

Dark Energy Camera

- 1.2.2 CCD Packaging
- 1.2.6 Focal Plane Support Plate

Greg Derylo Fermilab

CCD Module Package Overview

CCD Packaging Specifications

- Operating temperature at some point between 150 – 180 K
- Uniform temperature within a CCD sensor. Initial studies indicate this is met with this design concept.
- Flatness of CCD face < 10µm
- For focal plane uniformity, average thickness module-to-module within 10µm
- Development of thermal distortion analysis model is underway

Preliminary quarter-module heat transfer study

- * 0.95 W flux / module
- * 5°C variation through the module thickness
- * 0.1°C variation over surface of CCD

CCD Module Assembly Sequence

- Assembly techniques are similar to those used for fabricating HEP vertex detectors at SiDet
- CCD sensor held flat with vacuum and glued to the assembled AlN readout board (already equipped with connector & etc.)
- Gluing technique being developed to maximize uniformity of epoxy coverage, but glue lines in active area must still exist due to close proximity of bondpads to pixels
- Wirebond AlN to CCD
- Functional test

Epoxy test photo of glass readout board mockup glued onto blank Si (corners still need work)

CCD Module Assembly Sequence

- Glue mounting foot assembly to the AIN board
- Fixturing design to maintain
 - Flatness
 - Uniform thickness controlled with precision shims
 - Relative positions of sensor edges to mounting pins
- Inspect geometry
- Test
- Good ESD practices observed throughout process

CCD Module Prototyping

- Design integrated package and focal plane support plate to satisfy thermal and mechanical design requirements
- Investigate epoxy options and application techniques
- Design & develop assembly tooling
- Fabricate and test mechanical prototypes
- Work with Lick Observatory to assemble first electrical prototype December 2004. First electrical module packaged at FNAL in April 2005 ("Phase A" device).
- Prototype packaging review / go-ahead for electrical-grade preproduction in September 2005

CCD Module Production

- Module pre-production assembly scheduled from August 2005 to November 2005 (several "Phase B" devices used to evaluate the CCDs prior to placing the production order)
- Readiness review December 2005 prior to packaging the "Phase C" and the rest of the "Phase B" devices
- Module production assembly from May 2006 to May 2007
- LBNL to provide sensors at a rate of 20 per month
- Minimum required packaging through-put is therefore one module per day
- Two sets of fixture trains needed in order to ensure margin for this assembly rate. A technician can process multiple gluing setups in a day (a lot of time during assembly is spent waiting for epoxy to cure).

Focal Plane Layout Overview

 CCD module locations set by pin/hole engagements

• Fastened in place with screws from rear

- Access through plate for electrical readout
- Heaters actively shim the plate temperature based on measured CCD temperature data

Focal Plane Specifications

- Plate stiffness must keep the CCDs coplanar. Plate flatness over the range of motion to be less than ~15µm.
- Temperature to be kept uniform across the focal array to within 4°C in order to maintain sensor QE levels
- Plate material selection to be made to satisfy the mechanical and thermal requirements

Preliminary Temperature FEA Model

- * 100 W / 2" aluminum
- * ~3°C variation over module mount area

Estimated Hardware Costs

- Module Preproduction
 - 20 k\$ CCD module mounting hardware
 - 25 k\$ Assembly fixtures & module storage
- Module Production
 - 100 k\$ CCD module mounting hardware
 - 50 k\$ Assembly fixtures & module storage
- Focal Plane Support Plate
 - 10 k\$ Sample section / mockup
 - 30 k\$ Production plate

Summary

- CCD module development work is underway. The module design takes advantage of previous work done by LBNL for these sensors.
- Design of the focal plane support plate is proceeding to satisfy the mechanical and thermal performance requirements
- We look forward to working with Richard Stover at the UCO/Lick Observatory to gain from their packaging experience