic
computer experiments (such as using APAS).

Using OA basedLatin hypercube designs (LHD), one canconstructexperimentaldesignsat nine
levels utilizing a three level OA without increasing the number of points required. As an example,
Table-la displays a three level OA for two parameters (Xl andX2). This OA has 9 rows, indicating
that 9 design points (e.g. APAS runs) are necessary to constructa second order approximation
model. Using Tang's algorithm [20], this OA was converted to an OA based LHD (Table-lb). As
can be seen from the Table, there are still nine rows, however, the number of levels have increased
to 9, enabling the constructionof a higher (i.e. fourth or above) order model efficiently.
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Table-l: 3-Level and 9-LevelOrthogonal Arrays

Xl X2 Xl X2

1 1 1 I 1 3
2 2 1 2 2 6
3 3 1 3 3 9
4 1 2 4 4 2
5 2 2 5 5 5
6 3 2 6 6 8
7 1 3 7 7 1
8 2 3 8 8 4
9 3 3 9 9 7

a)Threelevel OA b) Ninelevel OAbasedLHD

OA based Latin hypercube experimental designs were ul_lizedby Booker [21] in a Helicopter Rotor
optimization study. Booker [21], notes that, OA based LHD for computer experiments, have an
appealing "space filling" property which enable a more thorough sampling of the design space as
compared with traditional experimental designs such as central composite designs. With a face
centered CCD, most of the sampling is done at the outer edges of the parameter design range.
Therefore, these experimental designs appear to be a very good choice and better suited for
conducting experimentation and for approximation model building.

3.5. Constructing OA based Latin Hypercube Designs

OA basedLatin hypercubedesignscan beconsb'ucted usingthe algorithm givenbyTang
[20].Tang'salgorithmas givenin [20]generates"random" OA basedLHD's. The non-
uniquenessof OA basedLatin Hypercubedesignsposesa problemof choosinga desirable
design. Tang discussesthisproblemandproposes=correlation"and =distance"criteria[22,
23]. Thusone can generateseveraldesignsfor givennumberof variables,and then choose
onethathas largest=distance"[22, 23].

For selecting a LHD usingthe correlationcriteria,Tang [22] inb'oduces a polynomial canonical
correlationof two vectors and suggest that a design which has a small polynomial canonical
correlation for each pair of its columns is preferred. He provides an algorithmfor reducing
polynomial canonical correlationsof a Latin hypercube. Tang [23] also uses the Maximin
distance criteriafor selecting an OA based Latin hypecube. He notes that it is commonly
recognized that uniformity of design points is a favored property of a design in cases of li_e
knowledge of the underlying model [23]. Therefore, Tang [23] argues, any criterion oriented
toward uniformity can be used for the selection of OA based LHDs. He provides a theorem
for this purpose [23].

4. CONCLUSIONS
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The models presented in the Appendices and accompanying results are only valid for the data set
in hand and the parameters studied. However, some general conclusions may also be drawn as
follows:

The results suggest that the choice of an approximation model's functional form should utilize
engineering knowledge of the true form of the response. The results also suggest that
approximationmodel accuracy can be improved by including higher order (more than three) terms
in the model over the second-order RSM model (1).

Using OA based Latin hypercube designs multiple levels experimental designs can be constructed

without.increasing the number of points required (in reference to the base OA used), enabling the
building of fifth order approximation models efficiently. As a result, OA based Latin hypercube
designs appear to be a very good choice for conducting wind tunnel experiments and for
experimentation using analysis codes for approximation model building.

5. FUTURE WORK

There is a lot offurther research needed in modeling and capturing vehicle aerodynamics. This
study has been limited in focusing on the data available, and in the number of parameters included.
Also, we were unable to conduct an applied design study using APAS as anticipated. Nevertheless,
a conb'ibutionwas made by the literature findings. A practical approachwas addedto the RSM
toolkit at VAB for generating multiple level experimental designsthat can be utilized for
approximation model building for vehicle aerodynamic and for MDO studies.
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Screening Fit

_'Summary of Fit 1

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response
Observations (or Sum Wgts)

L_

0.998831

0.998793

O.006574

0.03O451

352

_Analysis of Variance I

Source DF Sum of Squares
Model 11 12.552150

Error 340 0.014695

C Total 351 12.566845

ILac.o,

Mean Square
1.14110

0.00004

F Ratio

26401.8

Prob>F

0.0000

Mach 0.8

iParameter Estimates

Term

ntercept

Alpha

Delev

Alpha*Alpha
Delev*Delev

Alpha*Alpha*Alpha
Delev*Delev*Delev

Alpha*Alpha*Delev

Delev*Delev*Alpha

Alpha*Alpha*Alpha*Alpha

Alpha*Alpha*Alpha*Delev

Alpha*Alpha*Alpha*Alpha*Alpha

Estimate

-0.057709

0.0226172

0.0071657

-0.000315

-0.000045

0.0000163

-0.000002

-0.000004

-0.000004

0.0000018

-2.445e-7

-6.611e-8

Std Error

0.000919

0.000172

0.000088

0.000038

0.00001

0.000003

5.624e-7

0.000001

5.038e-7

3.458e-7

6.994e-8

2.114e-8

t Ratio

-62.78

131.32

81.51

-8.39

-4.67

5.33

-3.96

-3.38

-8.53

5.08

-3.50

-3.13

Prob>ltl

<.0001

<.0001

<.0001

<.0001

<.0001

<.0001

<.0001

0.0008

<.0001

<.0001

0.0005

0.0019

Test I

tJ

U

w

W

Prediction

0.3792-

d 0.040736 ._---

-0.3879-

Profile

• i

I ' ' I I ' i , I

o 2.96307 _ o 4,95739

Alpha Delev

rr=_
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Screening Fit

w

_ummary of Fit)

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.99746

0.997385

0.O01723

0.05153

352

Mach 0.8

A_alysis of Variance)

Source DF Sum of Squares Mean Square
Model 10 0.39739163 0.039739

Error 341 0.00101201 0.000003

C Total 351 0.39840364

F Ratio

1339O.24

Prob>F

0.0000

[iLack of Fit]

Parameter Estimates}

Term Estimate Std Error

Intercept 0.0155442 0.000218

Alpha -0.001655 0.00002
Delev -0.000049 0.000024

Alpha*Alpha 0.0004328 0.000005
Delev*Delev 0.0000814 0.000003

Delev*Delev*Delev -8.224e-7 1.474e-7

Alpha*Alpha*Delev -0.000002 2.889e-7

Delev*Delev*Alpha -0.000003 1.505e-7

Alpha*Alpha*Alpha*Alpha 0.0000001 1.982e-8

Alpha*Alpha*Alpha*Delev -8.741e-8 2.56e-8

Alpha*Delev 0.000252 0.000003

t Ratio

71.36

-81.80

-2.07

95.40

32.17

-5.58

-6.28

-20.95

5,34

-3.41

81.80

Pred ictio...____nnProfile

0.1713- i

8 0.0194870.0129

• o 4.95739o
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Prob>ltl
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<.0001
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° _ Screening Fit

Summary of Fit i,

RSquare 0.991311

RSquare Adj 0.991082

Root Mean Square Error 0.00264

Mean of Response 0.000722

Observations (or Sum Wgts) 352

Analysis of Variance )

Source DF Sum of Squares

Model 9 0.27194428

Error 342 0.00238364

C Total 351 0.27432792

Mean Square
0.030216

0.000007

iLack of Fit))

Mach 0.8

F Ratio

4335.333

Prob>F

0.0000

Parameter Estimates)

Term

Intercept

Alpha
Delev

Alpha*Alpha
Delev*Delev

Delev*Delev*Delev

Delev*Delev*Alpha

Alpha*Alpha*Alpha*Delev

Alpha*Alpha*Alpha

Alpha*Alpha*Alpha*Alpha*Alpha

• ]1Effect Test

Estimate

0.0141343

-0.00356

-0.002833

0.0000491

0.0000165

0.0000008

0.0000014

0.0000001

0.000015

-4.016e-8

Std Error
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0.000069
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2.258e-7

1.991e-7
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t Ratio

45.47
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Prob>ltl
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Results for Mach 0.95
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-- Screening Fit

[Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.998189

0.99813

0.008222

0.021629

351

[Analysis of Variance I

Source DF Sum of Squares
Model 11 12.631651

Error 339 0.022916

C Total 350 12.654568

Mean Square
1.14833

0.00007

F Ratio

16987.15

Prob>F

0,0000

0.95

"_ Estimatesl
Term

Intercept

Alpha
Delev

Alpha*Delev

Alpha*Alpha

Alpha*Alpha*Delev

Delev*Delev*Alpha
Delev*Delev*Delev

Alpha*Alpha*Alpha*Alpha
Delev*Delev*Delev*Delev

Alpha*Alpha*Alpha*Delev
Delev*Delev*Delev*Delev*Delev

Estimate

-0.07296

0.0238654

0.0079703

-0.000063

-0.000212

-0.000006

-0.000003

-0.000005

0.0000012

-3.244e-7

-3.39e-7

1.7269e-8

Std Error

0.000953

0.000097
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0.000015

0.000022

0.000001

7.253e-7
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9.499e-8

1.058e-7

1.232e-7

4.327e-9

t Ratio

-76.60

246.04

42.46

-4.25

-9.66

-4.13

-3.77

-2.74

12.16

-3.07

-2.75

3.99

Prob>ltl
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iSummary of Fit J

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.99491

0.994745

0.002482

0.052775

351

0.95

[Analysis of Variance]

Source DF Sum of Squares
Model 11 0.40826307

Error 339 0.00208880

C Total 350 0.41035187

Mean Square
0.037115

0.000006

F Ratio

6023.508

Prob>F

0.0000

r

Parameter

Term

Intercept

Alpha
Delev

Alpha*Delev

Alpha*Alpha

Alpha*Alpha*Delev

Delev*Delev*Alpha

Delev*Delev*Delev

Alpha*Alpha*Alpha*Alpha
Delev*Delev*Delev*Delev

Alpha*Alpha*Alpha*Delev
Delev*Delev* Delev*Delev*Delev

Estimates ]

Estimate

0.020622

-0.001311

-0.00019

0,0002659

0,0003619

-0.000003

-0.000002

0.0000019

0.0000003

0.0000005

-5.594e-8

-2.269e-8

Effect Test

Std Error

0.000288

0.000029

0.000057

0.000004

0.000007

4.248e-7

2.19e-7

5,932e-7

2.868e-8

3.195e-8

3.72e-8

1.306e-9

t Ratio

71.71

-44.77

-3.35

59.65

54.73

-7.67

-9.87

3.12

10,65

16.51

-1.50

-17.37

Prob>ltl

<.0001

<.0001

0.0009

<.0001

<.0001

<.0001
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, Screening Fit

iSummary of Fit 1
0.95

RSquare 0.982486

RSquare Adj 0.982128

Root Mean Square Error 0.003996

Mean of Response 0.0034

Observations (or Sum Wgts) 351

A_-_lysis of Variance]

Source DF Sum of Squares Mean Square F Ratio

Model 7 0.30724512 0.043892 2748.693 i
Error 343 0.00547715 0.000016 Prob>F i

C Total 350 0.31272227 <.0001 i

"Parameter Estimatesl

Term

Intercept

Alpha
Delev

Alpha*Alpha

Delev*Delev*Alpha
Delev* Delev*Delev*Delev

Alpha*Alpha*Alpha*Delev
Delev*Delev*Delev*Delev*Delev

Estimate Std Error

0.0169912 0.000383

-0.002994 0.000046

-0.00298 0.000036

0.0000932 0.000004

0.0000015 2.99e-7

0.0000002 4.122e-8

0.0000003 2.445e-8

-7.748e-9 2.05e-9

t Ratio

44.42

-65.39

-83.15

22.79

5.04

5.24

12.71

-3.78

Prob>ltl

<.0001

<.0001

<.0001

<.0001

<.0001
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iResid Cm I

0.01

0.00'

-0.01

....i

z

Quantiles ]

maximum 100.0% 0.00965

99.5% 0.00911

97.5% 0.00707

90.0% 0.00467

quartile 75.0% 0.00266
median 50.0% 0.00059

quartile 25.0% -0.0024
10.0% -0.0059

2.5% -0.0092

0.5% -0.0116

minimum 0.0% -0.0121

iMoments ]

Mean

Std Dev

Std Error Mean

Upper 95% Mean
Lower 95% Mean

N

Sum Weights

I

-0.0000

0.0040
0.0002

0.0004

-0.0004

351.0000

351.0000 J
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Results for Mach 2.48
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IISummary of Fit I ]

| RSquare 0.999903 /

/ RSquare Adj 0.9999 /
/R°ot Mean Square Error 0.001472/

/ Mean of Response 0.021387 /

L Observations (or Sum Wgts) 351 ,J

(Analysis of Variance 1

|Source DF Sum of Squares Mean Square F Ratio

/Model 10 7.5676005 0.756760 349461.9

|Error 340 0.0007363 0.000002 Prob>F

Lc Total 350 7.5683367 • 0.0000

ITerm Estimate Std Error t Ratio

I Intercept -0.041273 0.000189 -218.6

I Alpha 0.0169315 0.000036 451.13

I Delev 0.0026815 0.000017 160.07

I Alpha*Alpha -0.000201 0.000008 -23.91

I Delev*Delev -0.000014 0.000001 -13.55

I Alpha*Alpha*Alpha 0.0000291 6.884e-7 42.27

I Alpha*Alpha*Delev -0.000007 2,438e-7 -27.59

I Alpha*Alpha*Alpha*Delev 0.0000002 1.753e-8 12.57

I _a p,h a._Al,pha 0.0000011 7.802e-8 14.58
I Delev*Delev*Detev*Alpha -3.411 e-8 6.045e-9 -5.64
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_y of Fit)

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response

Observations (or Sum Wgts)

0.999329

O.999309

0.000655

0.056921

351

"_Analysis of Variance I

Source DF Sum of Squares
Model 10 0.21682298

Error 340 0.00014567

C Total 350 0.21696865

Mean Square
0.021682

0.000000

F Ratio

50607.32
Prob>F

0.0000

Paramete'_" Estimates )

Term

Intercept

Alpha
Delev

Alpha*Alpha
Delev*Delev

Alpha*Alpha*Alpha
Alpha*Alpha*Delev

Alpha*Alpha*Alpha*Delev

Alpha*Alpha*Alpha*Alpha

Delev*Delev*Delev*Alpha

Alpha*Delev

Estimate

0.0298352

-0.000619

0.0000522

0.0003262

0.0000343

-0.000004

-8.91e-7

-9.373e-8

0.0000003
-2.46e-8

0.0001061

Std Error

0.O00075
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0.000008

0.000002
4.749e-7

2.004e-7

1.144e-7
1.014e-8

1.41e-8

3.346e-9

0.0O00O1

t Ratio
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-38.49

6.71
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72.24
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23.77
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Screening Fit

Summary of Fit]
w •

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.999395

0.999377

0.000401

0.01163

351

I[Analysis of Variance]

Source DF Sum of Squares
Model 10 0.09021670

Error 340 0.00005459

C Total 350 0.09027130

Mean Square
0.009022

0.000000

F Ratio

56184.29

Prob>F

0.0000

Parameter, Estimates 1
Term

Intercept

Alpha
Delev

Alpha*Alpha
Delev*Delev

Alpha*Alpha*Alpha

Alpha*Alpha*Delev

Alpha*Alpha*Alpha*Delev

Alpha*Alpha*Alpha*Alpha
Alpha*Delev

Alpha*Alpha*Alpha*Alpha*Alpha

Estimate

0.0197154

-0.001846

-0.00118

0.0000518

0.0000056

0.0000006

0.0000024

-9.58e-8

-2.393e-7

0.0000036

4.509e-9

Std Error

0.000051
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0.000002

2.758e-7

1.885e-7

7.002e-8

6.207e-9

2.125e-8

6.398e-7
1.294e-9

t Ratio

385.93

-176.7

-252.6

22.59

20.16

3.3O

34.55

-15.43
-11.26

5.68

3.48

Prob>ltl
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<.0001

<.0001
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iEffect Test ]1
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Results for Mach 5.94
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iSummary of Fit)

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.999897

0.999894

0.001064

0.036868

351

Analysis of Variance)

Source DF Sum of Squares
Model 12 3.7248770

E rro r 338 0.0003825

C Total 350 3.7252595

Mean Square
0.310406

0.000001

F Ratio

274297.1

Prob>F

0.0000

Parameter
b,

Term

Intercept

Alpha
Delev

Alpha*Delev
Delev*Delev

Alpha*Alpha

Alpha*Alpha*Alpha
Delev*Delev*Delev

Alpha*Alpha*Delev

Delev*Delev*Alpha

Alpha*Alpha*Alpha*Alpha*Alpha

Alpha*Alpha*Alpha* Delev
Delev*Delev*Delev* Alpha

Estimates )
Estimate

-0.007874

0.0135424

0.0013063

0.000028

-0.000007

-0.000007

-0.000005

0.0000011

-0.000004

0.0000031

4.712e-9

0.0000001

-1.69e-7

Std Error
0.000134

0.000029

0.000015

0.000002

0.000002

0.000002

4.415e-7

9.785e-8

1.859e-7

1.994e-7

1.396e-9

1.648e-8
1.172e-8

t Ratio

-58.94

461.35

87.08

12.93

-4.04

-3.77
-11.27

11.62

-23.14
15.42

3.38

6.32

-14.41

Effect Test

Prediction Profile )1

Prob>ltl

.<.0001
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[[Analysis of Variance ]]

iParameter Estimates]

Term Estimate

Intercept 0.0200184
Alpha 0.0005059
Delev -0.000017

Alpha*Delev 0.0000598
Delev* Delev 0.0000281

Alpha*Alpha 0.0002655

Alpha*Alpha*Alpha 0.0000008
Delev*Delev*Delev 0.0000001

Alpha*Alpha*Delev -4.956e-7

Alpha*Alpha*Alpha*Delev -7.01 le-8

Delev*Delev*Delev*Alpha 1.7945e-8

Alpha*Alpha*Alpha*Alpha -6.687e-8

Effect Test_

Std Error t Ratio Prob>ltl

0.000063 319.04 0.0000
0.000012 41.57 <.0001

0.000007 -2.43 0.0157

9.898e-7 60.40 <.0001

7.232e-7 38.91 <.0001

0.000001 187.23 0.0000
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