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Abstract. In this paper we have introduced our newest product (Arian III) out-
lines. It’s a track based robot with two separately controlled flippers. Actually 
it’s a semi autonomous system with reliable control methods for navigation in 
mission operation. Although till now our group products have been manufac-
tured as industrial products for real environmental conditions, it’s to our pleas-
ure that we have found a reliable arena for demonstration of our capabilities. 

Rescue Robot League Competition 
Bremen Germany 
14-20 June 2006 



Introduction 

Ariana robotic group was founded to industrialize rescue robots and extend their 
capabilities for real natural urban disasters at 2002. Arian III is the youngest member 
of Arian’s family which all members are track based robots. It is a robust track robot 
for operating in variable undesirable conditions such as mechanical and thermal 
shocks, humidity, electrical noises, X radiations...  
To control the stability of robot in two directions (along the length and width of ro-
bot), Arian III benefits two separately controlled flippers.   
It takes advantage of “the state of the arts” control unit for simplifying the operator’s 
tasks in real disaster conditions. 
Arian III has three control layers (Manual, Semi autonomous and full Autonomous) to 
operate in different environmental situations.  

Map generation and localization is done full automatically without any interfering 
of the orator. Also victim identification is done automatically under the supervision of 
the operator. 

1. Team Members and Their Contributions 

Our team consist of some specialist in various fields : 
 

• Mohsen Rahnavard (Ph.D. of Solid State) Team Leader & Embedded Sys.  
• Mazyar Sadeghi (M.S. of Mech. Eng.)  Mechanical design 
• Amir Hossein Soltanzadeh (B.S. student) Mechanical design  
• Reza Jalili Saffar (M.S.student )   Mechanical Manufacture 
• Ahmad Chitsazan (B.S. student)  Mechanical Manufacture 
• Farzin Mozaffari (B.S. student)  Mechanical Manufacture  
• Ahmad Byagowi (M.S. student)    Network & Communication 
• Mahdi Emami (B.S. student)   Navigation & Map generation  
• Ehsan Abbasi (B.S. student)   Sensors & Power supply  
• Pedram Johari (B.S. student)   Control Developer   
• Mahdi Ramezani (B.S. of Computer Eng.) Vision & Driver  
• Asghar Mirzaei (B.S. of Computer Eng.) GUI & Software Developer 
• Hamid Aeinehsaz (M.A. of Interior Arch.)  Advisor 
• Hossein Mahbadi (Ph.D. of Mech. Eng.)               Advisor  
• Zaki Byagowi (Ph.D. of  Electro technique)      Advisor 

2. Operator Station Set-up and Break-Down (10 minutes) 

After some sessions with a trained rescue team at Helal-e-Ahmar Org. (Iran Red 
Cross) we were acknowledged that a rescue teams consist of three specific groups: 

• Advance team (just emergencies) 



• Support team (ambulances, helicopters,  …) 
• Back up team (tracks, debarkation hospital, …)  

Rescue robots mostly are used in advanced team and because of distance should be 
traveled by the rescue men carrying robot on foot, rescue robots must be portable. 
We’ve conceded this particular point in all design procedures and have used two 
kinds of packing, first for traveling to disaster zone and second for carrying the pack-
age to the mission location.  
 
2.1 Travel Packing 
 

Arian III travel package consist of three suitcases (see Fig.1): 
• Main unit (28 Kg) 

Robot main body (exc. VL parts) 
• Control Unit (3.5 Kg) 

Embedded main board (PIII) 
Touch panel display 
Heads up Goggle 
Industrial joystick   
Keyboard 
Stereo speaker 
Microphone 

• Equipment unit (12 Kg) 
VL parts 
Battery packs 
Battery charger 
Solar cells  
Mechanical Adjustable Tools 

 

 
Fig.1  Traveling Package of Arian III (to behind: Control unit, Equipment unit and Main unit) 

 
2.2 Carrying Packing 
 



• Arian III (backpack 29 Kg) 
• Control Unit (suitcase 3.5 Kg) 

  
Traveling pack can be transported by two people to the disaster zone. At disaster 

zone, after assembling VL and MAD parts on the main body, operator will be able to 
put the robot in the back pack and pick up the light control unit by hand. 

      
2.3 At Robocop competitions 

The traveling package of Arian III is so portable that there is no need back pack for 
transportation.   

 
Operator Station Set-up (10 minutes) 
Robot can be carried by one person and another needed for transporting the control 

unit. As mentioned above, control unit is a squeezed pack containing embedded 
mother board (Eden/C3 Embedded SBC equivalent PIII 677MHz), LCD touch screen 
display, keyboard, joy stick, heads up, stereo speaker, microphone; so the operator 
should just turn the robot and control unit on and supervise the automatic system 
tests. The automatic system test procedure is consisted of these steps: 

 
• Testing all connection system actual  
• Making an allowance for the motors receipt feed back by giving the short 

commands to the motors 
• Examining sensor connection or disconnection with considering their re-

ceived quantities 
• Testing The robot sight by examining the camera signal receives 
• The system localization test and its calibration  



 
Fig.2  System checking at the start up 

 
2.3.1    Operator Station Break-down (10 minutes) 

By ending the match time, the operator has two main tasks: first making the control 
unit to print generated map and second, ordering to the robot for coming back auto-
matically by using recorded path way in robot memory.    
 

3. Communications 

After years of experience in participating in Robocop rescue leagues, today we 
have decided to do most of our tasks semi-autonomously, which will be more de-
scribed in the 4th section. Since yet there are some commands and tasks that should be 
held on by the operator, we need a good and reliable communication protocol, and 
also we know that data have to be exchanged in both directions as the robot has to be 
controlled and to send back video and sensors data. 

• Data to be transmitted to the robot:  
 Motor control  
 Camera control 
 Operator's sound 



 Information request 

• Data to be received:  
 Sensors data 
 Images (streaming video) 
 Microphone sound 

 
 
So we reached to the idea of using two way communications that are described 

later. First one is the Wireless LAN (part 3.1.1) whit a powerful Access-Point and a 
good antenna to sending all the controlling data, and receiving the whole information 
about the sensors, robot situation, and streaming videos of our cameras; and the other 
one is a Radio Frequency Transceiver (part 3.1.2) of 2.4GHz frequency which will 
transmit the control information and receive the main camera's streaming video in the 
critical situation when the wireless LAN fails. 

In the sections below we have described the communication system in two separate 
parts which are remote and internal communication. 

3.1   Wireless (remote) Communication 

To exchange (send/receive) data with the robot we have to use a remote (wireless) 
communication, which will be described as two different methods of send/receive 
data between the robot and the control unit. 

Also we have a remote connection between the joystick and the control unit which 
is described in section 3.1.3. 

3.1.1   Wireless LAN 

The wireless LAN which we use is working on the 802.11A (5GHz) protocol link, 
and it can be set to a stay on a specific channel. 802.11a uses a different frequency 
than the most commonly used 802.11b/g and will procure a more robust connection. 
But also we can switch to the 802.11B/G (2.4GHz) if necessary. At a higher level, 
UDP sockets will be used instead of TCP sockets which are less efficient in bad net-
work conditions. Thus the application software will have to take care of all the 
streaming synchronization. 

While traveling up the TCP stack, you might have wondered when you'd get to the 
point of doing something useful. Pinging and routing are all very fine, but you can't 
use them to exchange meaningful data with another system. In our rescue robot sys-
tem what is really needed is a simple protocol that sits on top of IP and allows you to 
launch data and receive replies on your network. That protocol is user datagram pro-
tocol (UDP), so we will use the UDP instead of TCP. 



3.1.1.1   Access Point 

We use a DWL-7200AP D-Link access point. The picture and the specifications of 
this part are attached below. 

 
Fig.3  DWL-7200AP Access Point 

 

Table .1 DWL-7200AP AirPremier AG Tri-Mode Dualband 802.11a/b/g (2.4/5GHz) Wireless 
108Mbps1 Access Point with PoE Specifications. 

Specifications 

Standards 
• IEEE 802.11a 
• IEEE 802.11b 
• IEEE 802.11g  

Radio and Modulation 
Type* 

For 802.11b: 
DSSS : 

• DBPSK @ 1Mbps 
• DQPSK @ 2Mbps 
• CCK @ 5.5 and 11Mbps 

For 802.11a/g: 
OFDM: 

• BPSK @ 6 and 9Mbps 
• QPSK @ 12 and 18Mbps 
• 16QAM @ 24 and 36Mbps 
• 64QAM @ 48, 54 and 108 Mbps 

DSSS: 
• DBPSK @ 1Mbps 
• DQPSK @ 2Mbps 
• CCK @ 5.5 and 11Mbps  

Wireless Signal Range* 
802.11g (Full Power with 5dBi gain diversity dipole 

antenna) 
Indoors: 



• 98ft (30m) @ 54Mbps 
• 105ft (32m) @ 48Mbps 
• 121ft (37m) @ 36Mbps 
• 148ft (45m) @ 24Mbps 
• 203ft (62m) @ 18Mbps 
• 223ft (68m) @ 12Mbps 
• 253ft (77m) @ 9Mbps 
• 302ft (92m) @ 6Mbps 

Outdoors: 
• 328ft (100m) @ 54Mbps 
• 968ft (295m) @ 11Mbps 
• 1378ft (420m) @ 6Mbps  

Transmit Output Power 

For 802.11a: 
• 32mW (15dBm) 
• 6mW (7dBm) 

For 802.11b: 
• 10mW (10dBm) 
• 6mW (7dBm) 

For 802.11g: 
• 32mW (15dBm) 
• 6mW (7dBm)  

Temperature • Operating: 32ºF to 104ºF (0ºC to 40ºC) 
• Storing: -4ºF to 149ºF (-20ºC to 65ºC)  

Humidity • Operating: 10%~90% (non-condensing) 
• Storing: 5%~95% (non-condensing)  

Dimensions 
• L = 6.89 inches (175mm) 
• W = 4.13 inches (105mm) 
• H = 0.79 inches (20mm)  

Weight • 0.44 lbs (200g)  
 

 
Since the antenna which is installed on the Access Point is very weak and can be 

harmed easily, we use a kind of antenna which is more useful in tumultuous areas.  
 
 

 
Fig.4  ANT24-0800 



 
 

Table .2  ANT24-0800 Antennas Outdoor Omni-Directional Antenna specifications 
 

 

 

 

 

 

3.1.2   Radio Frequency Transceiver (RFT) 

When the wireless LAN is failed our controlling unit will announce the operator 
that there is a problem in send/receive process with the wireless LAN, and he will 
change the communication mode to the RFT. In this mode we can only send the con-
trol commands of driving the robot and the main camera and receive the pictures of 
the main camera which is installed in the front of the robot. During send/receive with 
this method the wireless LAN will be checked every 100msecs and will be automati-
cally selected if there isn't any more problems.  

  
 

Fig.5  VRX-1290LX 
 

 

Electrical Specifications 
Frequency 

Range 2.4 -2.5GHz 
Gain 8 dBi 

VSWR 2:1 Max 
Polarization Linear, vertical 

HPBW 
• horizontal - 

360° 

• vertical- 15° 

Downtilt 40° 
Power Handling 50W (cw) 

Impedance 50 Ohms 



This is a newest Audio / Video transceiver for 2.4 GHz band. Receiver is fully syn-
thesized VFO type for a full range of 2,300 MHz- 2,500 MHz with amazing sensitiv-
ity -96dBm/ 10 dB. Transmitter section has 8 channels and 250 mW RF power. 
Transceiver has two separate RF inputs and it works from 12 V / 750 mA. It is easy to 
use. The range of this device is over 5 km line-of-sight with special High gain anten-
nas. It is excellent for two-way Audio / Video communication point-to-point. 
 
 
 
Table .3  RECEIVER SPECIFICATIONS:  

  BATTERY POWER: 12 V - 16 V  PLL (PHASE LOOKED LOOP) 
CONTROLLED! 

  VIDEO OUT 1V PEP   SIZE: 6.5" X 4" X 1" 

  CURRENT CONSUMPTION: 300 mA!   SMA ANTENNA CONNECTOR 

  SENSITIVITY -96 dBm/10 dB SIN   AUDIO OUTPUT 300 mV 

  FULLY TUNABLE VFO IN 2.3- 2.5 
GHz BAND   BUILT-IN RF AMPLIFIER 

  FM DEMODULATION    FM BANDWIDTH 16 MHz   

Table .4  TRANSMITTER SPECIFICATIONS:  

  BATTERY POWER: 12 V - 16 V  PLL (PHASE LOOKED LOOP) 
CONTROLLED! 

  VIDEO INPUT 1V PEP   SIZE: 6.5" X 4" X 1" 

  CURRENT CONSUMPTION: 180 mA!   SMA ANTENNA CONNECTOR 

  RF POWER 250 mW/ 50 ohms   AUDIO INPUT 2 mV 

  8 SELECTABLE CHANNELS   BUILT-IN FILTER 

  FM DEMODULATION    BUILT-IN PROTECTION CIRCUIT  

3.1.3   Bluetooth telecommunication between the joystick and the main control 
unit 

Since we have two remote control units for different situations and one of them is 
packed in a rucksack we have to use a Bluetooth communication between the joystick 
and the main control unit to avoid using of wire and more complexity in the control 
unit. 



In this part we use a Bluetooth module on the joystick which will send data to our 
laptop in the rucksack and our driver for this Bluetooth module will translate the 
codes which we have sent with the joystick for our software to do the related task.  

3.1.4   Table of the frequencies that apply to our team 

Here is the table of the frequencies that apply to our team, and a conclusion to all 
the three parts above. 

 
Table. 5 

Rescue Robot League 

ARIANA(Industrial Rescue Robot) (IRAN) 

MODIFY  TABLE TO NOTE ALL FREQENCIES THAT APPLY TO YOUR TEAM 

Frequency Channel/Band Power (mW) 
5.0 GHz - 802.11a any 8 
2.4 GHz - 802.11b/g any 8 
2.4 GHz - Bluetooth spread-spectrum  
2.4 GHz – Audio/Video Trans-
ceiver 

8channels/ 
2300MHz~2500MH
z 

250 

3.2   Internal Communication 

Our internal devices in the robot are connected to each other with a local area net-
work (LAN) which will finally be sent to the control unit via the wireless LAN either 
the RF transceiver. 

The whole communication system is briefed in the Block Diagram below:  



 
Fig.6  The block diagram of the Internal Ethernet of Arian III 

 
 
 
The video server has four analog inputs and it captures and quads the inputs’ image 
and send it through the Ethernet. 
 

 
Fig.7  Video Server 

 



4. Control Method and Human-Robot Interface 

Nowadays one of the most important problems in robotic researches is how to con-
trol the robot best way. So to have a good robot, we should have a good control on it. 
To control Arian III we have provided a powerful software to be efficient in any 
situation. 

As we mentioned in previous parts of this TDP this year we have decided to do 
most of our tasks semi-autonomously, such as controlling the flippers of the robot 
automatically with the information which we gather from the sensors that are installed 
on the flippers and sensing the torque (strain gage), and automatically control the 
angle of the flippers. 

4.1   Control Method 

Below we have illustrated our total plan briefly in a block diagram. 

 
Fig.8  The control diagram of Arian III 

 
 

4.1.1   Main Control Unit 

The main control board has to do four different tasks: 
 Receiving the data from three navigation groups and sending these informa-

tion on the Ethernet for the main processing unit 



 Receiving the data of victim identification groups and send them through 
Ethernet for the operator 

 Receiving the control data which is sent through RF transmitter 
 Semi-autonomous controlling of robot according to the received control and 

sensors data 
 

 
Fig.9  Main Control Board of Arian III (Embedded LAN Control Board) 

 

4.1.2 Main Processing Unit 

The main processing unit contains an industrial embedded main board with a 
[Eden/C3 Embedded SBC Equivalent PIII 677MHz] CPU, Touch screen LCD, hard 
disk, and the power supply. 

 
This part has to do these tasks 

 Gathering the information of the five navigation groups and generating 
the final map 

 Processing the raw data of the fourth and fifth navigation groups 
 Processing the image provided by the thermal camera  



 

Fig.10  Arian III ‘s main processing unit 
 

4.1.3   Motor Controller Board 

One of the most important parts of the robot is the motor controller board. We have 
designed a good motor controller which is derived from the MD03 motor controller 
board. The PCB of this controller is attached below. 

 
  

 
Fig.11  PCB of Arian III ‘s motor controller 

 
 



 
Fig.12  Arian III ‘s motor controller 

 

4.2 Human-Robot Interface 

One operator will control the robot via a PC interface. All functions will be ac-
cessed with a joystick and finger touching (we use touchpad LCD).  

 
 

 
Fig.13  Interface Overview 



Control tab contains  
- Omni directional camera view 
- Pan Tilt camera view 
- Thermal Camera view 
- front Camera view 
- Control mode 
- 3D robot spatial orientation  view 
- Flippers status 
- Robot warnings 
- Compass 
- Power meter 
- Connection status 

4.2.1 Omni directional camera view 
 

 

 
Fig.14  Omni directional camera view 

 
 
In this part operator view 360 digress of robot's environment and it is possible to 
select the part of environment which he like to see with pan tilt camera, also the range 
be shown with 2 "Edit Boxes" near to "start edge" and "end edge".    
 
 
4.2.2 Pan tilt camera view 



 
Fig.15  Pan tilt camera view 

 
 
Pan tilt camera view; automatically show the selected area that is chosen in omni 
directional view. But operator can reject this capability and chose area with scroll 
bars.  
In this part, the temperature of center of image is explained. 
 
 
4.2.3 Thermal camera view 
 

 
Fig.16  thermal Camera view 

 



Thermal camera view has 3 parameters need to set; X-Y position and zoom condition, 
all of these fields are controllable with 3 scroll bars. 
 
 
4.2.4 Front camera view 
 

 
Fig.17  Front Camera view 

 
Front camera is a fix camera that shows front of the robot. Therefore there is no pa-
rameter to set. 
 

 
4.2.5 Map view 

  
Map view monitors robot and all part of map that are created. 

Additional information about map is available in map tab. Map view in control tab is 
an assistant tools for operator to have a better imagination of robot's position.  
Map view has zoom capability. 
 

 
Fig.18  map view 

 



 
4.2.6 Control mode 

 
This robot has 3 control levels: 

1- man control 
2- autonomous control level 
3- intelligent control level 

In man control level, operator use interface information contains videos, sensors in-
formation, robot warnings and etc. to handle robot with low level commands such as 
"forward, backward, stop …" but this instructions can be commanded by joystick and  
keyboard to reduce operator's difficulty. 
Autonomous control level, aid operator to order easier than man control level. In this 
situation operator use high level commands to order robot like "go ahead 4 meters". 
This case cause operator has more time to attention to victim identification and im-
proves efficiently of operator. 
All instructions are available in a combo box and parameters specify whit edit box. 
 
 

 
Fig.19  autonomous control level 

 
 
In intelligent control mode, operator only specific movement radius of the robot 

and robot check specified area to identify victim and generate a map. 
After checking area, robot sends a signal that show end mission. Clearly because of 
limitation of this technique operator can change this mode rapidly when he wants to 
man control level or autonomous control level. 
 
4.2.7   3D robot spatial orientation view 
 



This part monitors robot's spatial orientation based on result of 3DM sensor. 
 

 
Fig.20 spatial ordination view  

 
 
4.2.8 Flippers status  

Flippers status is a graphical interface that is monitored 2 flippers of robot and an-
gles. 

Operator can control each flipper angle independently or synchronal. 
 
 

 
Fig.21  Flippers status graphical interface 

 
 
 
4.2.9 Robot warning dialog 
 
Robot warning dialog is a text base dialog that monitors all signals is received from 
robot in critical situation.  
 
 
4.2.10 compass 
 
Compass figure shows robot direction. 



 

 
Fig.22  compass figure 

 
4.2.11 Power meter 
 
Power meter monitors battery charging. 

 

 
Fig.23  Power meter 

 
 

4.2.12 Connection status 
 
Connection status monitor connection signal between robot and controller. 
 

 
Fig.24  Connection status graphical interface 

 
 



5. Map generation/printing 

There are various methods of mapping and localization which have their own special 
errors. After studying about these methods we have came to conclusion that to have a 
fair map we need fine localization and vice versa. It means that these two subjects are 
not separable and each one depends on the other. So we have tried to solve these 
problems simultaneously. 
N the other hands, as mentioned each method has its own errors which depend on 
some parameter. These parameters are: 
 

 The environment in which the robot works 
 Sensors which are used in the method 
 Nature of the method 

  
Therefore to have a map and position with least error we have used a combination of 
different methods, and we gather the information of each method separately and com-
bine the results of them with a special algorithm and then generate the map and derive 
the position of the robot. This way, different methods with different errors will cover 
each other’s faults and the map and position which is obtained in each step contains 
the east error. For instance in one method has absolute error and the other has accu-
mulative error, and one system has static error and the other has dynamic error. 
It’s necessary to be mentioned that all the process of mapping and localization will be 
done automatically and uses AI and there is no need for the operator to do anything, 
and only the final result of each step will be displayed on the LCD for the operator. 
Also as it will be mentioned later at the victim identification section, finding the vic-
tim with the sensors will be done full-autonomous and will be added to the map in its 
position. 
 
5.1. Navigation Groups 
To provide the map we have used five different methods in five separate groups. Each 
group contains a processor and some sensors that will independently trying to create 
map and cover the position of the robot. 
Studying different existing theories, we have tried to decrease the error in each group 
to the least possible value, and do the operation needed in each group in best possible 
way, and finally at the specific time periods, each group will send its data to the main 
processor which is a Pentium III with a coefficient. This coefficient which is called 
assurance coefficient is the assessment of each group’s processor for the accuracy of 
their own sent data to the main processing unit. 
In each group the coefficient will be made with a special method by its processor by 
use of some parameters. The pent-groups and their members are: 
 

 First group 
I. GPS 

 
 Second group 

I. Compass 



II. Gyroscope (accelerator-magnetometer-…) 3DM 
III. Tachometer 
IV. Feedback of motor’s current 

 
 Third group 

I. Ultrasonic 
II. IR ranger 

 
 Fourth group 

I. Laser range finder 
 

 Fifth group 
I. Omni-directional camera 

 
The main processor will receive each group’s data and assurance coefficient in every 
period and after correcting this coefficient by using a fuzzy algorithm and Kalman 
filter, will combine the data and coefficients and then making up the map and decide 
the position of the robot in the period. After formation of map and position in each 
step, the data will be transmitted to the operator. And also some information for cor-
recting the errors will be sent to the processor of each group. The block diagram of 
the method of operation for the groups and the main processor in mapping and local-
ization: 

 
Fig.25  The block diagram of method of mapping and localization where wi are the 

assurance coefficients and si are the data needed to correct the errors. 
5.2. Modifying the assurance coefficient 



The main processor needs some information about the environment of the robot to be 
able to modify the coefficient. 
We have divided the specifications of the environment into 4 groups: 
 

 First 
1. Indoor 
2. Outdor 

 Second 
1. Structured 
2. Unstructured 

 Third 
1. static 
2. dynamic 

 fourth 
1. small scale 
2. large scale 

 
The main processing unit is able to recognize the environment specifications with 
some special algorithms automatically. The origin of this classification for environ-
ment is the ability of the robot to be used and work in various environments. Since 
our robot is designed to be used in industrial and military applications, it should be 
able to work in various kinds of environments. Besides, the accuracy and efficiency 
of each method and its sensors in disparate environments is different. For instance 
GPS will cause more error in indoor usage than outdoor, or the range finders will 
work more reliable in structured areas than unstructured ones. Therefore the main 
processor should correct and modify the sent coefficients of the methods, referring to 
the environment in which the robot works, to combine the methods and generate a fair 
map. 
The main processor uses a specific method in each classification, to recognize each 
kind of environment. Naturally the process of recognizing the environment will be 
completed after several time periods. One way to recognize the areas is to compare 
the assurance coefficients in each time period with the previous ones. 
Below are some characteristics of environments to recognize them: 

1. For indoors the difference between the coefficients is so high in comparison 
with scale of them in the first group. This way we can distinguish between 
indoor and outdoor. 

2. For unstructured areas it will happen for the second group, and through this 
information we can find out that we are in a structured or unstructured area. 

3. In dynamic areas changing of the third and fourth groups data is so high, and 
it can help us to recognize the static and dynamic areas. 

4. In large scale areas the obstacle detecting sensors will find less objects then 
the small scale. 

 
Indeed, the parts explained above are just a part of our algorithm to find out the char-
acteristics of the environment. And after modifying the coefficients the role of one 
method may pales a lot. 



 
 
5.3. Navigation Methods Implementation  
 
5.3.1. Navigation Group I 
This group uses absolute positioning method and contains a GPS. One powerful mi-
crocontroller captures the GPS information which contain longitude and latitude and 
other information and after transformation to Cartesian coordinate and calculation of 
reliability cofactor according to special algorithms, sends them to the main controller. 
Then on the Base Times main controller sends this information to main processor. 
This results in reduce wiring and better timing. 
This group has the most effect on localization on outdoor and large scale environ-
ments. A minimum of four satellites have to be detected by the receiver to give a 
position estimate, with the more satellites detected, the more accurate the position 
estimate. The position is calculated through a trilateration technique based on the 
TOF information. 
 
5.3.1.1. GPS Deficiencies 
The errors in an uncorrected GPS signal come in many forms and arise from a variety 
of different sources. These errors have been divided into two broad categories: 1) 
high frequency noise and 2) long-term drift. The first category pertains to the errors 
that manifest themselves as high frequency noise or spikes. These errors are easily 
identifiable on a 2-D plot of the GPS track recorded from a moving platform. Al-
though, no attempt has been made to formulate an explicit definition of what consti-
tutes noise, a general example would be single-epoch jumps in the GPS position. An 
epoch is one GPS cycle (milliseconds). The difficulty arises from the fact that in some 
instances the position can jump several meters and then either jump back on the next 
epoch or maintain that new position for a few seconds or indefinitely. If the new posi-
tion is maintained for more than approximately 30 seconds, then it is no longer con-
sidered noise but lies in the gray area between the two categories. 
Experience has shown that the two main causes of GPS noise are satellites coming in 
and out of the view of the GPS receiver and multi-path effects. The magnitude of 
these errors varies from a few feet to hundreds of feet. 
The second category of GPS error is classified as drift. These errors are much more 
difficult to see on a track plot, since they change over a period of hours rather than 
seconds like the noise errors. It is difficult to determine the exact cause of these types 
of errors, but they are typically attributed to atmospheric effects in the ionosphere and 
troposphere and satellite geometry. The magnitude of these errors can vary from no 
error at all to thirty feet or more. 
 
 
 
5.3.1.2 GPS noise remedy 
In order to perform reasonable waypoint navigation, a robot needs to have a relatively 
noise-free estimate of its current state. Obviously, a non-differential GPS solution 
alone is not capable of providing that estimate. 



The most common solution for solving the problem of GPS noise (and the solution 
used here) is to augment the GPS with other sensors and employ a Kalman Filter to 
optimally combine all of those sensor inputs. An inertial sensor is an ideal companion 
for the GPS in a navigation package, as the two sensors have complementary errors 
(i.e. inertial sensors generally have very little noise but drift without limit, whereas, 
GPS is quite noisy but has finite drift). By using Kalman Filter almost all the spikes in 
the GPS noise have been smoothed out. The Kalman Filter does an excellent job of 
compensating for the noise in the GPS position, but is of no help with the long-term 
drift error in the GPS position. 
 
 
5.3.2. Navigation Group II 
This group takes advantage of combining of two methods: inertial and odometry. This 
group contains a electrical compass, a 3DM sensor (compose of 3 accelerators, 3 
gyroscopes, 3 magnetometer), tachometer (shaft encoder) and feedback of motor 
current and torque. We combine these two methods in one group to solve the problem 
of their errors in low level.  
One powerful microcontroller (processor) reads information of all sensors and com-
bines them together, according a special algorithm to obtain the real momentum. With 
having the spatial direction of movement and real momentum we could obtain the 
position of robot and send them to the main control on each Base time. Then on the 
Base Times main controller sends this information to main processor. This results in 
reduce wiring and better timing. Problem of this method is accumulative error that 
increases. We solve this problem by updating the group in the end of each Base Time 
with sending information by main processor  
 
5.3.2.1. Electrical Compass 
Vehicle heading is the most significant of the navigation parameters (x, y, and θ) in 
terms of its influence on accumulated dead-reckoning errors. For this reason, sensors 
which provide a measure of absolute heading are extremely important in solving the 
navigation needs of autonomous platforms. The magnetic compass is such a sensor. 
One disadvantage of any magnetic compass, however, is that the earth's magnetic 
field is often distorted near power lines or steel structures. This makes the straight-
forward use of geomagnetic sensors difficult for indoor applications but it is suitable 
for outdoor and large scale environment. Based on a variety of physical effects related 
to the earth's magnetic field, different sensor systems are available: 
- Mechanical magnetic compasses. 
- Fluxgate compasses. 
- Hall-effect compasses. 
- Magnetoresistive compasses. 
- Magnetoelastic compasses. 
The compass best suited for use with mobile robot applications is the fluxgate com-
pass. When maintained in a level attitude, the fluxgate compass will measure the 
horizontal component of the earth's magnetic field, with the decided advantages of 
low power consumption, no moving parts, intolerance to shock and vibration, rapid 
start-up, and relatively low cost. If the vehicle is expected to operate over uneven 



terrain, the sensor coil should be gimbal-mounted and mechanically dampened to 
prevent serious errors introduced by the vertical component of the geomagnetic field. 
 
5.3.2.2. 3DM 
As mention above 3DM contains compose of 3 accelerators, 3 gyroscopes and 3 mag-
netometer and it specifies the spatial orientation of robot very accurately. In fact by 
using of 3DM we have the direction of movement of robot in spatial space. 
Note that 3DM and compass are complementary and cooperate with each other to 
determine the direction of the robot.  
3DM Deficiency is static angle error that can be removed by other mechanism. 
 
5.3.2.3. Tachometer & Motor Current  
Tachometer (optic shaft encoder) determines the rotation of the motor shaft but be-
cause of slipping it is not exactly the real momentum of the robot. We use the feed-
back of motor current and current to determine approximately the momentum of the 
robot. This is done by a special algorithm that compares the real motor current to the 
value of the nominal motor current in that motor rate and specifies approximately the 
slipping value. 
 
5.3.2.4. Minimizing Odometry Error 
Error sources fit into one of two categories: (1) systematic errors and (2) non-
systematic errors: 
 
1. Systematic errors 
a. Unequal wheel diameters 
b. Average of both wheel diameters differs from nominal diameter 
c. Misalignment of wheels 
d. Uncertainty about the effective wheelbase (due to non-point wheel contact with           
the floor) 
e. Limited encoder resolution 
f. Limited encoder sampling rate 
 
2. Non-systematic errors 
a. Travel over uneven floors 
b. Travel over unexpected objects on the floor 
c. Wheel-slippage due to: 
- Slippery floors 
- Over-acceleration 
- Fast turning (skidding) 
- External forces (interaction with external bodies) 
- Internal forces (e.g., castor wheels) 



- Non-point wheel contact with the floor     

   
 

Systematic errors are particularly grave, because they accumulate constantly. On most 
smooth indoor surfaces systematic errors contribute much more to odometry errors 
than non-systematic errors. However, on rough surfaces with significant irregularities, 
non-systematic errors may be dominant. 
We do many efforts due to reducing both of systematic and nonsystematic errors.  
 
5.3.2.4.1. Measurement of Systematic Errors 
One important but rarely addressed difficulty in mobile robotics is the quantitative 
measurement of odometry errors. Lack of well-defined measuring procedures for the 
quantification of odometry errors results in the poor calibration of mobile platforms 
and incomparable reports on odometric accuracy in scientific communications. To 
overcome this problem Borenstein and Feng [1995] developed a method for quantita-
tively measuring systematic odometry errors and, to a limited degree, non-systematic 
odometry errors. This method, called University of Michigan Benchmark (UMBmark) 
requires that the mobile robot be programmed to follow a preprogrammed square path 
of 4x4 m side-length and four on-the-spot 90-degree turns. This run is to be per-
formed five times in clockwise (cw) and five times in counter-clockwise (ccw) direc-
tion. 
When the return position of the robot as computed by odometry is compared to the 
actual return position, an error plot similar to the one shown in Figure 1 will result. 
The results of Figure 1 can be interpreted as follows: 
 
- The stopping positions after cw and ccw runs are clustered in two distinct areas. 
- The distribution within the cw and ccw clusters is the result of non-systematic er-
rors. However, Figure 1 shows that in an uncalibrated vehicle, traveling over a rea-
sonably smooth concrete floor, the contribution of systematic errors to the total 
odometry error can be notably larger than the contribution of non-systematic errors. 

Fig. 26  A typical differential-drive mobile robot (bottom view) 



 
Fig. 27 Typical results from running UMBmark (a square path run 
five times in cw and five times in ccw directions) with an uncali-

brated TRC LabMate robot. 
  
The asymmetry of the centers of gravity in cw and ccw results from the dominance of 
two types of systematic errors, collectively called Type A and Type B [Borenstein 
and Feng, 1996]. Type A errors are defined as orientation errors that reduce (or in-
crease) the amount of rotation of the robot during the square path experiment in both 
cw and ccw direction. By contrast, Type B errors reduce (or increase) the amount of 
rotation when traveling in cw but have the opposite effect when traveling in ccw 
direction. One typical source for Type A errors is the uncertainty about the effective 
wheelbase; a typical source for Type B errors is unequal wheel diameters. 
After conducting the UMBmark experiment a single numeric value that expresses the 
odometric accuracy (with respect to systematic errors) of the tested vehicle can be 
found from: 

 
 Based on the UMBmark test, Borenstein and Feng [1995; 1996] developed a calibra-
tion procedure for reducing systematic odometry errors in differential drive vehicles. 
In this procedure the UMBmark test is performed five times in cw and ccw direction 



to find xc.g.cw and xc.g.ccw. From a set of equations defined in [Borenstein and Feng two 
calibration constants are found that can be included in the basic odometry computa-
tion of the robot. Application of this procedure to several differential-drive platforms 
resulted consistently in a 10- to 20-fold reduction in systematic errors. Figure 2 shows 
the result of a typical calibration session. Emaxsys The results for many runs calibration 
sessions with TRC’s LabMate robots averaged Emaxsys = 330 mm for uncalibrated 
vehicles and Emaxsys = 24 mm after calibration. 
 
5.3.2.4.2. Measurement of Non-Systematic Errors 
Borenstein and Feng also propose a method for measuring non-systematic errors. This 
method, called extended UMBmark, can be used for comparison of different robots 
under similar conditions, although the measurement of non-systematic errors is less 
useful because it depends strongly on the floor characteristics. However, using a set 
of well-defined floor irregularities and the UMBmark procedure, the susceptibility of 
a differential-drive platform to nonsystematic errors can be expressed. Experimental 
results from six different vehicles, which were tested for their susceptibility to non-
systematic error by means of the extended UMBmark test, are presented in Borenstein 
and Feng. 
 

 
Fig. 28  Position errors after completion of the bidirectionalsquare-
path experiment (4 x 4 m). 

 
Borenstein developed a method for detecting and rejecting non-systematic odometry 
errors in mobile robots. With this method, two collaborating platforms continuously 
and mutually correct their nonsystematic (and certain systematic) odometry errors, 
even while both platforms are in motion. A video entitled “CLAPPER” showing this 
system in operation is included in [Borenstein et al., 1996b]) and in [Borenstein 



1995v]). A commercial version of this robot, shown in Figure 3, is now available 
from [TRC] under the name “OmniMate.” Because of its internal odometry error 
correc tion, the OmniMate is almost completely insensitive to bumps, cracks, or other 
irregularities on the floor. 
 
 
5.3.3. Navigation Group III 
This group uses ranging method and contains 4 IR ranger and 6 ultrasonic sensors. 
We take advantage of a new sonar based localization method suitable for both static 
and dynamic environments. Instead of local grids, the system stores a short feature 
vector, which is obtained from sonar readings by means of a simple transformation. 
The proposed vectors present the following advantages: 1) they can be created at any 
position, even in unstructured environments; 2) they do not depend on the robot ori-
entation. 
Data capturing and basic calculation is done by a powerful microcontroller and after 
determining the reliability cofactor send information to the main controller. Then on 
the Base Times main controller sends this information to main processor. This results 
in reduce wiring and better timing. 
 
5.3.3.1. Place learning algorithm 
A sonar reading typically provides information about the distance of the sensor to the 
closest obstacle in the direction of the beam. Since sonars present an arc of uncer-
tainty, most systems rely on accumulating evidence from several ones, which are 
usually integrated into an evidence grid . If a mobile robot builds an evidence grid 
while it knows its correct position, it can compare local grids adquired after losing its 
reference to the global one to locate itself.  
In order to achieve a grid accurate enough to represent most significant features 
within a typical indoor environment, such a grid must present an adequate decomposi-
tion degree and, therefore, it may yield a relatively large data volume. To reduce the 
problem instance, many methods rely on searching significant structures over the 
adquired evidence grids. However, they work with very simple ones, like walls or 
corners, and, therefore, the approach is not efficient for complex unstructured envi-
ronments. Besides, the robot can only locate itself if it is close to any of these struc-
tures and if their layout is significant enough to be distinguished (i.e. if the robot only 
recognizes walls, it can not locate itself in a square room, even if there are chairs and 
tables around). 
Instead of searching for simple structures, we propose a method to transform multiple 
sonar readings into a small vector which can efficiently represent any point of the 
environment. If a robot is equipped with a ring of sonar sensors, an evidence grid 
basically provides information about the distance between the robot and the closest 
obstacles around for each beam direction in polar coordinates. This information can 
be stored into a one-dimensional function known as depth map, which represents the 
contour of the area free of obstacles around the robot. The similarity of two depth 
maps can be calculated by means of a circular correlation to avoid dependence on the 
orientation on the robot. Clearly, depth maps involve less data than an average evi-
dence grid and, being one-dimensional, they are easier to compare. A complete depth 



map yields 360 points, but it can be subsampled to lower lengths. Fig. 1.b presents a 
64-points depth function adquired at a random position of a cluttered environment. 

 
Fig. 29   Landmark adquisition: a) sonar reading; b)depth map; c) 
DMDFT; d) landmark 

 
Depth maps are still too large to become suitable landmarks, but it can be observed 
that the Discrete Fourier Transform of an average depth map (DMDFT) yields a large 
number of zero components (Fig. 1.c). Since the Fourier space for FFTs of N points is 
an N-dimensional vectorial space, it can be assumed that the DMDFTs conform a P-
dimensional vectorial subspace, being P lowers than N. Thus, the shortest vector 
capable of uniquely representing a DMDFT is equal to P, and it is calculated by pro-
jecting the DMDFT onto a base of the subspace it belongs to. 
Calculation of a base is not simple because some non-zero components of the 
DMDFT could be linearly dependant. Since a base of a P-dimensional subspace is a 
set of P orthogonal vectors, we propose a simple approach to calculate one. The 
method consists of clustering a set of random DMDFTs by means of a k-means algo-
rithm relying on euclidean distance. A k-means algorithm [3] split the sample space 
into k classes whose prototypes - which are equal to the average of all the elements of 
the class - tend to be as different as possible. Thus, if k is lower or equal to P, proto-
types are as orthogonal as possible. Obviously, P is not known a priori, but it can be 
easily calculated by clustering the DMDFTs for increasing values of k: if k is larger 
than P, the average angle between prototypes decreases because there can be no more 
than P different orthogonal vectors in a P-dimensional subspace. The prototypes of 



the classes for k=P are the vectors of the base and the coordinates of a DMDFT onto 
the base are calculated as: 

   
αi being the i-th coordinate of the DMDFT in the new base, mj the j-th component of 
the DMDFT and vij the j-th component of the i-th vector of the base. These vectors 
are not really orthogonal and there exists a representation error, but it has experimen-
tally proven to be very small. 
To prove that the number of samples required calculating a base does not necessary 
need to be large in this work only 30 depth maps adquired at random positions of a 
structured simulated environment were used. All tests were performed nevertheless in 
a unstructured real environment to prove that the base is valid for environments dif-
ferent from those were it was calculated. In order to estimate the correct dimension of 
the subspace, several clustering processes were performed for ks ranging from 2 to 7. 
The best results were achieved for a k equal to 2 (Fig. 2), when the average angle 
between vectors was maximum (67.56 degrees). Despite the lack of orthogonality of 
the vectors of the base, it can be observed in Fig. 3 that closes places yield very simi-
lar landmarks and different ones do not. Obviously, if two different places yield a 
similar layout, their landmarks will be similar as well (landmarks 7-9 and 1-8). 
 

 
Fig. 30  A base of the vectorial subspace of DMDFTs: a) vector 1; b) 
vector 2. 

 
After off-line calculation of a base, a landmark is adquired on-line through three 
steps: 
-Adquisition of a depth map from the sonar readings 
- Calculation of the Fourier Transform of the map (DMDFT) 
-Projection of the DMDFT onto the vectors of the base 
 
It must be observed that the last step simply consists of P products of N-dimensional 
vectors. Thus, it is very fast and it does not depend on the local complexity of the 



environment. Also, the data volume required to represent any place is constant, de-
spite its particular features, and therefore place recognition is easier. 
 
5.3.3.2. Place recognition algorithm 
5.3.3.2.1. Static localization 
Static localization typically consists of comparing the current landmark to all stored 
ones. The robot is presumedly located at the position whose landmark is most similar 
to the current one. Obviously, if landmarks are adquired as often as possible, the 
environment can be constantly actualised and the robot can locate itself at more 
places. However, processing time increases with the number of stored landmarks. 
Since close landmarks tend to be very similar, this problem can be partially solved by 
segmenting stored landmarks into regions by means of any algorithm relying both on 
spatial proximity and similarity between landmarks. This process divides space into 
compact regions yielding similar landmarks and each region is represented by a proto-
type, which is equal to the average of all the landmarks of the region. Although land-
marks are not usually available at every point inside a region, it is interpolated that 
they all present the prototypical one. Segmentation presents the following advantages: 
i) comparing a landmark to available prototypes is faster than comparing it to all 
stored landmarks; ii) prototypes are not as affected by transient changes and spurious 
reflections as individual landmarks; and iii) all explored environment present a land-
mark value even if no landmark was adquired there. 

 
Fig. 31  a) real environment and landmark adquisition points; b) 2-
dimensional landmarks at points 1-10 

5.3.3.2.2. Dynamic localization 
After the landmark map is segmented the robot may perform a static localization 
process, but this approach still presents two problems: 1) several places could present 
very similar or equal landmarks; and 2) the landmark adquired by the robot to locate 
itself may be distorted by transient or lasting changes in the environment. These prob-
lems may be solved by accumulating evidence of being at a given region through 
several movements. This process is typically performed by means of Markov chains 
[1], which are stocastic processes where the probability of reaching a future state Rj 



8j > n depends only on the present state Rn. Formally, for any succession of states r1, 
r2,  ...rn+1: 

   
Localization presents a finite number of states N which is equal to the number of 
different regions the robot may be located at. The probability of being at region rj at 
instant n + 1 if the robot was at region ri at instant n (Pr(Rn+1 = rj jRn = ri)) is known 
as probability of transition, tij . Given a finite Markov chain of N states, these prob-
abilities of transition tij conform a matrix T of NxN elements, being tij≥0 and  

 
Obviously, T depends on the direction and magnitude of the robot movement, which 
are constants for the transition matrix. However, sometimes a robot may find an ob-
stacle in its direction. In this case, it is desirable to calculate more matrices so that the 
robot can continue the localization process. 
The calculation of a transition matrix at direction d (Dd) consists of the following 
steps: 
-For each point of a region i of the localization map, it is evaluated to which region 
the robot arrives after a movement of magnitude M and direction d. If the arrival 
region is j, let Dd{i,j}= Dd{i,j}+1; 
-Normalization of the matrix by factor 

          
 
5.3.3.2.3. Hybrid localization 
After an initial static estimation, localization may rely uniquely on Markovian chains, 
but the efficiency of the process depends on the correctness of the initial estimation. 
However, there are usually several locations whose landmark is similar to the first 
adquired one. Also, the robot could be initially located in an unexplored area, the 
environment might have changed or the first landmark could be distorted. In all cases, 
it is necessary to correct the initial uncertainty. 
This paper proposes to merge static and dynamic localization techniques: each time 
the robot moves, its probability of being at each region is partially given by Markov 
chains, but also by the likeness of the most recently adquired landmark to the proto-
types of existing regions. In order to combine data, two different probability vectors 
are defined: the static vector v, which relies uniquely on current sonar readings, and 
the dynamic vector w, which relies on Markov chains. After transition matrices have 
been calculated, the dynamic vector at instant n is easily obtained as: 

          
(D) being the transition matrix in the direction of the movement and xn-1 the com-
bined probability vector in the previous instant. In order to calculate the static vector, 
the euclidean distance of the current landmark to all available prototypes is studied: 
the larger the distance to a given prototype, the less likely it is that the robot occupies 
the region. Thus, the static vector at moment n can be obtained by simple normaliza-
tion: 



          
vn(i) being the i-th component of the static vector and d(i) being the euclidean dis-
tance between current landmark and class i prototype. Thus, given an agent moving in 
a partially explored environment segmented into N classes, the localization algorithm 
consists of the following steps: 
1. Calculation of the transition matrices.  
2. Calculation of the initial static vector of probabilities vo. 
3. Let the initial vector of combined probability x0 = v0. Let n = 0. 
4. Estimation of the possible location of the agent (Rloc), which is the set of regions 
whose probability of occupation xn[i] is higher than a threshold Uloc. If Rloc is con-
nected and its area is small enough to provide the required precision, the process 
finishes. 
5. Let n = n + 1. 
6. Movement of magnitude M in any free direction depending on the defined matri-
ces. 
7. Calculation of the new static vector of probabilities vn. 

  
where D is the transition matrix corresponding to the chosen movement direction. 
8. Calculation of the new dynamic vector of probabilities 
9. Calculation of the new vector of combined probability xn as: 

       
γ being a heuristically estimated pondering factor. The robot may be located at any 
region i whose xi is larger than a threshold. 
10. Go to step 4 until there is a single region the robot may be located at. 
 
It must be noted that this algorithm is valid as long as landmarks can be adquired at 
any position of the environment. 
 
 
 
 
5.3.4. Navigation Group IV 
This group also uses ranging method and contains a laser line scanner. The informa-
tion of the laser scanner is processed by main processor. The laser scanner can pro-
vide an instance 2D map that contains direct distance between robot and obstacles. 
For the best performance we use a algorithm that its theory mentions below: 
Motion estimation from range imagery takes part in three stages: terrain map genera-
tion, terrain map alignment and motion estimation. 
 
5.3.4.1. Terrain Map Generation 
Terrain map generation is the process by which range samples are projected into a 
grid to form a 2½-D terrain map representation. Scanning laser rangefinders generally 



have spherical or perspective projection models. Also, scan patterns are not always 
regular raster scans; spiral and helical scans are common when minimizing scanner 
power. Nonlinear projection models and irregular scan patterns create an irregular 
sampling of the surface. If the range samples are used directly, a time consuming 
registration algorithm that accounts for the irregular spacing between samples is 
needed (e.g., ICP). However, by resampling the range samples from each scan to a 
regular grid in Cartesian space, motion estimation can be posed as an image align-
ment problem greatly simplifying the underlying algorithms and data structures, 
which will ultimately result in a more efficient algorithm. A terrain map is a function 
Z(r,c) that encodes elevation on a regular grid. To generate a terrain map, the horizon-
tal size of each grid cell, s, and horizontal extent, h, of the terrain map must be deter-
mined. As shown in Figure 1, these parameters can be determined from the scanner 
field of view f, the average of scan samples across the scene n, and the average range 
to the scene being imaged R. In general we set these parameters as follows: 

             ,  
With these settings, the terrain map will cover roughly the same extent as the scanned 
data and each grid cell will contain approximately one sample. 

         
  Fig. 32  Sensor and terrain map coordinates. 
 
Once the terrain map parameters are established, the procedure for terrain map gen-
eration is as follows. First, each range sample is converted from scanner angle and 
range coordinates to Cartesian coordinates (x,y,z). Next, the (x,y) coordinates of the 
sample are used to determine the floating point coordinates (r,c) that the sample pro-
jects to in the grid cell  

  
The coordinate relationship between sensor and terrain map coordinates is shown in 
Figure 1. In general (r,c) will fall between discrete grid cells, so, to prevent aliasing, 
bilinear interpolation is used to update the terrain map. 
Two arrays are used to perform bilinear interpolation: the elevation accumulator 
E(r,c) and the bilinear weight accumulator W(r,c). For each sample, the four grid cells 
surrounding (r,c) are updated using 

         



Where x is the floor operator. After all samples have been accumulated, the elevation 
Z at each grid cell is determined using 

         
Due to the irregular sampling by the scanner, it is possible that a grid cell did not have 
a sample projected into it and consequently does not have an elevation value. For 
efficiency during image alignment, it is important that the terrain map be free of 
holes, especially near the center of the map. A simple interpolation scheme is used to 
fill any holes. First, hole cells are detected using a modified grassfire transform that 
detects cells that do not have an elevation but are surrounded by cells with elevation. 
Next, each hole cell is assigned the average elevation of all neighboring cells that 
have elevation values. By repeating this process until all hole cells have an elevation 
value, the holes in the terrain map are filled incrementally. Figure 2 shows a typical 
range scan, a terrain map before hole filling and a terrain map after hole filling. 

   
   Fig. 33 Terrain map generation. 
 
To be aligned by our algorithm, two terrain maps must be generated using the same 
terrain map parameters. Also any rotation between the scans must be eliminated be-
fore the scans are aligned. The following procedure is used to generate two terrain 
maps for alignment. First, the range samples in each scan are converted to Cartesian 
coordinates. Next, the rotation between the scans (determined from on board gyros) is 
eliminated by rotating the samples from the second scan into the frame of the first 
scan. Next, the terrain map parameters are determined using the data from the first 
scan. These parameters are then used to generate the terrain maps for both scans en-
suring that the sizes of the grid cells are the same for each image. The end results of 
terrain map generation are two terrain maps that are ready for terrain map alignment. 
5.3.4.2. Terrain Map Alignment 
During terrain map alignment one terrain map is shifted relative to another by d = 
(dr,dc,dz) until the difference in elevation data between the two maps is minimized. 
Our procedure for terrain map alignment is inspired by the Shi-Tomasi feature tracker 
[7]. However, we modify the tracker to use the additional elevation information to 
provide full 3-D tracking. Suppose the terrain map I(r,c) is generated and then, using 
samples from a later scan, the terrain map J(r,c) is generated. We would like to solve 
for the 3-D shift d between the scans. Following the derivation of Shi and Tomasi, at 
the correct shift, the relationship 

    
holds. To constrain the problem so that we can solve for the 3-D shift and account for 
noise in the data, we seek to minimize 



         
over a window W that covers most of the terrain map. The minimum of e can be 
found by differentiating e with respect to the image shift d and setting the result to 
zero 

     
Where 

          
Finite differences are used to compute the gradients of the terrain map 

   
If the image shift is small then I(r+dr,c+dc)+dz can be approximated by its truncated 
Taylor series expansion  

        
Substituting (3) into (2) and rearranging terms results in 

           
This is a linear equation in the unknown d 

     

    
Because of the linearization, the solution to (4) does not minimize (1) exactly. How-
ever using (4), a Newton Raphson iterative minimization can be used to align the 
terrain maps exactly. The procedure is to first solve (4) for d0 (H and e are con-
structed assuming d = 0). Then iteratively solve (4) for di with e replaced by 

                
until di changes very little. di is a floating point value, so I(r+dri,c+dci) is deter-
mined through bilinear interpolation of the four neighboring grid cells to 
(r+dri,c+dci). The end result of terrain map alignment is a vector d that aligns the 
two terrain maps.  
The window W over which the two terrain maps share data, and therefore can be 
compared, changes at each iteration. It is possible to determine W at each iteration so 
that all possible data is used. However, if W is fixed for all iterations, a more efficient 
algorithm results because H is computed only once per alignment. 
In order to maximize the overlap between terrain maps and consequently minimize 
the alignment error, W should be set as large as possible. However, because of 
boundary effects, it is not possible to set W to the entire terrain map. Ideally, W will 
be set such that when the terrain maps are aligned using the correct transformation 
(rotation and translation) W is the largest window contained completely within both 
maps. Since it is not possible to know the translation between terrain maps before 



alignment, our algorithm sets W by using a translation extrapolated from the transla-
tion computed between the previous two scans. Another alternative is to set W based 
on a translation predicted from on-board inertial sensors. 
 
5.3.4..3 Motion Estimation 
The purpose of motion estimation is to transform the alignment vector d into a 3-D 
translation T and also compute the covariance matrix C of the translation. T can be 
computed directly from d by 

     
Where 

            
Since d is estimated using least squares, the covariance of d is the inverse of H. Given 
that T is a linear function d, the covariance of T can be computed from H as well. 

            
σ2 is the variance on the terrain map noise which can be computed from sensor noise 
characteristics. Once the translation and translation covariance are computed, they can 
be passed to the spacecraft guidance, navigation and control subsystem for execution 
of safe and precise trajectories. 
 
5.3.4.4. Multi-frame Motion Estimation 
During autonomous landing, multiple range scans will be taken as the lander ap-
proaches the comet surface. For small translations, alignment errors are roughly inde-
pendent of the magnitude of translation; in general they are between 1/3 and 1/6 the 
terrain map grid cell size. If motion estimation is done between subsequent scans, 
then the motion estimation error will accumulate a fixed error for each scan. How-
ever, if the translation between scans is small with respect to the extent of the surface 
area scanned, then it will be possible to align multiple range scans to a single key 
scan. In this case, the alignment errors will remain fixed for each key scan resulting in 
a less rapid growth in alignment errors. At some point, it will become difficult to 
align a scan with the current key scan because the overlap becomes too small. When 
this happens, the key scan is updated to the current scan. Although the accumulation 
of errors cannot be eliminated, this procedure will keep it to a minimum. 
Using key scans also has advantages in terms of efficiency. During alignment, terrain 
map gradients are computed only for the first map. Since the first map corresponds to 
the key scan, gradients will only have to be computed each time the key frame is 
changed. Since computing image gradients takes roughly half the total time to esti-
mate motion between two scans, eliminating this step results in an algorithm that is 
twice as fast. 
Deciding when to select a new key scan is not straight forward. This decision depends 
on the surface overlap between scans and the overall roughness of the surface being 
scanned. In our algorithm, we select a new key frame based solely on the overlap 



between scans; when the window of overlap W between scans falls below a threshold 
based on the number of grid cells in the terrain maps, a new key frame is selected. 
Now that we have discussed all of the components, we can describe our motion esti-
mation algorithm in its entirety. The first scan is taken, its terrain map is generated 
and the gradients of this terrain map are computed. This is the key scan. The next 
scan is taken and its terrain map is generated using the terrain map parameters of the 
key scan. The comparison window W is set based on an initial prediction of the trans-
lation between scans. Next the terrain maps are aligned and the motion and the mo-
tion covariance between scans are computed. The next scan is read in, and its terrain 
map is generated using the parameters of the key scan. W is set based on the motion 
extrapolated from previous alignments. The current terrain map and the key map are 
aligned. This procedure repeats until W shrinks below ½ the total number of grid cells 
in the terrain maps; at this point a new key map is selected and the procedure repeats. 
 
5.3.5. Navigation Group V 
This group takes advantage of image processing techniques and contains a panoramic 
camera. This camera provides a 360 degree view of environment that would be very 
useful for mapping. Images of this camera directly by main processor with assistance 
of a FPGA board have processed.   
 Virtually all existing localization algorithms extract a small set of features from the 
robot’s sensor measurements. Landmark-based approaches, which have become very 
popular in recent years, scan sensor readings for the presence or absence of landmarks 
to infer a robot’s position. Other techniques, such as most model matching ap-
proaches, extract certain geometric features such as walls or obstacle configurations 
from the sensor readings, which are then matched to models of the robot’s environ-
ment. The range of features used by different approaches to mobile robot localization 
is quite broad. They range from artificial markers such as barcodes and more natural 
objects such as ceiling lights and doors to geometric features such as straight wall 
segments and corners. This raises the question as to what features might be the best 
ones to extract, in the sense that they produce the best localization results.  
The problem of learning the right landmarks has been recognized as a significant 
scientific problem in robotics (Borenstein, Everett, & Feng, 1996), artificial intelli-
gence (Greiner & Isukapalli, 1994), and in cognitive science (Chown, Kaplan, & 
Kortenkamp, 1995). 
Few localization algorithms enable a robot to learn features or to define its own land-
marks. Instead, they rely on static, handcoded sets of features for localization, which 
has three principle disadvantages: 
      
     1. Lack of flexibility. The usefulness of a specific feature depends on the particu-
lar       environment the robot operates in and also often hinges on the availability of a 
particular type of sensors. For example, the landmark “ceiling light”—which has been 
used successfully in several mobile robot applications—is useless when the environ-
ment does not possess ceiling lights, or when the robot is not equipped with the ap-
propriate sensor (such as a camera). If the features are static and predetermined, the 
robot can localize itself only in environments where those features are meaningful, 
and with sensors that carry enough information for extracting them. 



      2. Lack of optimality. Even if a feature is generally applicable, it is usually un-
clear how good it is or what the optimal landmark would be. Of course, the goodness 
of features depends, among other things, on the environment the robot operates in and 
the type of uncertainty it faces. Existing approaches usually do not strive for optimal-
ity, which can lead to brittle behavior. 
     3. Lack of autonomy. For a human expert to select appropriate features, he/she 
has to be knowledgeable about the characteristics of the robot’s sensors and its envi-
ronment. Consequently, it is often not straightforward to adjust an existing localiza-
tion approach to new sensors or to new environments. Additionally, humans might be 
fooled by introspection. Since the human sensory apparatus differs from that of mo-
bile robots, features that appear appropriate for human orientation are not necessarily 
appropriate for robots. 
We present an algorithm, called BaLL (short for Bayesian landmark learning), that 
lets a robot learn such features, along with routines for extracting them from sensory 
data. Features are computed by artificial neural networks that map sensor data to a 
lowerdimensional feature space. A rigorous Bayesian analysis of probabilistic mobile 
robot localization quantifies the average posterior error a robot is expected to make, 
which depends on the features extracted from the sensor data. By training the net-
works so as to minimize this error, the robot learns features that directly minimize the 
quantity of interest in mobile robot localization (see also Greiner & Isukapalli, 1994). 
We conjecture that the learning approach proposed here is more flexible than static 
approaches to mobile robot localization, since BaLL can automatically adapt to the 
particular environment, the robot, and its sensors. We also conjecture that BaLL will 
often yield better results than static approaches, since it directly chooses features by 
optimizing their utility for localization. Finally, BaLL increases the autonomy of a 
robot, since it requires no human to choose the appropriate features; instead, the robot 
does this by itself. The first and the third conjecture follow from the generality of the 
learning approach. The second conjecture is backed with experimental results which 
illustrate that BaLL yields significantly better results than two other approaches to 
localization. 
 
5.3.5.1. A probabilistic model of mobile robot localization 
This section lays the groundwork for the learning approach presented in next Section, 
providing a rigorous probabilistic account on mobile robot localization. In a nutshell, 
probabilistic localization alternates two steps: 
 
      1. Sensing. At regular intervals, the robot queries its sensors. The results of these 
queries are used to refine the robot’s internal belief as to where in the world it is lo-
cated. Sensing usually decreases the robot’s uncertainty. 
     2. Acting. When the robot executes an action command, its internal belief is up-
dated accordingly. Since robot motion is inaccurate due to slippage and drift, it in-
creases the robot’s uncertainty. 
 
The derivation of the probabilistic model relies on the assumption that the robot oper-
ates in a partially observable Markov environment (Chung, 1960) in which the only 
“state” is the location of the robot. In other words, the Markov assumption states that 



noise in perception and control is independent of noise at previous points in time. 
Various other researchers, however, have demonstrated empirically that the probabil-
istic approach works well even in dynamic and populated environments, due to the 
robustness of the underlying probabilistic representation. 
 
5.3.5.1.1. Robot motion 
BaLL employs a probabilistic model of robot motion. Let denote the location of the 
robot within a global reference frame. Throughout this paper, the term location will 
be used to refer to three variables: the robot’s x and y coordinates and its heading 
direction θ. Although physically a robot always has a unique location ζ at any point in 
time, internally it only has a belief as to where it is located. BaLL describes this belief 
by a probability density over all locations ζ € �, denoted by bel(ζ) where �denotes 
the space of all locations. Occasionally we will distinguish the belief before taking a 
sensor snapshot, denoted by bel prior (ζ), and the belief after incorporating sensor in-
formation, denoted by bel posterior (ζ). The problem of localization is to approximate as 
closely as possible the “true” distribution of the robot location, which has a single 
peak at the robot’s location and is zero elsewhere. 
Each motion command (e.g., translation, rotation) changes the location of the robot. 
Expressed in probabilistic terms, the effect of a motion command  Aa∈  , where A 
is the space of all motion commands, is described by a transition density: 

          
Which specifies the probability that the robot’s location is ζ, given that it was previ-
ously at ξ and that it just executed action a. In practice it usually suffices to know a 
pessimistic approximation, which can easily be derived from the robot’s kinemat-
ics/dynamics. 
If the robot would not use its sensors, it would gradually lose information as to where 
it is 
Due to slippage and drift (i.e., the entropy bel(ζ) would increase). Incorporating sen-
sor readings counteracts this effect, since sensor measurements convey information 
about the robot’s location. 
 
5.3.5.1.2. Sensing 
Let S denote the space of all sensor measurements (sensations) and let Ss∈  denote 
a single sensation, where sensations depend on the location ζ of the robot. Let P(s | ζ).
        
Denote the probability that s is observed at location ζ. In practice, computing mean-
ingful estimates of P(s | ζ) is difficult in most robotic applications. For example, if the 
robot’s sensors include a camera, P(s | ζ) would be a highdimensional density capable 
of determining the probability of every possible camera image that could potentially 
be taken at any location ζ. Even if a full blown model of the environment is available, 
computing P(s | ζ) will be a complex, real time problem in computer graphics. More-
over, the current work does not assume that a model of the environment is given to 
the robot; hence, P(s | ζ) must be estimated from data. 
To overcome this problem, it is common practice to extract (filter) a lowerdimen-
sional feature vector from the sensor measurements. For example, landmark-based 



approaches scan the sensor input for the presence or absence of landmarks, neglecting 
all other information contained therein. Model matching approaches extract partial 
models such as geometric maps from the sensor measurements, which are then com-
pared to an existing model of the environment. Only the result of this comparison 
(typically a single value) is then considered further. 
To formally model the extraction of features from sensor data, let us assume sensor 
data are projected into a smaller space F, and the robot is given a function 

             
Which maps sensations Ss∈ into features Ff ∈ . Borrowing terms from the signal 
processing literature, _ will be called a filter and the result of filtering a sensor read-
ing f=σ(s) will be called a feature vector. Instead of having to know P(s | ζ), it now 
suffices to know P(f | ζ), where P(f | ζ) relates the sensory features to different loca-
tions of the environment, for which reason it is often called a map of the environment. 
The majority of localization approaches described in the literature assumes that the 
map is given. The probability P(f | ζ) can also be learned from examples. P(f | ζ), is 
often represented by a piecewise constant function (Buhmann et al. 1995; Burgard et 
al. 1996a; Burgard, et al., 1996b; Kaelbling, Cassandra, & Kurien, 1996; Koenig & 
Simmons, 1996; Moravec & Martin, 1994; Nourbakhsh, Powers, & Birchfield, 1995; 
Simmons & Koenig, 1995), or a parameterized density such as a Gaussian or a mix-
ture of Gaussians (Gelb, 1974; Rencken, 1995; Smith& Cheeseman, 1985; Smith, 
Self, & Cheeseman, 1990). Below, in our experimental comparison, a k-nearest 
neighbor algorithm will be used to represent P(f|ζ). 
In landmark-based localization, for example, σ filters out informationby recording 
only the presence and absence of individual landmarks, and P(f | ζ) models the likeli-
hood of observing a landmark at the various locations ζ. P(f | ζ) can be estimated from 
data. The mathematically inclined reader may notice that the use of σ(s) instead of s is 
mathematically justified only if σ is a sufficient statistic (Vapnik, 1982) for estimating 
location-otherwise, all approaches that filter sensor data may yield suboptimal results 
(by ignoring important sensor information). 
In practice, the suboptimality is tolerated, since P(f | ζ), or an approximate version of 
P(f|ζ), is usually much easier to obtain than P(s | ζ), and often is a good approximation 
to this probability. 
 
5.3.5.1.3. Robot localization 
For reasons of simplicity, let us assume that at any point in time t, the robot queries its 
sensors and then executes an action command that terminates at time t+1. In response 
to the sensor query, the robot receives a sensor reading s(t) , from which it extracts a 
feature vector f(t). Let  f(1) , f(2) , … = σ(s(1)) , σ(s(2)) , … denote the sequence of feature 
vectors, and let a(0) , a(1) , … denote the sequence of actions. Furthermore, let  ζ(0) , ζ(1) 
, …denote the sequence of robot locations. Occasionally, locations will annotated by a 
* to distinguish them from variables used for integration. 
Initially, at time t=0, the robot has a prior belief as to what its location might be; this 
prior belief is denoted bel prior (ζ(0)) and reflects the robot’s initial uncertainty. If the 
robot knows its initial location and the goal of localization is to compensate slippage 
and drift, bel pri (ζ(0)) is a point-centered distribution that has a peak at the correct 



location. The corresponding localization problem is called position tracking. Con-
versely, if the robot has no initial knowledge about its position, bel prior (ζ(0)) is a uni-
form distribution. Here the corresponding localization problem is called self localiza-
tion, global localization, or the “kidnapped robot problem” (Engelson, 1994), a task 
that is significantly more difficult than position tracking. 
Sensor queries and actions change the robot’s internal belief. Expressed probabilisti-
cally, the robot’s belief after executing the t-1th action is: 

 
And after taking the  i-th sensor measurement it is: 

 
We will treat these two cases separately, starting with the second one. 
 
5.3.5.1.3.1. Sensing 
According to Bayes’ rule, 

            
The Markov assumption states that sensor readings are conditionally independent of 
previous sensor readings and actions given knowledge of the exact location: 

                 
It is important to notice that the Markov assumption does not specify the independ-
ence of different sensor readings if the robot’s location is unknown; neither do it 
make assumptions on the extent to which ζ(t) is known during localization. In mobile 
robot localization, the location is usually unknown-otherwise there would not be a 
localization problem-, and subsequent sensor readings and actions usually depend on 
each other. See Chung (1960), Howard (1960), Mine and Osaki (1970), and Pearl 
(1988) for more thorough treatments of conditional independence and Markov chains. 
The Markov assumption simplifies (8), which leads to the important formula (Mo-
ravec, 1988; Pearl, 1988): 

      
 
The denominator on the right hand side of (11) is a normalizer which ensures that the 
belief bel posterior (ζ(t)) integrates to 1. It is calculated as: 

            



To summarize, the posterior belief bel posterior (ζ(t))after observing the t-th feature vec-
tor f(t) is proportional to the prior belief bel posterior (ζ(t)) multiplied by the likelihood 
P(f(t)|ζ(t)) of observing f(t at ζ(t) . 
 
5.3.5.1.3.2. Acting 
Actions change the location of the robot and thus its belief. Recall that the belief after 
executing the t-th action is given by 

            
 

 
Which can be rewritten using the theorem of total probability as: 

          
Since ζ(t)does not depend on the action a(t) executed there, is equivalent to: 

          
By virtue of the Markov assumption, which if ζ(t) is known renders conditional inde-
pendence of ζ(t+1) from f(1) , a(1) , … , ζ(t) (but not from a(t)), bel pri (ζ(t+1)) can be ex-
pressed as : 

         
 
5.3.5.2. The Bayesian localization error 
This section and the following one present BaLL, a method for learning σ. The input 
to the BaLL algorithm is a set of sensor snapshots labeled by the location at which 
they were taken: 



    
Where K denotes the number of training examples. Localization is a specific form of 
state estimation. As it is common practice in the statistical literature on state estima-
tion (Vapnik, 1982; Casella & Berger, 1990), the effectiveness of an estimator will be 
judged by measuring the expected deviation between estimated and true locations. 
BaLL learns σ by minimizing this deviation. 
 
 
 
5.3.5.2.1. The posterior error posterior 
The key to learning σ is to minimize the localization error. To analyze this error, let 
us examine the update rule (17) in Table 1. This update rule transforms a prior belief 
to a refined, posterior belief, which is usually more accurate. Obviously, the posterior 
belief and thus the error depend on σ, which determines the information extracted 
from sensor data s. 
Let ζ * denote the true location of the robot (throughout the derivation, we will omit 
the time index to simplify the notation), and let e(ζ * , ζ) denote an error function for 
measuring the error between the true position ζ *and an arbitrary other position ζ. The 
concrete nature of e is inessential to the basic algorithm; for example, e might be the 
Kullback-Leibler divergence or a metric distance. 
The Bayesian localization error at ζ *, denoted by E(ζ *), is obtained by integrating 
the error e over all belief positions ζ , weighted by the likelihood bel(ζ) that the robot 
assigns to ζ, giving 

    
If this error is computed prior to taking a sensor snapshot, that is, if bel(ζ) = belpe-

rior(ζ), it is called the prior Bayesian error at ζ *  with respect to the next sensor read-
ing and will be denoted Eprior. The prior localization error is a function of  belpri(ζ). 
We are now ready to derive the Bayesian error after taking a sensor snapshot. Recall 
that ζ * denotes the true location of the robot. By definition, the robot will sense a 
feature vector f with probability P(f | ζ *). In response, it will update its belief accord-
ing to Equation (17). The posterior Bayesian error at ζ *, which is the error the robot 
is expected to make at ζ * after sensing, is obtained by applying the update rule (17) to 
the error (21), giving: 

        

       
Where Eprior posterior is averaged over all possible sensor feature vectors f weighted 
by their likelihood P(f | ζ *). The normalizer P(f) is computed just as in equations (12) 
or (18). Thus far, the posterior error Eprior corresponds to a single position ζ *only. By 
averaging over all possible positions ζ *,weighted by their likelihood of occurrence 
P(ζ *), we obtainthe average posterior error 
          



 
The error Eprior is the exact localization error after sensing. 
 
5.3.5.2.2. Approximating Eposterior 
While Eposterior measures the “true” Bayesian localization error, it cannot be computed 
in any but the most trivial situations (since solving the various integrals in (24) is 
usually mathematically impossible). However, Eposterior can be approximated using the 
data. Recall that to learn σ, the robot is given a set of K examples: 

        
Where X consists of K sensor measurements sk that are labeled by the location ζk at 
which they were taken. K is used to approximate Eposterior with the expression: 

    
Leaving problems of small sample sizes aside, Eposterior lets the robot compare differ-
ent σ with each other: the smaller Eposterior, the better σ for the purpose of localization. 
This alone is an important result, as it lets one compare two filters to each other. 
The error Eposterior is a function of the prior uncertainty belpri(ζ)as well. As a result, a 
specific σ that is optimal under one prior uncertainty can perform poorly under an-
other. This observation matches our intuition: when the robot is globally uncertain, it 
is usually advantageous to consider different features than when it knows its location 
within a small margin of uncertainty. 
 
5.3.5.3. The BaLL algorithm 
BaLL learns the filter σ by minimizing Eposterior through search in the space of filters σ, 
that is, by computing: 

       
Where � is a class of functions from which σ is chosen. This section presents a spe-
cific search space �, for which it derives a gradient descent algorithm. 
 
5.3.5.3.1. Neural network filters 
BaLL realizes σ by a collection of n backpropagation style feed-forward artificial 
neural networks (Rumelhart, Hinton, & Williams, 1986). Each network, denoted by gi 



with i=1,…,n , maps the sensor data s to a feature value in (0,1). More formally, we 
have  

                                           
is realized by an artificial neural network. The i-th network corresponds to the i-th 
feature, where n is the dimension of the feature vector f. 
Neural networks can approximate a large class of functions (Hornik, Stinchcombe, & 
White, 1989). Thus, there are many features that a neural network can potentially 
extract. To the extent that neural networks are capable of recognizing landmarks, our 
approach lets a robot automatically select its own and learn routines for their recogni-
tion. 
 
5.3.5.3.2. Stochastic filters 
At first glance, it might seem appropriate to define f = (g1(s), g2(s),…,  gn(s)), making 
the feature vector f be the concatenated n-dimensional output of the n neural net-
works. 
Unfortunately, such a definition would imply F = (0,1)n, which contains an infinite 
number of feature vectors f (since neural networks produce real-valued outputs). If 
the sensor readings are noisy and distributed continuously, as is the case for most 
sensors used in today’s robots, the chance is zero that two different sensations taken 
at the same location will generate the same feature vector f. In other words, if define f 
= (g1(s), g2(s),…, gn(s)), F would be too large for the robot to ever recognize a previ-
ous location-a problem that specifically occurs when using real-valuedfunction ap-
proximators as feature detectors. 
Fortunately, there exists an alternative representation that has several nice properties. 
In the BaLL algorithm F = {0,1}n and |F| = 2n (which is finite). Each neural network 
is interpreted as a stochastic feature extractor, which generates the value fi = 1 with 
probability gi(s) and the value fi = 0 with probability 1- gi(s), giving: 

 
We assume that the joint probability P(f | s) is given by the product of the marginal 
probabilities P(fi | s): 

 
The stochastic setting lets σ express confidence in its result by assigning probabilities 

to the different Ff ∈ - a generally desirable property for a filter. 
The stochastic representation has another advantage, which is important for the effi-
ciency of the learning algorithm. As we show below, Eposterior is differentiable in the 
output of the function approximator and hence in the weights and biases of the neural 
networks. Differentiability is a necessary property for training neural networks with 
gradient descent. 
 
5.3.5.3.3. The neural network learning algorithm 



The new, stochastic interpretation of σ requires that Epost and its approximation Eposte-

rior be modified to reflect the fact that σ generates a probability distribution over F 

instead of a single Ff ∈ . Following the theorem of total probability and using (23) 
as a starting point, Epost is given by: 

          
The mathematically inclined reader should notice that (24) and (27) are special cases 
of (34) and (36). They are equivalent if one assumes that P(f | s) is deterministic, that 
is, if  
P(f | s) is centered on a single f for each s. 
Armed with an appropriate definition of  Eposterior, we are now ready to derive the 
gradient descent learning algorithm for training the neural network feature recogniz-
ers to minimize Eposterior . This is done by iteratively adjusting the weights and biases 
of the i-th neural network, denoted by wiµυ , in the direction of the negative gradients 
of  Eposterior: 

         
Here η > 0 is a learning rate, which is commonly used in gradient descent to control 
the magnitude of the updates. Computing the gradient in the right hand side of (38) is 
a technical matter, as both Eposterior and neural networks are differentiable:   

              
The second gradient on the right hand side of (39) is the regular outputweight gradi-
ent used in the backpropagation algorithm, whose derivation we omit (see Hertz, 
Krogh, & Palmer, 1991; Rumelhart, Hinton, & Williams, 1986; Wasserman, 1989). 
The first gradient in (39) can be computed as: 



 
 
Here  δx,y denotes the Kronecker symbol, which is 1 if x=y and 0 if x≠y. P(fj | s*) is 
computed according to Equation (32). 
Table 2 describes the BaLL algorithm and summarizes the main formulas derived in 
this and the previous section. BaLL’s input is the data set X and a specific prior belief 
belpri(ζ). Below, we will train networks for different prior beliefs characterized by 
different entropies (i.e., degrees of uncertainty). The gradient descent update is re-
peated until one reaches a termination criterion (e.g., early stopping using a crossvali-
dation set or pseudoconvergence of Eposterior), as in regular backpropagation (Hertz, 
Krogh, & Palmer, 1991).3 
BaLL differs from conventional backpropagation (supervised learning) in that no 
target values are generated for the outputs of the neural networks. Instead, the quan-
tity of interest, Eposterior, is minimized directly. The output characteristics of the indi-
vidual networks and, hence, the features they extract, emerge as a side effect of 
minimizing Epost. 
The output of the BaLL algorithm is a set of filters specified by a set of weights and 
biases for the different networks. As noted above, Eposterior and the resulting filter σ 
depend on the uncertainty belperior(ζ). Below, when presenting experimental results, 
we will show that, in cases in which the uncertainty is small, quite different features 
are extracted than when the uncertainty is large. However, although the networks 
must be trained for a particular belperior(ζ), they can be used to estimate the location 
for arbitrary uncertainties belpri(ζ), but with degraded performance. It is therefore 
helpful, but not necessary, to train different networks for different prior uncertainties. 
 
 



 
 
 



5.3.5.3.4. Algorithmic complexity 
The complexity of the learning and the performance methods must be analyzed sepa-
rately. The localization algorithm described in Table 1 must be executed in real time, 
while the robot is in operation, whereas the learning algorithm described in Table 2 
can be run offline. Our primary concern in the analysis is time complexity. 
 
5.3.5.3.4.1. Localization 
The complexity of probabilistic localization (Table 1) depends on the representation 
of P(f|ζ) and  bel(ζ). In the worst case, processing a single sensor reading requires 
O(Kn+nW) time, where K is the training set size, n is the number of networks and W 
is the number of weights and biases in each neural network. Processing an action 
requires O(K2n) time. Various researchers have implemented versions of the probabil-
istic localization algorithm that work in real time (Burgard et al., 1996a; Burgard, 
Fox, & Thrun, 1997; Kaelbling, Cassandra, & Kurien, 1996; Koenig & Simmons, 
1996; Nourbakhsh, Powers, & Birchfield, 1995; Simmons & Koenig, 1995; Thrun et 
al., 1996; Thrun, 1996). Given the relatively small computational overhead of the 
existing implementations, scaling to larger environments is not problematic. 
 
5.3.5.3.4.2. Learning 
BaLL requires O(N2nK3 + NKnW) time, where n , K , and W are the same as above, 
and where N is the number of gradient descent iterations. If the number of training 
patterns is greater than both the number of inputs and the number of hidden units in 
each network, which is a reasonable assumption since otherwise the number of free 
parameters exceeds the number of training patterns by a huge margin, then O(N2nK3 ) 
dominates O(NKnW).Thus, under normal conditions, the training the networks re-
quires O(N2nK3 ) time. The constant factor is small (cf. Table 2). Most existing local-
ization algorithms use only one or two features (e.g., one or two landmarks), indicat-
ing that even small values for n work well in practice. 
There are several ways to reduce the complexity of learning: 
1. Instead of training all networks in parallel, they can also be trained one after an-
other, similar to the way units are trained one after another in the cascade correlation 
algorithm (Fahlman & Lebiere, 1989). Sequential training would reduce worstcase 
exponential to linear complexity, since networks are trained one after another, which 
requires O(Nnk3) time. 
2. Compact representations for P(f|ζ) and  bel(ζ) can reduce the complexity signifi-
cantly. For example, in Burgard et al. (1996a), Koenig and Simmons (1996), and 
Simmons and Koenig (1995), the number of grid cells used to represent P(f|ζ) and  
bel(ζ) is independent of the training set size. Using their representations, our learning 
algorithm would scale quadratically in the size of the environment and linearly in the 
size of the training set. In addition, coarsegrained representations such as the one 
reported by Koenig and Simmons (1996) and Simmons and Koenig (1995) can reduce 
the constant factor even further. 
3. The learning algorithm in Table 2 interleaves one computation of  Eposterior and its 
derivatives with one update of the weights and biases. Since the bulk of processing 
time is spent computing Eposterior and its derivatives, the overall complexity can be 
reduced by modifying the training algorithm so that multiple updates of the networks’ 



parameters are interleaved with a single computation of Eposterior and its derivatives. 
The necessary steps include: 

i. The network outputs gi(s) are computed for each training example Xzs ∈),( . 
ii. The gradients of Eposterior with respect to the network outputs gi(s) are computed. 

iii. For each training example Xzs ∈),( , “pseudopatterns” are generated using the 
current network output in conjunction with the corresponding gradients, giving: 

              
iv. These patterns are fitted using multiple epochs of regular backpropagation. This     
algorithm approximates gradient descent, but it reduces the complexity by a constant 
factor. 
 
In addition, modifications such as online learning, stochastic gradient descent, or 
higherorder methods such as momentum or conjugate gradient methods (Hertz, 
Krogh, & Palmer, 1991) yield further speedup. Little is currently known about princi-
pal complexity bounds that would apply here. 
As noted above, learning σ can be done offline and is only done once. With the modi-
fications proposed here, the complexity of training is low order polynomial (mostly 
linear) in K, n, N and W. In the light of the modifications discussed here, scaling up 
our approach to larger environments, larger training sets and more neural networks 
does not appear to be problematic. 
 
5.4. Output Map 
 
As you know there are two types of maps:  
        i) Absolute metric map  
        ii) Topological map   
 
Because of advantages of topological map we use it to modify the environment. In 
this type of map we partition the environment and represent these partitions and the 
connections between them as a topological map [Tomatis et al., 2002; Bosse et al., 
2003; Yeap and Jefferies, 1999; Kuipers, 2000]. Whilst the first approach explicitly 
represents the environment in absolute metric terms, the second often combines both 
metric and topological information. 
At this time we can generate a good 2D map as shown in figure x but we are develop-
ing our system for generating efficient 3D map. This is done by 3D landmarking.  
Figure x shows the generated map by Arian III in our Lab building. This map is col-
ored and has constructed by merging partitions of the topological map.  



 
 

Fig. 34  Generated map by Arian III in Lab building. 

 

6. Sensors for Navigation and Localization 

Various navigation systems are preparing necessary equipments for suitable robot 
mobility. Although this equipments are considering by an intelligent operator but 
each of them are able to the extent that could handle the robots automatic control 
system without the leader. The specifications such as distinguishing the impracticable 
obstacles, finding the best way, robot navigation and amending the routes are also the 
robot navigation tools capabilities. 
 
6.1 Laser Range Scanner 
Several possibilities were considered for a primary distance measuring device for the 
around of the robots. Laser is the best choice for this purpose because laser emitted a 
beam and there is no ping from other devices. We decided to use The Hokuyo laser 
range finder Model URG-04LX that has good resolution in Distance and Angel Also 
the price of this scanner is economical and its size is very suitable for robots. 
 



 
Fig. 35  Laser line scanner 

 
 
The outputs of this sensor may be very useful for operator between the competitions 
for avoiding of smash to partitions. 
The output of laser scanner can not be sufficient for map generating  rather this in-
formation must be complete with position of robot and output of many orientation 
sensor until we have a map of environment that robot is placed there. 
The characteristics of this scanner are mentioned below: 

 
And there is the sample of scanning from the company catalog: 
 
 

 
 



 
Fig. 36  Scanning Sample 

 
6.2 IR ranger 
The Sharp GP2D02 is a sensitive compact distance measuring sensor. It required two 
lines from a microcontroller in order to be controlled. One line provides the signal to 
begin a measurement and also is used to provide a clock signal when transmitting the 
distance measure and the other line is used to transmit the measurements back to the 
microcontroller.  
The GP2D02 is a self contained device which emits an IR pulse and determines the 
distance of a nearby object using triangulation. It is able to measure distances up to 80 
cm and at that range has a beam width of only 10 cm. I mounted this sensor on servo 
motor at the front of the robot. The servo sweeps the sensor through a 50 degree pat-
tern. The servo is discussed in more detail later. The sensor is digitally controlled 
with its Vin line. The Vin line is pulsed low to tell the sensor to begin a measurement. 
The sensor will output a high on the Vout line when it is ready to transmit. The Vin 
line is then pulsed, and the sensor data is clocked in on the Vout line. This is illus-
trated in the figure below.  
 
Figure 1 - GP2D02 Timing  
 
GP2D02 Measurements  
The distance measurement is a 8 bit number. It is not linear, as can be seen in Figure 2 
below. The distance measurement can be linearized using the following formula pro-
posed by Sean H. Breheny.  

Linearized data = 1.9/(tan(reading*25/1000))  
The constants in the formula above were established by Mr. Breheny through experi-
mental means. Using my measured data from 3 GP2D02 sensors, I was unable to 
improve the linearization calculations by manipulating the constants, and the formula 
was implemented as is. I later discovered that reasonable linearization can be 
achieved by simply inverting the reading received (1/reading) and then multiplying it 
by some constant. This eliminates the tan term, which is not a pretty thing in a 8 bit 



microcontroller to implement. <grin> Actually, I ended up not linearizing the data at 
all in the robot. I designed the robot around a behavioural model (ie- instincts rather 
than brains) and it was just as easy to use the real sensor readings. Linearizing the 
readings would be very useful if you were trying to create a map from what the robot 
was seeing. I will be looking deeper into this in a future design. 

 
As can be seen from the graphs above, the sensors have a lower limit. At around 7cm, 
the value read peaks and then begins to fall again. In other words, an object closer 
then 7 cm will appear to be further away. If we do not 'see' the object before it enters 
this zone, this will become a large problem with this particular sensor. This is another 
good reason for the robots to move slowly. This is also an excellent reason for having 
bumpers on a robot.  

 

 
Fig. 37  IR Ranger and Ultrasonic sensors 

 
6.3 Ultrasonic Rangers 
 This Devantech high performance ultrasonic range finder is compact and measures 
an amazingly wide range from 3cm to 6m. The SRF08 interfaces to your microcon-
troller via the industry standard IIC Bus.  
This ranger is perfect for robots, or any other projects requiring accurate ranging 
information. 
There is some of the Specification for SFR08: 



 

 
Fig. 38 Ultrasonic ranging sample 

 
6.4 Electrical Compass 
We used of The CMPS03 Magnetic Compass has been specifically designed for use 
in robots as an aid to navigation. The compass uses the Philips KMZ51 magnetic field 
sensor, which is sensitive enough to detect the Earths magnetic field. The output from 
two of them mounted at right angles to each other is used to compute the direction of 
the horizontal component of the Earths magnetic field. The bearing may be retrieved 
from the module in one of two ways; either using its PWM signal or its I2C interface. 



 
Fig. 39 Electrical Compass (CMD03) 

 
Table.4 
Voltage   5V 
Current   20mA typical 
Resolution   0.1 Degree 
Accuracy   3-4 degrees approximately after calibration 
Output 1   Timing Pulse (1ms to 37ms in 0.1ms increments) 

Output 2   I2C Interface, 0-255 and 0-3599 
SCL speed up to 1MHz 

Dimensions   32mm x 35mm 
 
 
6.5 Gyro Enhanced Orientation Sensor 
We have one of the best orientation sensor that buy from Microstrain Company called 
3DM-G Gyro Enhanced Orientation Sensor. 
The measurements output by the 3DM-G give you the orientation of the 3DM-G’s 
local Coordinate system with respect to the Earth’s coordinate system. If you orient 
the 3DMG Such that its Z-axis is pointing down through the center of the Earth, its 
X-axis is Pointing North and its Y-axis is pointing east; you have aligned the 3DM-G 
with Earth’s Coordinate system. At this orientation the 3DM-G will be outputting the 
so-called 

 

 
Fig. 40  3DM Sensor 



‘Identity matrix’ which means the same as saying zero pitch, zero roll and zero yaw. 
If You turn it from there; you’ll start getting non-zero pitch, roll and/or yaw. 
Inside the 3DM-G The 3DM-G incorporates: 
• 3 accelerometer sensors to measure Earth’s gravity; 
• 3 magnetometer sensors to measure magnetic fields; 
• 3 rate gyroscope sensors to measure the rate of rotation about their sensitive axis; 
• A temperature sensor; 
• Signal conditioning amplifiers to condition the raw output of the sensors; 
• A signal multiplexer to route the sensors’ signals to the A/D converter; 
• A 12-bit A/D converter that converts the conditioned output of the sensors into the 
digital domain; 
• A microprocessor that carries out the processing algorithm; 
• Non-volatile EEPROM to store calibration, filter and other parameters; 
• And a data communications port. 
 
 

 
 
6.6 GPS (Global Positioning System) 
The Lassen iQ GPS receiver is a full featured, ultra low power receiver 
On a miniature form factor, suitable for a variety of mobile, embedded applications. 
The Lassen iQ GPS receiver incorporates Trimble’s first GPSTM architecture in the 
form of two ASICS: Colossus RF down Converter and IO-C33 base band chip. 
The IO-C33 integrates Trimble’s IO digital signal processor with the Epson C33 
RISC processor, real-time clock, UART, and 1Mbit memory. Together with the co-
lossus RF, this implementation of first GPS technology makes possible one of the 
smallest (26 mm x 26 mm x 6mm) and lowest power (less than 89 mW) GPS Mod-
ules available. 
The Lassen iQ GPS receiver outputs a complete position, velocity, and Time (PVT) 
solution in the NMEA Version 3.0 ASCII protocol, the Trimble ASCII Interface Pro-
tocol (TAIP), and the Trimble TSIP Binary protocol. A Pulse-Per-Second signal is 
available for very accurate timing applications. 



 
Fig. 41   GPS Receiver 

 
The interface motherboard includes a 9 to 32 VDC switching power supply which 
provides regulated +3.3 VDC power to the receiver, and contains circuitry which 
provides two RS-232 interface ports. A 3.6V lithium backup battery enables quick hot 
starts. The TTL level PPS is brought directly out to Pin 9 of the Port 2 DB9 connector 
on the front of the interface unit. 
 
6.7 Panoramic Camera 
We have one Camera from SONY Technology with Full-Circle Lens Overview of 
SONY Company that gives us better view of surrounds. 
The Output of this Camera Captured with Industrial Main system on Robot and with 
analyses in special FPGA with Image Processing help us to map generating. 
This camera has the best Picture for 360 views and we prefer to use of this camera 
rather than a CCD camera patched with omni mirror. 
one of the problem of omni mirrors is focus of center of mirror with lens of camera 
that problem is solved in this Camera. 
 
 

 
Fig. 42   Panoramic camera 



 
Fig. 43   Panoramic view 

 

7. Sensors for Victim Identification 

It is important collections of the feedbacks which are culminate in to the victim find-
ings, receiving proper Information from the victim recognizer sensors on the robot. 
Attending to the real disaster site conditions and the simulated environment in the 
competition so it seems to be necessary to put minimum 3 kinds of these sensors on 
the robot. The rescue robot team has considered all kinds of the victim finder sensors 
in Order to receive the information from the environments feedbacks and have used 
the below tools and instruments, Which are the most important criterion according to 
the particulars such as the accuracy, speed, connecting to the computer system abili-
ties. 
We for locate of Victims have used of many sensors in our robot until we have differ-
ent of solution for victim identification this sensors are: 
 
7.1 Microphone and Speaker 
In the rescuing conditions the voice emits can occur that can be received by the sensi-
tive microphones. in addition to use the suitable tools for receiving the voice ,the 
automatic recognizing victim’s voice system , is one of the team’s activities in order 
to implementing the automatic specifying voice . 
To detect the victims voice in the disaster sites, first of all we will consider the differ-
ent methods of specifying the voice activities and then by selecting the best and use-
ful methods we have started designing a proper system in fact distinguishing the voice 
activity is the same as specifying the human voices of silence which is frequently in 
the connection industries, the speech specifying and coding the speech and etc. is 
being used. 
But unfortunately in spite of the various methods in this field most of the voice activi-
ties specifying styles in the noise environments where the ratio of voice to noise 
amount is low are including many problems. 



Because of this using those methods in robot is based on their Improvement and op-
timization. 
With this aim and in order to simulate the rescue competition acoustic environment 
among three human voice samples, the voice which is contaminated with noise and a 
noise sample have been used by order from these data bases: TIMIT, Spear, NOISEX. 
We used of one sensitive microphone with Zoom capability to hear the sound of vic-
tims. This sound transmits to out of robot for hearing and analyses. 
And We Have a Speaker for Alarm or Advise victim in Real Condition. 
 
7.2 Thermal IR Camera 
One of the solutions in victim identifying is detect of temperature of victims and in 
darkness this camera have better picture than CCD cameras.  
Therefore we consider one of the best of IR Thermal camera in front of Robot. 
 
 

 
Fig. 44   Thermal camera 

 
 
 
This Camera has many functions for Example:  
 

1) Zoom 3x 
2) Digital Output 
3) Analog output 
4) Manual focus 
5) Color Pattern 



  
There are pictures of output of our IR camera with several patterns and normal pic-
ture: 
 
        

  

 
Fig. 45   Thermal image 

 
 
 
7.3 IR Thermometer 
We have an IR thermometer with visible goal point for discover temperature of the 
victims. We use an Industrial Non-Contact Infrared Thermometer of Omega company 
with analog output. 



 
Fig. 46   Temperature sensor 

    
Accuracy:  
±1% of reading @ 25°C ambient or 1.7°C (3°F), which-
ever is greater 
Repeatability: 
 ±1% rdg ±1 digit 
Spectral Response: 
 8 to 14 microns 
Emissivity Range: 
 0.10 to 1.00 
Field of View (FOV): 
 See diagrams 
Display: 
 Backlit LCD 
Transmitter Outputs: 
1 mV/degree, 0 to 5 Vdc or 4 to 20 mA 
Power:  
7 to 24 Vdc @ 80 mA 
Environmental Ratings: 
 NEMA 4 water-tight and dust-tight for sensing head and 
electronics enclosure 
Ambient Operating Range: 
Sensing head 0 to 50°C 
 

 
 
 
7.4 Co2 Sensor 
One of the solutions of victim identification is find the source of co2 in environment. 
Since we decided to buy a sensitive co2 sensor of VALTRONICS Company with 
NDIR technology and digital signal processing and Temperature. 



 
Fig. 47   CO2 Sensor Board 

 
 
This sensor has digital output with SPI (Serial peripheral Interface) so have high 
speed responsibility that can very helpful to find of victim that are near but are spy 
and specify of sign of alive. 
     
Table. 5 

 
 
 

7.5 Camera 
Having sufficient video images with a good quality is one of the most important res-
cue robots succeed factors seeking an injured person. For this reason we have used 3 
cameras with a good view angle till the Ability of cameras can help the conductor of 
robot. Because the robot height is less than the sight level of standing a human, con-
trolling of the robot from the cameras is very difficult and sensitive that more over it 
needs experience and practice in control. 
The Front camera is a CCD Panasonic 1.4” that is turned by Servo Motor of Hi-tech 
Company in ±90° vertical and ±180° horizontal. One of the other ability of this cam-



era is to zoom very well. Operator can control this pan tilt to find victims in environ-
ment. 
But always have a 360 degree view of surrounds is very useful for robot driving. So 
we place a 360 degree view camera with Full-Circle Lens Overview of SONY Com-
pany in center of robot that gives us better view of surrounds. 
The Third camera is the very small CCD camera with 105 degree view for the front of 
robot. There are some pictures of our camera include: CCD Panasonic camera and 
SONY camera:  
 

 
Fig. 48 Panoramic Camera 

 
Fig. 49   Zoom camera 



 
Fig. 50   Front camera 

 

8. Robot Locomotion 

First let’s talk about mobility of locomotion systems to have a clear view for judg-
ing. 

8.1. Comparing the mobility of systems 
 The Q question in this section is that, how can we compare the mobility of dynamic 
structures. We have used “the mobility index comparison method” for comparing. 
First we introduced our mechanical design parameters: 

• Size 
• Efficiency 
• Environmental parameters 

o Thermal 
o Ground Cover 
o Topography 
o Obstacles 

• Complexity 
• Speed and Cost 

 
 
Designing functions for comparing mobility are: 
• Step/Elevation Area: Negotiable step height divided by the elevation area of 

mobility system 
• Step/System Height: Highest negotiable wall or platform, whichever is 

shorter, divided by mobility system height 
• Crevasse/System Length: Negotiable crevasse width divided by vehicle 

length (in the case of variable geometry vehicles, the shortest length of the 
mobility system) 

• System Width/Turning diameter: Vehicle width divided by outermost swept 
diameter of turning circle 



• System Width/Turning-Around-a-Post Width: Vehicle width divided by 
width of path it sweeps when turning around a very thin post 

• Ground Pressure 
 
By using comparison functions introduced at above we found that track system is 
suitable for our aim. So we describe about track system notions. 
  

8.2. Track mobile system 
There has long been a belief that tracks have inherently better mobility than 
wheels and anyone intending to design a high mobility vehicle should use tracks. 
While tracks can breeze through situations where wheels would struggle, there 
are only a few obstacles and terrains which would stop a six wheeled rocker bo-
gie vehicle, but not stop a similar sized tracked vehicle. They are 
• very soft terrain: loose sand, deep mud, and soft powder snow 
• obstacles of a size that can get jammed between wheels 
• crevasses 
They get this higher mobility at a cost of greater complexity and lower drive effi-
ciency, so tracks are better for these situations, but not inherently better overall. 

8.2.1. Kinds of track construction methods 
Track systems are made up of track, drive sprocket, idler/tension wheel, suspen-
sion system, and, sometimes, support rollers. There are several variations of the 
track system, each with its own set of both mobility and robustness pros and 
cons. 
• The design of the track itself (steel links with hinges, continuous rubber, 

tread shapes) 
• Method of keeping the tracks on the vehicle (pin-in-hole, guide knives, V-

groove) 
• Suspension system that supports the track on the ground (sprung and un-

sprung road wheels, fixed guides) 
• Shape of the one end or both ends of the track system (round or ramped) 
• Relative size of the idler and/or drive sprocket 
 
There are also many varieties of track layouts and layouts with different numbers 
of tracks. These various layouts have certain advantages and disadvantages over 
each other. 
• One track with a separate method for steering 
• The basic two track side-by-side 
• Two tracks and a separate method for steering 
• Two track fore-and-aft 
• Several designs that use four tracks 
• A six-tracked layout consisting of two main tracks and two sets of flipper 

tracks and each end 
 
8.2.2. Kinds of track shape 

Tracks shapes shown below: 



 

  

  

  
Fig. 51  Track shapes 

 
8.2.3. Track suspension system 

 
The space between the drive sprocket and idler wheel needs to be uniformly sup-
ported on the ground to achieve the maximum benefit of tracks. This can be done 
in one of several ways. The main differences between these methods are drive ef-
ficiency, complexity, and ride characteristics. 
For especially long tracks, the top must also be supported, but this is usually a 
simple passive roller or two evenly spaced between the drive sprocket and idler. 
The main types of ground support methods are 
• Guide blades 
• Fixed road wheels 
• Rocker road wheel pairs 
• Road wheels mounted on sprung axles 
 
The most complex, efficient, and smooth ride is produced by mounting the road 
wheels on sprung axles. There are three main types of suspension systems in 
common use. 



• Trailing arm on torsion spring 
• Trailing arm with coil spring 
• Leaf spring rocker 
 
 
 

 
Fig.. Trailing arm on torsion spring 

 

 

 
Fig.. Trailing arm with coil spring 

 

 
Fig. 52  Leaf spring rocker 

 
 
 
 
 

8.3. Designing procedure  
 
According to introduction, Arian III is a four-tracked active joint robot that its 

flippers can rotate separately at 90deg/sec. Although the shape of this robot is typical, 
their performances are extensively various; so the distinctions may not be appeared at 
a glance. Arian III robot design procedure is done with optimization aim. 

To simplify the design process and save design optimization time, most of designs 
have been done in parametric form. 

In design process, the theatrical calculations are done by MATLAB software then 
the results used in SOLID WORKS designing software, which collaborates with 
WORKING MODEL 4D and NASTRAN FEM analyzer software. So any changes in 



entry of designing m.files lead to dimensional changes in output and causes variations 
at element dimensions in solid parts dimensions. After this step the changes manually 
checked at FEM software.         

This example illustrates rear pulley design process step by step: 

 
Fig. 53 Design cycle 

stage 1 shows calculating methods and software outputs; stage 2 expresses auto-
matic modeled part in SOLID WORKS software;stage3 shows manual analyzing in 

NASTRAN software; stage 4 shows comparing and optimizing of modeled part      

 



8.3.1. Base calculation of Arian III designing  
This section presents analysis of Robot locomotion system based on synchronous 

belts analysis. 
 
Traditional understanding of timing belt drives comes from power transmission 

applications. However, the loading conditions on the belt differ considerably between 
power transmission applications and conveying and linear positioning applications. 

 
• Cinematic of problem (main body & flippers): 
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Fig. 54a. Belt and pulley mesh for inch 

series and metric T-series, HTD and STD 
series geometry. 

Fig. 54b. Belt and pulley mesh for AT 
series geometry. 

 

 
Inch pitch and metric T series belts are designed to ride on the top lands of pulley 

teeth, the tolerance of the outside pulley diameter may cause the pulley pitch to differ 
from the nominal pitch (see Fig. 1a). On the other hand, metric AT series belts are 
designed to contact bottom lands (not the top lands) of a pulley as shown in Fig. 1b. 
Therefore, pulley pitch and pitch diameter are affected by tolerance of the pulley. 
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Fig.55  Belt drive with unequal pulley diameters. 
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θ1: angle of warp around the small pulley 
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Since θ1 is a function of C does not have a closed form solution for C. It can be 

solved using any of available numerical methods. An approximation of the center 
distance as a function of the belt length is given by: 
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Kinetic of problem (main body & flippers): 
 

 
Fig. 56 Power transmission and rotary positioning. 

 
During operation of belt drive a difference in belt tensions on the entering (tight) 

and leaving (slack) sides of the driver pulley is developed. It is called effective ten-
sion, Te, and represents the force transmitted from the driver pulley to the belt 
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Te: effective tension 
Te: tight side tension 
Te: slack side tension 
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ω1: driver angular speed (rad/sec) 
ω2: driven angular speed (rad/sec) 
n: angular speed(rpm) 
 

aiabgwfae FFFFFFT +++++=  

amF Ra .=  
Fa: acceleration force 
MR: robot mass 
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Ff: friction force 
µr: dynamic coefficient of friction  
Ffi: load independent resistance (seal drags, preload resistance, viscous resi-

tance,etc.) 
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Fg: weight of robot parallel to the inclined plane 
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Fi: inertial force to accelerate idler pulley 
mi: idler mass 
Ji: idler inertia 
d: idler diameter 
db: idler bore diameter  
 
Fw: external force 
 
 
Next step: 
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nc: number of contacted dents 
Nk: partial weight of robot parallel to the inclined plane 
Nk: partial mass of robot  
 
     
    

 
The presented calculations were used in designing of Arian III (see following models) 



 

 
Fig. 58  Isometric view of Arian III  

 
 

 
Fig.59  Lateral view of Arian III 



 

 
Fig.60  Front view of Arian III 

 
 

8.3.2. Design Simplification 
In order to simplification of usage and improving ‘fool prevention’ we have exerted   
our extreme efforts which are named below: 
• Packing power transmission system 

 PT package contains DC motors, all of bearings, gears, shafts as a robust pack-
age. By using this feature the operator can repair PT and replace tracks simply. 

• packing power supply    
For decreasing the wasted time at battery charging process, in Ariana robots, bat-
teries are fitted in a water proof unit which is connected to the body by a single 
MPC connector.   
 

8.3.3. Robot Stability 
Distinct characteristic of four track robots is their capability of increasing stability of 
system. But by this mechanism the stability of system is increased just in one direc-
tion (along robot length) so the weak point remains in opposite direction (along 
width). to have access for controlling stability in two directions, Arian III benefits 
two separately controlled fillipers.    

 
 



9. Other Mechanisms 

9.1 Power Supply 
We have two ways for supply the electrical energy in our robot: 

1- Battery Energy 
2- Solar Cells 

 
9.1.1 Battery Energy 
The basic power source of our robots supply is Nimh Cells. 

 

 
Fig. 61   Battery packages 

 
We have two battery packs and each of them have 30 cells of batteries and 14V and 
9A current. Each cell has 3000 mAh capacity.   
There is very important subject about robot power supply is to be easy for recovery or 
charging.  
For realize this purpose we must have 2 cases:  

1) easy plug and unplug  
2) fast charging 

 
At the first we consider the nearest place for plug and unplug the batteries between 
the tracks. 
At the second we made the special fast battery charger for charge of our packages in 
Maximum rate of fast charge that we allow for the cells. 
We consider many condition or solution for the find end of charging. This condition 
is Temperature of packages, voltage of packages, current of charging and charge time. 
Time is last reason for finish the charging. With this charger we can charge all of our 
battery packages less then of 2 hour. 
 
9.1.2 Solar Cells 
Since our goal of this project has been make of an industrial robot. This robot must be 
can work in real condition and in this condition may we don’t access to Electrical 
energy directly. 



Therefore we use the one Kind of solar cells with name of Roll able solar cells or 
Portable power films. 

 
Fig. 62   Solar Cell 

 
This Kind of cells is flexible and waterproof.  
We used of 2 Roll of P3-55watt in parallel mode therefore we have 110 watt Power.  
Dimension and Weight has been show in below: 

 
Table. 6 

 
 

Electrical characteristics have been show in below: 
 
Table. 7 



 
 
 
 
 
 
 
 
 
 
Volt Amp chart has been show in below: 
 

 
Fig. 63   SP4 I-V Curve 

 



 
9.2. Heads up Goggles 
As mention on the previous parts we use a heads up goggles for alerting the critical 
information to the operator.  We use a MD-6 model, a MicroOptical’s heads up gog-
gles. Some information about it mention below: 
Working in conjunction with your current patient-monitoring system, MicroOptical’s 
MD-6 Critical Data Viewer displays vital signs where you need them most — right 
before your eyes. Without obstructing your natural field of vision, the viewer dupli-
cates the live display of your monitor as a floating image positioned a few feet in 
front of you — displaying vitals in real-time. By keeping both patient and critical data 
in your hand-eye axis, the viewer allows you to view vital signs repeatedly without 
having to look away at a monitor. By connecting to two VGA sources, surgeons can 
view two sets of critical data, such as vital signs and cath lab images, and alternate 
between them. Compact, lightweight and comfortable, it easily attaches to surgical or 
prescription eyewear. Experience patient monitoring at the next level with the Surgi-
cal Data Viewer System from MicroOptical. 
 

            



 
 
9.3. Body state sensors 
For the better control of the Arian III we need to know about the body state of robot. 
At this time we take advantage of three sensors: the first is 3DM sensor which deter-
mines the spatial orientation of the Arian III. The second sensor is strain gage sensor 
and the third is absolute encoder for determining the state of flipper.   
 
9.3.1. Strain gage sensor 
As you know strain gage sensors work on differentiation of resistant characteristics. 
Arian III benefits feature in two categories: 
     i) Optimization and control the friction force between flipper tracks and the 
ground 
     ii) Determining the lateral force inserted to the flipper body structure 
 
To reach this aim we have used two uniaxial strain gages (in circumferential and 
lateral manner) on flippers body. With circumferential strain gage we can measure 
normal force of surface, which leads to obtain friction force. And with the other one, 
lateral force is obtained which is used to automatic protection of flipper power trans-
mitter shaft. 
The important point in this section is determination of critical point for strain both 
lateral and circumferential. We developed optimized software in MATLAB to reach 
this aim.(see figure x)  
 



 
Typical uniaxial strain gage pattern designed to measure strains in the direction of the 
gridlines. Gage lengths for Micro-Measurements strain gages range from 0.008 in to 
4.000 in (0.20 mm to 101.6 mm). 

 
   Fig.64  simulation graph in MATLAB 
 
 
9.3.2 Absolute Encoder 
For determining the state of the flippers relating to the body of Arian III we use a 
absolute encoder. In fact by using this absolute encoder we determine the flippers 
angle relating to the body. This sensor model is AC36, an ACURO-industry’s en-
coder and has these features: 
 
■ Overall length 36 mm 
■ For equipment engineering and industry 



■ Up to 17 Bit singleturn and 12 Bit multiturn 
■ Hollow shaft 6 mm          
■ +100°C operating temperature 
■ 10 000 rpm continous operation 
■ Optical encoder with a true geared multiturn 
■ SSI or BiSS interface 
■ Option Sine 1 Vpp 
■ 500 kHz bandwidth 
 
The AC 36 is an absolute optical encoder with a true geared multiturn, optical sensing 
technology and 36 mm diameter. Equiped with a solid-shaft the AC 36 is mechanical 
compatible with all common inkremental encoders. The compact design allows to 
replace the adequate incremental encoders directly. As a result the technical facilities 
of absolute encoders can be used for the first time in equipment engineering and also 
in medical engineering. The mechanical design consists of two ball bearings sup-
ported mechanical shaft assembly. The AC 36 complements the ACURO-industry 
series with small frame sizes and the same performance as 58 mm versions. 
 
BiSS-Interface 
Unique within his class the AC 36 provides fully digital position data up to 17 bit 
(singleturn) and 12 bit (multi-turn) over the bidirectional synchronous interface with a 
variable clock rate up to 10 MHz. This corresponds to a singleturn resolution of more 
than 130 000 measured steps.Backward compatibility is realized through the SSI 
interface together with 2048 sine-cosine periods per revolution. 
 
Integrated diagnostic system 
The AC 36 is based on latest OptoAsic technology with an advanced diagnostic con-
cept. A continuous plausibility check controls the internal signal processing for each 
increment. A code check guarantees that the encoder signal represents bit by bit the 
measured rotation. Also the operating temperature of the encoder can be measured, 
read out and monitored over warn and alarm bits with 8 bit resolution (1°C). Monitor-
ing and controlling of the operating temperature ensures a maximum lifetime of the 
LED. Eventual failures are indicated early over warn bits. 
 



 

  
 
 

10. Team Training for Operation (Human Factors) 

Experiences in designing and implementation of previous versions of our robotic 
products (Arian I, II) imply us that independency of a system to the human factors is   
itself a great factor and must be reduced; so the newest version of Ariana equipped 
with a simple and user friendly interface.  
Therefore, the method of introducing information is more important than its own 
characteristic; then Arian III benefits heads up goggles, showing essential data (e.g. 
coordination, speed … of robot and vital signs of victim) and touch panel LCD is 
used to simplicity of  handling the menus of control unit (see fig.65 ) 

 



 
Fig. 65   Control unit of Arian II 

Joy stick used in control unit of Arian III introduces position whilst the others give 
orientation.  

 

 
Fig. 66   Joy stick System  

11. Possibility for Practical Application to Real Disaster Site 

By rough analysis of latest rescue robot competitions, we found innovative ideas that 
work properly in controlled and unreal conditions, but in real world we are faced with 
several undesirable situations. For example mechanical and thermal shocks, environ-
mental noises, x-ray radiations… influence on robot capabilities. As mentioned, all 
Ariana robots have been made with these regards. The following pictures show Arian 
I stair climbing at Ariana Home (Shahed Research Center). 



         

  
 

Fig. 67  Ariana I stair climbing 

 
And night mission of Ariana II at Tehran suburb (Chitgar).     
 

 
 

Fig. 68  Ariana II night mission 

Arian III continued this way as our group policy, for example drop limit of Arian 
II (0.8 m) has improved to about 2 meters, its operating time improved from 4 hours 
in his elder brother to 8 hours and equipped with some new electrical devices like 
thermal and omni cameras… 

     
 



12. System Cost 

Category Part Num-
ber 

Product 
Name 

Company Cost 

Navigation Devantech Ultra Sonic SFR-08 50$ 
Navigation Devantech Elec. Com-

pass 
CMPS03 40$ 

Navigation Microstrain Gyro Sensor 3DM-G 1800$ 
Navigation Lassen iQ GPS GPSTM 100$ 
Navigation Sony Panoramic 

Camera 
--- 900$ 

Victim Sensor Sony Microphone ECM-HS1 95$ 
Victim Sensor Sony Speaker Simple 8 

ohm 
10$ 

Victim Sensor --- Thermal 
Camera 

--- 20000
$ 

Victim Sensor Omega IR Ther-
mometer 

--- 300$ 

Victim Sensor Valtronics CO2 Sensor --- 1000$ 
Victim Sensor GKS CCD Camera --- 480$ 
Power Supply --- Battery 12V 18A 200$ 
Power Supply --- Solar Cell 12V 2A 2 x 

750$ 
Monitor Micro Op-

tic 
Heads-up 
Goggle 

MD-6 1200$ 

Simple Sensor --- Strain gage 
Sensor 

--- 30$ 

Simple Sensor ACURO-
ind. 

Absolute En-
coder 

AC36 500$ 

Locomotion Faulhaber Motor 3557 2x400
$ 

Locomotion Faulhaber Gearbox 38/1s 2x300
$ 

Locomotion Faulhaber Shaft Encoder HEDS558 2x150
$ 

Mechanical 
Main Body and 
Manipulation 

--- --- --- 1500$ 

Mechanical 
Mobility 

--- --- --- 600$ 

Mechanical 
Parts 

--- --- --- 600$ 

Total Price 31705
$ 
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