In Proceedings of the Ninth ACM Symposium on Parallel
Algorithmsand Architectures, Newport, Rhode I sland, June 1997.

HARP: A Fast Spectral Partitioner

Horst D. Simom, Andrew SohA, Rupak Biswas

Abstract - Partitioning unstructured graphs is central to the parallealgorithms can be extended to handle the dynamic case. Our goal is
solution of computational science and engineering problems. Speto combine the overall effectiveness of the spectral type partitioners
tral partitioners, such recursive spectral bisection (RSB), havin terms of reducing the cutsize of the partition, with some tech-
proven effective in generating high-quality partitions of realistical-niques, which use the dynamic character of the calculation to also
ly-sized meshes. The major problem which hindered their wideproduce a fast repartitioning of the grid.
spread use was their long execution times. This paper presentsan The most general approach to mesh partitioning is to use generic
inertial spectral partitioner, called HARP. The main objective of thecombinatorial optimization techniques based on a cost function.
proposed approach is to quickly partition the meshes at runtime inTwo methods that yield good suboptimal solutions are simulated an-
manner that works efficiently for real applications in the context onealing (SA) [16] and genetic algorithms (GA) [17]. SA is
distributed-memory machines. The underlying principle of HARP isanalogous to a method in statistical mechanics designed to simulate
to find the eigenvectors of the unpartitioned vertices and then projethe slow cooling of a physical system. It works by iteratively propos-
them onto the eigenvectors of the original mesh. Results for varioling new partitions, evaluating their quality, and accepting them
meshes ranging in size from 1000 to 100,000 vertices indicate thbased on the Metropolis criterion. The method requires several user-
HARP can indeed partition meshes rapidly at runtime. Experiment:specified parameters that makes it difficult to find good partitions in
results show that our largest mesh can be partitioned sequentiallya problem-independent manner. GA are a model of machine learn-
only a few seconds on an SP2 which is several times faster than otling which derives its behavior from the processes of evolution in
spectral partitioners while maintaining the solution quality of thenature. Such methods start with an initial population of randomly-
proven RSB method. A parallel MPI version of HARP has also beegenerated partitionings. New partitionings are then generated from
implemented on IBM SP2 and Cray T3E. Parallel HARP, runnincthe current population using the natural processes of reproduction,
on 64 processors SP2 and T3E, can partition a mesh containing m¢rossover, and mutation. Individual partitionings that contribute to
than 100,000 vertices into 64 subgrids in about half a second. Thethe minimization of an objective function are more likely to repro-
results indicate that graph partitioning can now be truly embeddeduce. Once again, a large number of parameters must be set for a
in dynamically-changing real-world applications. successful partition. In general, stochastic optimization techniques
when used on their own, can be slow, trapped in local minima, and
. depend on many application-specific parameters. However, these
11ntroduction methods may be very useful in fine tuning an existing partition.
One of the most difficult problems to implement on a distributec Another intuitive approach to mesh partitioning is to use cluster-
memory parallel machine is a problem with a dynamically changining techniques. The nearest-neighbor algorithm in [19] generates
data structure, which requires repeated load balancing and whichinitial clusters so that neighboring grid points are assigned to the
coupled to an implicit computational solver [23]. This situation issame partition or to neighboring partitions. These clusters are then
typical for applications in computational fluid dynamics or compu-modified using a boundary refinement procedure to improve the par-
tational structural mechanics, which involve grid adaptationtitions. The greedy algorithm in [8] grows the first partition from a
automatic mesh refinement or multizonal grid technologies [3]. Argiven starting point until the correct number of grid points has been
important aspect of the overall implementation of such dynamicallincluded. Construction of the next partition begins from the bound-
changing applications, is the partitioning of the underlying grid.ary of the previous partition, and so on, until the whole domain is
Mesh or graph partitioning algorithms for static grids have been exdecomposed. Despite its simplicity, it often yields partitions with
tensively investigated in the last five years, and significant progreslow edge cuts. Since it is not a recursive process and the partitioning
has been made both in improved heuristic algorithms, as well as time is independent of the number of partitions, this algorithm is
high quality software. In this paper we want to show, how a particconsidered one of the fastest partitioners. Bandwidth reduction algo-
ularly successful approach for graph partitioning based on spectrrithms also belong to this class of mesh partitioning techniques.
Essentially, if the mesh elements are renumbered to reduce the band-
1 NERSC, MS 50B-4230, Lawrence Berkeley National Laborato-Width of the adjacency matrix, a Ie>_<icographic de_composition of the
ry, Berkeley, CA 94720; simon@nersc.gov. mesh can be performed to obtain good Ppartitions. The Reverse
2 Dept. of Computer and Information Science, New Jersey InstiCUthill-McKee (RCM) ordering scheme [5] is one of the most pop-
tute of Technology, Newark, NJ 07102: sohn@cis.njt. &this ular methods for bandW|d_th red_uctlon, however, subdome_uns
work is supported in part by the NASA JOVE Program, UsRAUSually have bad aspect ratios. This problem can be reduced if the
RIACS, and MRJ Technology Solutions. scheme is used recursively, as in recursive graph bisection (RGB)

3 MRJ Technology Solutions, MS T27A-1, NASA Ames Researchl22]- Two vertices at maximal or near-maximal distance in the graph
’ ' re first determined. All other vertices are then sorted by distance

Center, Moffett Field, CA 94035; rbiswas@nas.nasa.gov. Thi? £ th | - q tioned bd
work is supported by NASA under contract NAS 2-14303. rom one of these extremal vertices, and partitioned to two subdo-
mains. The RCM scheme is used to find the level structure, a

convenient way of organizing the vertices in sets of increasing dis-
tance from one of the extremal vertices.

The class of geometry-based bisection algorithms recursively di-
vide the mesh into two parts by exploiting its geometric properties.
Recursive coordinate bisection (RCB) [22] sorts the mesh vertices
according to their coordinates in the direction of the longest spatial

extent of the domain. Half the vertices are then assigned to each sibM otivation and General Description of the Algorithm

domain, and the process is repeated recursively. This is a simplg, Laplacian Eigenvectors as Euclidean Coor dinates
intuitive, and cheap technique, but one which provides poor separ h first i | . - 4 und i h
tors as a result of excluding all graphical information. The recursiv% e first important element In motivating and understanding the

inertial bisection (RIB) algorithm [6] instead considers the inertial /ARP algorithm is to take a fresh look at the geometric interpreta-
coordinate system, where the origin is the center of gravity of th on of the Lap_laman eigenvectors. The_wew we_take here is that the
mesh. The vertices are considered point masses with mass values gt St(ejveral elg(tja_nvecto_rslé)f t?g Laplacian r_nrﬁ_trlx .Of ahgragh can Ee
to the vertex weights. The vertices are then orthogonally projecte\ﬂe""eI as Cg‘ir |na(§es n ”CI.' .eian space. This view has been ta ?n
onto the principle axis of this structure, and sorted into two sets. Th&> €arly as [21], and was implicitly present in many investigations o

technique is more expensive than RCB but generally produces muéHeCtral algorithms._ For example spectral quadra an_d octasectior_w as
better results. RIB is especially used in conjunction with local reProPosed by Hendricksen and Leland [13] can be viewed as taking

finement strategies such as the Kernighan-Lin (KL) heuristic [15]the first two or three nontrivial eigenvectors of the Laplacian matrix

Repeated pairwise exchanges are performed on an initial partition ﬂ; a graph as coordinates of the vertices of the graph in the plane or

improve the quality. A salient feature of KL is that sequences of peﬂ-n three dimensional space. Qudrasection is then equivalent to find-

turbations are considered rather than single exchanges to bypdd @ rotation and translation of the plane so that the new coordinate
local minima axis partition the vertices into four equal sets. Use of spectral coor-
A considerably less intuitive class of mesh partitioning algorithmg!inates makes the resulting cut sets relatively small.

are based on spectral methods. The most widely-used technique i>miany, %ha?aeilbe"* ar&q Teng [4] gseﬁ the Lafplaciag ?‘gef?‘l
Recursive Spectral Bisection (RSB) [22] that is derived from a grap ectors as Euclidean coordinates, and then performed inertia
isection with respect to this coordinate system. HARP differs from

bisection strategy [22] based on a specific eigenvector of the Lapl - . .
cian matrix c(;ny [the] graph. In pparticulagr the eigenvectgr at in [4] in two ways, both related to the fact that we also consider
. : pe Laplacian eigenvalues:

corresponding to the second smallest eigenvalue gives some diré . .
b 9 9 9 (@) HARP does not a priori make a decision on the number of

tional information about the graph. The special properties of this. :
eigenvector have been extensively investigated by Fiedler [10 igenvectors to compute. Instead, HARP compares the magnitude of

hence, called the Fiedler vector. The computational challenge of t Ee corresponding eigenvalue to the smallest nonzero Laplacian

RSB algorithm is the efficient calculation of the Fiedler vector. RSES'9€nvalue. Eigenvalues which have grown above a certain thresh-
. : RE" are discarded. Our numerical results in section 4.1 indicate that

high quality; however, the method is very expensive since it require%ven for very large graphs, a few (less than a hundred) eigenvalues

computing the Fiedler vector at each recursive step. The multigf® Sufficient to capture the global properties of the graph. A physi-
mensional spectral partitioning (MSP) [12] algorithm improvesCal ‘?‘”a'o.gue OT this procedure_ IS th_e dynam_lc analysis in structural
RSB by considering several cuts at each recursive step. For examp Ligineering. It is common engineering practice to compute a few of

it can perform spectral octasection to partition a graph into eight setd¢ smalltest telgenva:juctehs and ve;:k:ors Og the finite elemdert;t Tﬁdel ?f
using three eigenvectors. MSP requires less computations than R§g29€ Structure, and then use the subspace spanned by these few

to generate the same partitions; however, they are still too slow i&i9envectors for an analysis of the dynamic response of the structure

many applications. These algorithms are often combined with KL t&° Wind loading or to an earthquake. HARP uses a similar heuristic
improve the fine details of the partition boundaries. argument to claim that the essential features of a graph are represent-

The partitioning time for large meshes can be considerably reQ_d in a relatively small subspace spanned by the smallest Laplacian
, : ~ tors.

duced by contracting the graph. Multilevel algorithms reduce th&'9€NVeC .
size of the mesh by collapsing edges, partitioning the smaller graphé(b) Ahfter a sle(tj of smallest e|genvecto:js_ has begn shele_cted, HARP
and then uncoarsening it back to obtain a partition for the origin es the scaled eigenvectors as coordinates. Each eigenvector is
mesh. The most sophisticated schemes use a sequence of succes§fFaled by square root of the inverse of corresponding eigenvalue.
ly smaller contracted meshes, and smooth the partitions using KY ¢ call Laplacian eigenvectors scaled in this way the spectral coor-
during the uncoarsening phase. The multilevel implementation inates of the graph. In_ this way the eigenvector correspondlng to
RSB, called MRSB [2], calculates the Fiedler vector for the coarsedf!® Smallest non-zero eigenvalue, which is often called Fiedler vec-
graph, and then prolongates it for the original mesh. AlternativdOr: Will be the most heavily weighted coordinate direction. Since the
graph contraction strategies are described in [12,25], but they all u éedle_r vector hf"‘s bee_n proven to be useful for partitioning in many
spectral methods on the coarsest mesh. The fastest multilev&fPEriments, this scaling of the vectors results in emphasizing the
scheme to date is MeTiS [14], which claims to produce partitioném"a'f't m;]portant coordinate dl:]ECthf]l_fOI’ E'Seﬁt'on'l < that in thi
that are of higher quality than those generated by spectral partition- nother way to motivate the scaling by the values is that in this
ing schemes. MeTiS uses heavy edge matching during thay we construct the best low rank approximation to the (pseudo)

coarsening phase, a greedy graph growing algorithm for partitionintjV€'Se Of the Laplacian matrix. This of course begs the question
the coarsegsfmesh arglld a czrglbiﬁati%n of b%ur?dary greed?/ and KL hat relat_lonshlp there is between the (p_seudo) Inverse of the !_apla-
finement during thé uncoarsening phase clan matrix of a graph and any geometric embedding in Euclidean

The HARP algorithm which will be discussed in this paper can b&Pace- There are some more involved relationships, which will be
described in the context of the above approaches to graph parti'[ioﬂ'—scussecj in a forthcoming paper. . .
We have thus argued that Laplacian coordinates are a canonical

ing fairly easily, as a combination of the efficiency of spectral bed h in Euclid dth ive inertial
algorithms (in terms of finding small cutsets), with the speed of RIBW2Y 10 €émbed a graph in Euclidean space, and that recursive inertia
plsectlon using this new coordinate system is an effective partition-

A very closely related algorithm has been proposed in [4]. We wil - h ; I .
explore the relationship of HARP with spectral algorithms in sectior{"d @lgorithm, which combines the efficiency of RSB with the speed
f recursive inertial bisection. We will demonstrate this with a set of

2. In section 3 we will discuss the serial and parallel versions of . : .
HARP in more detail, and in section 4 we will present some numerr-wmer'c{jll tests on some standard meshes in section 4.
ical results. After a comparison to other (static) partitioning . o
algorithms, we are going to demonstrate in section 6 the perfof-2 Dynamic Partitioning

mance of HARP in the framework of an unstructured adaptive mesR0 far all we have constructed is yet another static partitioner and

refinement code for computational fluid dynamics, which solves foedded just another new variation to the existing knowledge. In order
the flow around a helicopter blade. to make this partitioner useful in the context of a dynamically chang-

ing calculation, we need to make two additional observations. based on a physical meaningful mesh with coordinates in three di-
Observation TFor many (but not all) dynamically changing cal- mensional Euclidean space. Here we are using spectral coordinates
culations, the changing computational load can be easily expressata generally larger than three dimensional space, with a cut-off de-
as a graph partitioning problem with dynamically changing vertexpending on the growth of the Laplacian eigenvalues.
weights. For example, in a simple case of adaptive unstructured grid RIB involves several components: The original eigenvector
calculations with triangular elements, we can consider the coarsestec[v][n], wheren is the number of eigenvectors of the grid sl
mesh as the one to be used with a graph partitioner, all elements ltke number of vertices. Given the origingEVs, the inertial center
ing weighted equally with one. If the mesh gets refined at a latecenter[n] of the unpartitioned vertices will be computed, and in turn
stage in the calculation, we don't need to partition the refined mestthe inertial matrixnertia[n][n]. Inertial centecenter[n] needs com-
We can equally well partition the coarse mesh, but change the vertponents each of which bears the inertial distance between the
weights. Any refined triangle will now have the weight four (or anyvertices and the centenertia[n][n] indicates how far tha inertial
other weight reflective of the increased amount of calculation for theectors are away from each other. The following algorithm briefly
refined mesh). This implies that we would not partition across a resutlines HARP.
fined element. Even though this may be suboptimal from the
partitioning point of view, it is very sensible from an implementa- for (i=0; i<log(npart); i++) { /* npart = total # of partitions */
tion point of view, since we do not want to split the data structures for (j=0; j<2; j++) {
associated with a refined element across multiple processors. 1 Find an inertial center of the unpartitioned vertices
There is one set of applications where this model of changing ver- 2 cConstruct an inertial matrix using the inertial vector
tex weights does not apply: these are applications where topological 3 Symmetrize the inertial matrix
changes occur. In the finite element world, the canonical example 4 Find the eigenvectors of the inertial matrix
would be crash codes, where previously disconnected parts of a 5 Pproject the vertex coordinates
mesh may have contact and then interact. This situation is discussed on the dominant inertial direction (eigenvector 0)
in detail by Diniz et al. [7], who also present a distributed memory Sort the projected coordinates
implementation. Our approach is not well suited to handle topolog- Divide the unpartitioned vertices into two sets
ical changes. according to the sorted values
Observation ZThe success of many practical implementations of
graph partitioning algorithms rests on the application of multilevel }
schemes, as was discussed in section 1. Multilevel schemes work,
because even a very coarse approximation of the graph can givenSpecifically, each step of the inner loop can be implemented as
some very good general information about how to optimally partifollows:
tion the graph in a global sense.

~N o

Combining these observations is the foundation for the HARP al- for (i=0; i<v; i++) [* find inertial center */
gorithm for dynamic partitioning. HARP consists of two parts: for (j=0; j<n; j++) center[j] = center[j] + evecl[i][j];

(a) Precomputation of the spectral basis. We compute once andfor (i=0;i<v;i++) { /* compute the inertial distance */
for all a spectral basis set of eigenvectors for the coarsest mesh in a for (j=0;j<n;j++)
given simulation. Although this calculation may be costly, it needs for (k=0;k<n;k++)
to be done only once for a given mesh. Since the same geometry and inertia[j][k] = inertia[j][k] +
the same mesh are often used over and over again for design studies, (eveci][j] — center[j]) O(evec]i][k] - center[K]);
the cost of the initial eigenvector calculation can be amortized over for (i=0;i<n;i++) /* symmetrize the inertial matrix */
many simulations. In our current work we perform the initial eigen- for (j=i+1;j<n;j++) inertia[j][i] = inertia[i][j];

vector calculation with a shift-and-invert Lanczos algorithm inertial_eigenvector[n] =
described in [11]. We claim that the spectral basis, even for a coarse compute the dominant eigenvector of inertia[n][n];

graph, captures the essential features of the graph, and can be use@dr (i=0; i<v; i++) /* project */
for effective partitioning. for (j=0; j<n; j++)
(b) Repartitioning because of dynamic changes. At any time dur- key[j] = key[i] + evecli][j] Oinertial_eigenvectorfj];

ing the simulation when the characteristics of the calculation are sort key in an ascending order using float radix sorting;

changing because of refinement, derefinement, adaptation, etc. wesplit the sorted key into half;

compute a new vertex weight vector corresponding to the changed place the two partitions each into an appropriate place.

computational load. We repartition the graph with recursive inertial

bisection in the spectral coordinates for the coarsest mesh. TheThe steps listed above are only for presentation purposes. Numer-
change in vertex weights will affect the load balancing and hence thsus steps are missing from the steps as they will unnecessarily
distribution of partitions, but it does not affect the initially comput-complicate the understanding of the overall organization. Two rou-
ed spectral coordinates. Hence the repartitioning step is very fastnes of TRED2 andTQLI are used to find eigen vectors. They are
but continues to have the spectral information available, which makgerived from EISPACK, the eigen system subroutine package.
repartitioning also very efficient, and comparable to spectralfRED2 subroutine reduces a real symmetric matrix to a symmetric

partitioners. tridiagonal matrix using and accumulating orthogonal similarity
) transformationsTQLI subroutine finds the eigenvalues and eigen-
3 The HARP Algorithm vectors of a symmetric tridiagonal matrix by the method. A 32-

We will not discuss the precomputation phase here. This is well dodt float radix sorting is used in the sorting step. We have written this
umented elsewhere, and we simply used a Cray library routine dutine from scratch. The float radix sorting is based on IEEE float-
the C90 to precompute the eigenvectors. Instead, we will list the eX9 Point standard, where bits 0..22 are significand, the bits 23..30
ecution times of the eigen solver for the meshes used in the reporf® €xponent, and the bit31 is the sign bit. The radix of eight bits (the
As was mentioned before, the serial version of the repartitionin§Ucket size of 256) is used in the implementation. .
is essentially equivalent to recursive inertial bisection (RIB). Our Before we discuss the performance of HARP, we shall briefly
implementation follows exactly this algorithm as described in [9]./dentify how each of the above steps performs in terms of execution
The only difference is that RIB in [9] was physically motivated, i.e.time. The most time consuming step is the inertial matrix computa-

tion step, which consists of three nested loops. The second mostctors of the inertial matrix of dimensitis relatively trivial for
time-consuming step is sorting. It appears that the eigen solver céarge meshes and is therefore not parallelized. The third step, where
be a major bottleneck but it turned out trivial. For small problem sizeéhe vertex coordinates of the unpartitioned vertices are projected
of below 10,000 vertices, the eigen solver can be of significancento the major inertial direction (corresponding to eigenvector 0) is
However, for large problem sizes, the solver is a fraction of the ovesomewhat expensive, but not the major bottleneck. This step has
all computation time. We list some plots in Fig. 1 to show thealso been parallelized. Sorting is still done sequentially in the cur-
distribution of the individual steps. rent parallel version of HARP. The final step, where the
The results in Fig. 1 indicate that the majority of the times is speninpartitioned vertices are divided into two sets, requires a negligible
on computing the inertial matrix of the unpartitioned vertices.amount of time and is thus not parallelized. The most time-consum-
Again, the second most time consuming step is the sorting stépg modules of parallel HARP are to find the inertial matrix of the
which occupies approximately 20%. There is a slight difference founpartitioned vertices, to project them onto the dominant inertial di-
the two grids. For a larger grid, the sorting time increases. As weection, and to sort the projected coordinates. This can be seen from
shall come back to this issue later, the main target of parallel HAR#e histograms in Figure 2.
is therefore the inertial computation time. The current parallel version parallelizes only the inertial matrix
A parallel version of HARP has been designed and implementecbnstruction and the projection modules. These still require 31% and
on SP-2 [1] and T3E [20]. Two types of parallelism are used: lood7% of the total time, respectively. Sorting is done sequentially in
level parallelism and recursive parallelism. The primary objective ofhe current version, and constitutes more than 47% of the total par-
reporting the parallel version in this paper is to demonstrate thditioning time. The sorting module will be parallelized in the future
HARP can be effectively parallelized and used in parallel environthat will result in significant performance improvement. There is
ments. Significant performance improvement is expected in the neatso scope for substantial improvement in the first step where block-
future. Porting a working SP-2 version of HARP to T3E was noting send/receive commands are used.
straight forward due to some difference in machine architecture and
compiler. Readjustment and even recoding of some functions werkResults
needed especially for floating point radix sorting. Due to space lim

itations, the details of parallel HARP are not included in this repor A1 Test meshesand experimental settings

Instead, we will list some experimental results in the following ' Verify the performance of HARP, we have done substantial ex-
P gperlmentatlon over the last two years. The IBM SP-2 installed at

sections. _
Two of the five modules of HARP have been parallelized to dateVASA Ames Research Center and the Cray T3E installed at NER-

In iteration 0, all the eight processors work together to find the ineroC: Lawrence Berkeley Laboratory are used in this study. While the
tial center of the unpartitioned vertices. This step is the mo ain emphasis of this report is on the evaluation of the new HARP

expensive since it involves all the unpartitioned vertices and theﬁlgorithmz we will briefly present some parallel resglts in the context
original eigenvectors in order to find their relative positiominii- °f dynamically-changing adaptive mesh computations.

mensional space. In comparison, the second step of finding the eigenseve” different two- and three-dimensional test meshes are used

50 60
MACH?95 (60968,118527) MACH?95 (60968,118527)

at] 1 0 i |

40
30

30 1 3
20 1 '
£ 20f 1
10t 1 10l |
0 0 crerf]] [

0 inertia eigen project sort split 6 0 inertia eigen project sort split 6
50 60

FORD?2 (100196,222246) FORD?2 (100196,222246)

50 H :

Time distribution (%)
4 partitions
256 partitions
Time distribution (%)
8 partitions
256 partitions

40

30 :
20 1 '
g 20t]
10 1 10F]
0 0 e |

inertia eigen project sort split 0 inertia eigen project sort split 6
Figure 1: Time distribution on a single processor SP2. Figure 2: Time distribution on an 8-processor SP2.

4 partitions
256 partitions

Time distribution (%)
8 partitions
256 partitions

Time distribution (%)

SPIRAL |LABARRE| STRUT BARTHS5 HSCTL | MACH95 | FORD2
Type, 2D or 3D 2D 2D 3D 2D 3D 3D 3D
Number of erticesvV 1200 7959 14,504 30,269 31,736 60,968 100,196
Number of edgeE 3191 22,936 57,387 44,929 142,776 118,527 | 222,246

Table 1: Characteristics of the seven test meshes.

in this study. They varied in size from 1200 vertices to more thaexecution time. Second, we identify the partition quality across dif-

100,000 vertices. Table 1 shows the characteristics of the test meferent grids when the number of eigenvectors remain fixed. This

es. PIRAL is a very small toy grid which is a long chain experiment is also independent of sequential or parallel settings. It

geometrically arranged in a spiral. This mesh has no computationis thus performed on a single processor. Third, we run the parallel

significance other than to serve as a difficult test case for partitiorversion of HARP on more than one processor. Partition quality re-

ers. SRUT is a three-dimensional mesh used in civil engineerincmains unchanged from that for the serial version. Only the execution

problems for structural analysisARTH5 is a dual graph for a four- time will therefore be investigated.

element airfoil. SCTL is a 3-dimensional mesh for a high-speed Several other parameters are used throughout the afusthe

civil transport configuration. MACH95 is a tetrahedral mesh arounctnumber of verticesk is the number of edged] is the number of

a helicopter rotor blade dRD2 is a surface mesh of a Ford car. eigenvectors of the original griB,is the number of processors, and
Table 2 lists the precomputation times of the eigen solver for thSis the number of sets (or partitions). The words sets and partitions

test meshes on a C90. The eigenvectors are computed in the preccare used interchangeably throughout this paper.

putation stage. Once they are computed, they are used over and o

again for the next experiments. 4.2 Number of eigenvectorsand partition quality

Figure 7 illustrates the effect of the number of eigenvectors used on

- - - the partition quality and the execution time for 128 partitions. Both
Test 10 eigewectors | 20 eigewectors | 100 eigemectors the number of edges cut and the execution time are normalized by
meshes mem time mem time mem time their respective values when using only one eigenvector. It is clear
SPIRAL 03 052 04 098 06 171 that the solution qu_allty improves _for all the meshesf except S_PIRAL
LABARRE 21 4.95 29 6.25 35 29.73 as the number of eigenvectors is |lncreased. Thereis a drasyc change
when two eigenvectors are used instead of one. A gradual improve-
STRUT 3.9 8.50 4.2 1726 | 6.5 | 55.63
BARTH5 7.6 1540| 8.2 | 22.04| 13.0| 104.03
HSCTL 91| 2311| 9.8 | 2948| 14.8| 144.93 1.6
MACH95 39.2 | 192.68| 405 | 209.56| 50.1 | 687.89
FORD2 267 | 6025| 287 | 8439| 446 | 38652 lar]
Table 2: Precomputation times on Cray C90, performed once and fi 12r 1

all. (mem = memory size in mega words; time in seconds.)

3 1.0

o1
We note from the table that the eigenvector computation timesa = 08
not substantial considering that they are done once and only oncet & 0.6

the lifetime of the meshes. The maximum memory usage is also lin
ited to 50 mega words on Cray C90. It should be noted that th 04
eigensolver timeloes not linearly increase as the number of eigen

vectors increases. For example, the solving time of Ford2 is 6 0.2

seconds for 10 eigenvectors. When the number of eigenvectorsis i

creased to 100, the solving time is increased slightly more than 0.05 4 6 8 10 12 14 16 18 20
times. This relatively slow rate of increase indicates that solving 5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

more than 100 eigenvectassnot prohibitively expensive if such
number of eigenvectors is desired. As we will shows shortly, we fint
that 10 eigenvectors are suitable for our purposes. ar
The result of applyingHARP to partition SPIRAL, BARTHS5,
HSCTL, andMACH95 into eight subdomains is shown in Figures 3-

2
—>— FORD2 (100196, 222246)
—7— MACH95 (60968, 118527)
—<— HSCTL (31736, 142776)
—&— BARTHS5 (30269, 44929)
—o— STRUT (14504, 57387)
g
e

. \ a a3l LABARRE (7959, 22936)
6. The partitions are false color coded. These pictures are shov = SPIRAL (1200, 3191) ~
only to give a qualitative flavor of the new partitioner. Extensive =
quantitative analysis is presented later in the paper. § ol |

Two parameters characterize the performance of all graph part
tioning algorithms: the number of cut edg€sand the total
partitioning timeT. Throughout this report, we will compare these 1l o
parameters whenever appropriate.

We have performed three types of experiments. First, we identif
the partition quality in terms of the number of eigenvectors that ar 0 : ‘ : : : : : : :
used. Results do not depend on whether the serial or the parallel v 0 2 4 6 8 1.0 12 14 16 18 20
sion of HARP is used. The experiment is thus performed on a sing Number of eigenvectors M
processor. Both the number of cut edges and the execution time w
be presented to identify the trade-off between partition quality an

Figure 7: Effect of the number of eigenvectors on the num
of cut edges and execution time for 128 sets.

ment is noticed for up to 10 eigenvectors. There is very littlean SP2. The table clearly indicates that increasing the number of
reduction in the number of cut edges beybhedl 0. The reason that eigenvectors is beneficial for the partition quality. However, doing
the partition quality foBPIRAL remains essentially unchanged is be- so will significantly increase the partitioning time.

cause it is geometrically a spiral in cartesian coordinates. However,

in eigenspace, it is a long chain and its spectral property can be cap3 Number of partitions and partition Quality

tured with only one eigenvector. _ _ In the previous section, we examined the relationship between the
The execution time, on the other hand, keeps increasing as th@mber of eigenvectors used and the partition quality for 128 parti-
number of eigenvectors increases. For 20 eigenvectors, the exegléms across the seven meshes. In this section, we look at how the
tion time has increased almost four-fold. There is a clear trade-0ffumber of eigenvectors affects the quality in terms of number of
between the solution quality and the execution time. In fact, wartitions. Figure 8 presents the number of cut edges and the execu-
reach a point of diminishing returns beyond a certain number Afgn time for two meshes: HSCTL and FORD?.
eigenvectors. The partition quality improves only slightly at the cost Four observations can be made from the results in Fig. 8. First, the
of significantly higher execution time. partition quality improves as the number of partitions increases. Sec-
Table 3 shows the absolute number of edge cuts and the execut@ﬁd’ when the two meshes are Cross_compared, the |arger meshes
time for MACH95. The execution times are for a single processor okhows greater improvement in quality with more partitions. This is

of Edge cuts Execution time
partitions| 1 Ev 2 EVs 4 EVs 8EVs | 16 EVs| 1EV 2 EVs 4 EVs 8EVs | 16 EVs
2 817 817 817 817 817 | 0.186 0.193 0.202 0.249 0.470
4 2442 1657 1657 1657 1657 | 0.360 0.372 0.390 0.484 0.927
8 5734 3283 3514 3733 3730 | 0.543 0.553 0.580 0.724 1.439

16 12312 5020 5431 5693 5731 | 0.729 0.741 0.777 0.970 1.861
32 25441 8443 8710 8662 8041 | 0.920 0.927 0.973 1.213 2.340
64 51651 | 13495 | 13404 | 12818 | 10814 | 1.110 1.117 1.173 1.469 2.838
128 72512 | 18542 | 19743 | 15822 | 14804 | 1.304 1.298 1.368 1.730 3.371
256 74109 | 28059 | 28798 | 21870 | 19929 | 1.491 1.483 1571 2.018 3.968

Table 3: Effects of the number of eigenvectors on edge cuts and execution time for MACH95 on a single-processor SP-2.

16 5
141 HSCTL (31736,142776)] HSCTL (31736,142776)
4+
12}]
a 1.0+ :T 3t
5 2
=~ 08r =
S S
(@) 06t = 2r
04t
1 |-
02}]
006—% 4 6 8 10 12 14 16 18 20 00 %2 4 6 8 10 12 14 16 18 20
141 FORD2 (100196,222246)] FORD2 (100196,222246)
4 -
12}
8 1.0r ;T 3 L
2 =
= 08} £
S S
O 061 = 2r
A
04}]
1 |-
02}
00— % 4 6 8 10 12 14 16 18 20 002 4 6 8 10 12 14 16 18 20
Number of eigenvectors M Number of eigenvectors M

Figure 8: Effects of the number of eigenvectors on edge cuts and execution time for different number of partitions.

because we have more fine-grained control on how the partitions are

generated. Third, the conclusions about partition quality versus the 2.0 ' '
number of eigenvectors that were drawn from Fig. 7 for 128 parti- 18 (a) Ratio of edge cuts .
tions hold true for any number of partitions. Fourth, it should be
noted that the nature of the normalized execution time does not
change across different meshes. Contrary to the expectation of in-Q
creased execution time, larger meshes tend to give lower execution?
time as the number of eigen vectors increases. Furthermore, as the2
number of eigen vectors increases, the execution times tend to settle<
in, resulting in less fluctuation. § 08t]
5 Compar ative Perfor mance of HARP T osf 1
5.1 Serial performance of HARP 041 1
The HARP results are compared with the MeTiS2.0 multilevel par- 02 T
titioner. All HARP results in this section are based on 10 0.0 . .
eigenvectors, and are denoted as HARPwo parameters are used ' 10 100
for comparison: number of edge cuts and partitioning time. All exe- 2.0 ' i L
cution times are based on a single-processor SP2. Tables 4 and ! 1.8 (b) Ratio of partitioning time 1
show the absolute numbers of edge cuts and execution times on $P2 16F —5— FORD2 (100196,222246) _
Table 6 shows the execution times of HARP on Cray T3E in- o —9— MACH95 (60968,118527)
stalled at NERSC. % 1471 —<+— HSCTL (31736,142776) T
E 1af —&— BARTHb (30269,44929))
L —6— STRUT (14504,57387)
of sets | Spiral [Labarrd Strut | Barths| Hsctl [Mach9g Ford2 = 1oy —85— LABARRE (7959,22936)]
3] —6— SPIRAL (1200, 3191)
2 0.005| 0.036 | 0.069 | 0.144 | 0.151| 0.288 | 0.477 & 08T b
4 0.010 | 0.081 | 0.152| 0.313| 0.331| 0.643 | 1.052 < o6t i
8 0.017| 0.125| 0.227 | 0.479| 0.501 | 0.997 | 1.621 & A —
16 0.025| 0.168 | 0.298 | 0.635| 0.665 | 1.342 | 2.188 0.4]
32 0.037 | 0.215| 0.366 | 0.782 | 0.818 | 1.664 | 2.748 02t i
64 0.056 | 0.268 | 0.442| 0.928 | 0.971| 1.975| 3.266))
128 | 0.089 | 0.340 | 0.534 | 1.086 | 1.132 | 2.280 | 3.761 0.0 10 100
256 0.149 | 0.441| 0.656 | 1.281 | 1.324 | 2.609 | 4.270 Number of partitions S

Table 6: Execution times of HARFAN seconds on a single-proces-
sor T3E, using 10 eigenvectors.

Figure 9: Comparison between HARRNd Metis2.0 on SP-2
in terms of edge cuts and execution time.

of SPIRAL LABARRE STRUT BARTHS HSCTL MACH95 FORD2
Sets | HARPu | MeTiS2 | HARPa | MeTiS2 | HARPa | MeTiS2 | HARPa | MeTiS2 | HARPa | MeTiS2 | HARPa | MeTiS2 | HARPa | MeTiS2
2 9 9 169 144 82 82 109 86 1484 576 817 815 324 379
4 29 29 423 325 539 528 296 201 1958 1322 1657 1623 911 817
8 67 65 759 530 1027 1005 513 381 3180 2393 3731 3161 1826 1303
16 151 145 1150 864 1970 1939 855 588 5770 4371 5687 4600 3062 2146
32 301 290 1775 1381 3757 3261 1315 985 9652 6970 8664 6128 4732 3203
64 623 589 2667 2132 6879 4947 2012 1561 | 15896 | 10306 | 11557 8467 7561 4928
128 | 1234 985 4093 3227 8723 7287 3186 2427 | 22454 | 15102 | 15001 | 10981 | 11318 7616
256 | 2156 1526 6140 4806 | 13263 | 10551 4954 3672 | 34980 | 21857 | 20954 | 13966 | 17425 | 11332

Table 4: Comparison of the number of cut edges for varying number of partitions. TheH@&RiRs are based on 10 eigenvectors. The

MeTiS results are based on version 2.0.

of SPIRAL LABARRE STRUT BARTHS HSCTL MACH95 FORD2
Sets | HARPu | MeTiS2 | HARPa | MeTiS2 | HARPa | MeTiS2 | HARPo | MeTiS2 | HARPa | MeTiS2 | HARPa | MeTiS2 | HARPa | MeTiS2
2| 0.011 0.02 0.043 0.10 0.103 0.19 0.149 0.28 0.157 0.48 0.298 0.79 0.488 1.18
4| 0.013 0.03 0.078 0.22 0.137 0.42 0.286 0.60 0.300 1.00 0.583 1.62 0.989 2.40
8 | 0.020 0.05 0.118 0.33 0.208 0.65 0.429 0.88 0.451 1.84 0.871 2.42 1.424 3.59
16 | 0.029 0.11 0.161 0.50 0.279 0.92 0.578 121 0.605 2.24 1.166 3.17 1.899 4.78
32| 0.042 0.14 0.207 0.70 0.355 1.22 0.776 1.59 0.765 2.93 1.460 4.29 2.377 5.92
64 | 0.062 0.21 0.261 0.90 0.437 1.65 0.920 2.08 0.926 3.76 1.769 5.46 2.865 7.50
128 | 0.098 0.28 0.332 1.18 0.536 2.17 1.057 2.70 1.104 4.90 2.089 6.77 3.371 9.23
256 | 0.164 0.45 0.441 1.56 0.670 2.87 1.257 3.29 1.315 5.97 2.489 8.23 3.901 | 11.35

Table 5: Comparison of the execution times in seconds on a single-processor SP2. TherébiR®are based on 10 eigenvectors.

We find from the table that the T3E results are comparable to SR#esenting these results here is to demonstrate that HARP can be ef-
results listed in Table 5. The difference in the execution resultéectively parallelized.
comes from the machine’s absolute performance and compiler opti- Three key observations can be made from these results. First, the
mization. SP2 consists of Power2 processors which can issue upgarallel code shows modest speedup as the number of processors in-
six instructions per clock while T3E consists of DEC Alpha 21164creases while keeping the total number of partitions unchanged. For
processors which can issue up to four instructions per clock. Thexample, the speedup values are about 5.5X, 6.5X, and 7.6X on 64
higher superscalar capability coupled with wider memory bandprocessors for 64, 128, and 256 partitions, respectively. These are
width has contributed to the higher performance on SP2. very preliminary results for the parallel version of HARP and signif-
Figure 9 plots the ratio of HARPto MeTiS2.0. Figure 9(a) icant improvement is expected in the near future. Second, the
shows that HARR gives partitions that are of poorer quality than partitioning time increases less than linearly with the number of par-
MeTiS2.0. We find that the maximum overall difference is betweertitions for a fixed number of processors. In fact, when 16 processors
30% and 40%. It should be noted however that the HARRBults are used, the partitioning time for 256 partitions is only 20% more
are based on 10 eigenvectors. than that for 16 partitions. With more and more processors, the par-
The execution times shown in Figure 9(b) indicate that HARP titioning time actually seems to become independent of the number
more than twice as fast as MeTiS2.0. As we shall discuss in the neot partitions.
section, this is precisely the purpose of developing HARP. Since dy- Third, the partitioning time gradually decreases with the number
namically-changing computations require rapid runtime mestof processors when the ratio of the number of partitions to the num-
repartitioning, this fast algorithm is perfectly suitable for our pur-ber of processors is held constant. This can be observed by scanning
poses. The fact that the partition quality is somewhat poor is not diagonally across the entries in Tables 7 and 8. For example, the
major concern when dealing with adaptive computations. Since repime to partition the FORD?2 grid into four subgrids on one processor
artitioning has to be performed fairly frequently, it is more importantis 0.989 secs but only 0.528 secs for 256 subgrids on 64 processors.
to decrease the partitioning time than reducing the number of cutsSimilar results were observed for all the other grids. The relative re-
duction in the partitioning time with increasing number of
5.2 Parallel performance of HARP processors is more pronounced as the ratio of the number of subgrids
The main target of a preliminary version of parallel HARP is the stef§o the number of processors increases. This is becauseS#hién
that computes the inertial matrix of the unpartitioned vertices. Thiéhere is no communication after |8jiterations. These results and
module has been parallelized, as well as the projection step. A brigbservat_lons demonstrate that HARP will remain a viable partitioner
profile of the execution times for the individual modules for the seOn massively-parallel systems.
quential and parallel versions of HARP are shown in Figs. 1 and 2.)]
The sorting step is the most expensive module in parallel HARP &HARP in the Dynamic L oad Balancer JOVE
it requires almost half the total execution time. Our next step, thererhe primary application of HARP is to dynamically partition adap-
fore, is to parallelize the sorting step. tive grids at runtime [3]. The motivation for HARP originated from
Execution times on up to 64 processors of an SP2 and T3E ajge context of load balancing unstructured adaptive grid computa-
presented in Tables 7 and 8 when parallel HARPapplied to the tions on distributed-memory machines [23,24]. The dynamic load
two largest test meshes. For a given nuniberl of processors, the palancing framework JOVE is described in [23] and its impact on
meshes were partitioned int8/ 2'P, ..., 256 subgrids. For com- adaptive grid computations are reported in [24]. The framework em-
parison, the times for the serial version of HAR#&e also shown ploys dual-graph representation. CFD flow solvers usually solve for
for up to 256 partitions. As indicated earlier, the current parallel imthe solution variables at the vertices of the computational mesh. A
plementation can be vastly improved. The main purpose oparallel implementation requires a partitioning of the computational

of MACH95 FORD2

processors 2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

1 0.298 | 0.583 | 0.871 | 1.166 | 1.460 | 1.769 | 2.089 | 2.489 | 0.488 | 0.989 | 1.424 | 1.899 | 2.377 | 2.865 | 3.371 | 3.901
2 0.250 | 0.370 | 0.498 | 0.625| 0.756 | 0.889 | 1.036 | 1.200 | 0.411 | 0.609 | 0.818 | 1.024 | 1.234 | 1.448 | 1.671 | 1.912

4 . 0.324 | 0.381| 0.446 | 0.511| 0.577 | 0.649 | 0.732 . 0.532| 0.627 | 0.730 | 0.835| 0.940| 1.053| 1.172
8 . . 0.337 | 0.363 | 0.396 | 0.429 | 0.466 | 0.508 . . 0.553 | 0.595| 0.648 | 0.701 | 0.755 | 0.815
16 . . . 0.332 | 0.343| 0.359 | 0.377| 0.398 . . . 0.544 | 0.559 | 0.586 | 0.616 | 0.644
32 0.328 | 0.328 | 0.338 | 0.349 0.532 | 0.535| 0.550 | 0.563
64 0.322 | 0.324 | 0.325 0.523 | 0.518 | 0.528

Table 7: Partitioning times on an IBM SP2. « indicates not applicable.

of MACH95 FORD2

processors 2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

1 0.288 | 0.643 | 0.997 | 1.342| 1.664 | 1.975| 2.280 | 2.609 | 0.477 | 1.052 | 1.621 | 2.188 | 2.748 | 3.266 | 3.761 | 4.270
2 0.373 | 0.554 | 0.733 | 0.906 | 1.070 | 1.227 | 1.385| 1.552 | 0.614 | 0.906 | 1.195 | 1.484 | 1.773 | 2.037 | 2.292 | 2.547

4 . 0.498 | 0.586 | 0.673 | 0.753 | 0.830 | 0.905 | 0.988 . 0.818 | 0.959| 1.107| 1.250| 1.379| 1.506 | 1.631
8 . . 0.512 | 0.555| 0.596 | 0.634 | 0.673 | 0.713 . . 0.843 | 0.913 | 0.983 | 1.047 | 1.107 | 1.168
16 . . . 0.493 | 0.514 | 0.533 | 0.552 | 0.575 . . . 0.817 | 0.849 | 0.882 | 0.913 | 0.943
32 0.474| 0.484 | 0.494 | 0.505 0.780| 0.796 | 0.813 | 0.827
64 0.459 | 0.464 | 0.469 0.758 | 0.766 | 0.773

Table 8: Partitioning times on a Cray T3E. « indicates not applicable.

mesh such that each element belongs to a unique partition. Commaeight of the original elements.

nication is required across faces that are shared by adjacentThe mesh partitioner HARP as well as the load balancing frame-

tetrahedral elements residing on different processors. Hence for theork JOVE is currently being applied to rotorcraft fluid dynamics to

purposes of partitioning, we consider the dual of the origiral study of helicopter wake systems. Several plans are currently under-

mesh such agACH95 shown in Figure 6. way to apply JOVE and HARP, including simulations of deep
The tetrahedral elements of theD mesh are the vertices of the submicron semiconductor modeling and computational nano-tech-

dual graph. An edge exists between two dual graph vertices if theology at the Numerical Aerospace Simulation of NASA Ames

corresponding elements share a face in the original mesh. A grajtesearch Center and NERSC at Lawrence Berkeley Laboratory.

partitioning of the dual graph thus yields an assignment of tetrahedra

to processors. Each dual graph vertex has two parameters associafeésummary

with it. The computational weighlicomy, is & measure of the work- - om0 tational science and engineering problems involve runtime
load for the corresponding element of t@D mesh. The mesh partitioning when implemented on distributed-memory multi-
communication weightcomm measures the cost of moving the el- processors. We have presented in this paper a fast spectral
ement from one processor to another. The connectivity pattern apgrtitioner, called HARP, which can quickly partition realistically-
the wgomp determine how dual graph vertices should be grouped teized meshes while maintaining the partition quality of spectral par-
form partitions that minimizes the disparity in the partition weights titioners such as recursive spectral bisection. To demonstrate the
The Weomm determine how partitions should be assigned to processffectiveness of HARP, we have selected various 2D and 3D meshes
sors such that the cost of data movement is minimized. with the size of up to 100,196 vertices. Both the serial and parallel

The most significant advantage of using a dual graph is that itéersions of HARP have been implemented on two distributed-mem-
complexity and connectivity remainmichanged during the course Oy platforms, IBM SP-2 and Cray T3E, installed respectively at
of an adaptive computation. This is because the vertices of the dUdASA Ames and NERSC of Lawrence Berkeley Laboratory.
graph correspond to the elements of the initk mesh. The parti- Several types of experiments have been performed to find the ef-
tioning and load-balancing times therefore depend only on the initidfCts of the number of eigenvectors on partition quality, the trade-off
problem size. New grids obtained by mesh adaption are translated® the number of eigenvectors with respect to the partition quality
the two WeightsWeomp andWeomm for every element in the initial and computation time, and the fast partitioning capabilities in the
CED mesh. context of dynamically changing mesh_ adaptlon_. _\Ne have identified

To put HARP in the dynamic load balancing perspective, wdhat the larger meshes tend to show higher partition quality for more

demonstrate HARP at work using a set of snap shots taken in re%qlrtitions due to the fine-grained control on how partitions are gen-

world situations. In particular, we use four helicopter meshes degrated. The partition quality has improved as the number of

rived fromMACH95 (Fig. 6). The initial mesh has 60968 tetrahedral §19€NVECtOrs increases at the expense of increased computation
elements and 78343 edges. As the simulation progresses, meshgﬁ 1e. We have also observed that the partition quality improves as
finement (coarsening) takes place, resulting in the change in me € number of partitions increases.

size. Table 9 shows the change in the number of vertices, edges, an he performance Of.HARP ha§ been compared agallns.t other par-
elements over three refinements. The initial mesh size and their %wt_loners such as MeTiS2. Experimental results have indicated that

; . - - e execution times of HARP are three to four times faster than Me-
spective values are listed in the first row. TiS 2.0. The solution quality of HARP, on the other hand, is poorer
than MeTiS2. We find that the overall difference is between 30% to

. i iti 40%. It should be noted that the HARP results are based on 10 eigen-
adaplt)lon #of e'_err?te”ts ’ZOf 10 partltl_ons 25 pamt_lons vectors. The fact that the partition quality is somewhat poor is not a
number (weight) €dges | cuts | time | cuts | time major concern when dealing with adaptive computations. Since par-

0 60968 78343 | 5685 | 1.024 | 20204 | 2.176 titioning has to be performed fairly frequently, it is more important
1 179355 220077| 5229 | 1.024 | 18191 2.177 to reduce the partitioning time than the number of edge cuts.

2 389947 469607 | 4833 | 1.023 | 15536| 2.177 The parallel version of HARP has been implemented in Message
3 765855 913412| 4539 | 1.021 | 14039| 2.178 Passing Interface. It can run on any platform which supparts

The sole purpose of the preliminary parallel version is to demon-
Table 9: Runtime behavior of Mach95 over three mesh adaptionsstrate that the serial HARP can be effectively parallelized on
distributed-memory machines. The most time-consuming step of the
artitioner has been parallelized and its effects have been significant
terms of execution time. The largest mesh among those wésused
D2for modeling a Ford car with 100,196 vertices and 222,246

After the first adaption, the size has grown to 179355 elemen
and 220077 edges. In each adaption, an element can be refined URL
8 smaller elements. After the three adaptions, the mesh size hgages Parallel HARP has shown to parti#@RD2into 256 parti-
grown to 765855 elements, which is an order of magnitude IargetrOns ir.w 0.5 Sec on 64 Processors
than the initial mesh. Runtime load balancing is indispensable when The TéE version of HARP ha{s been implemented in MPI. If

such mesh adaption is implemented on a distributed-memory muIthARP were implemented BHMEM with which T3E performs best
processor. It is highly likely that some processors will have a V€¥he performance of HARP can be further improved. Regardles:s of
large number of elements while some perhaps have little chanqﬁe paradigm used for implementation, parallel HARP can further

since mesh refinement tends to be localized over time. Table 9 al§8 S . S
) . duce the current partitioning time since less than half the individ-
g][?denéscﬁ?sIg]epcigggégefit;sr%gtf oj%ggel\r/]e‘;c?fvtﬁévm:;ﬁ g;zeen#g;b al modules of HARP are parallelized in the preliminary version.
9 Our immediate plan is to parallelize the sorting step, which is cur-

grown more than an order of magnltude_. . rently the most time consuming step. The MPI version will be
The dual-graph approach employed in the dynamic load balan%‘onverted to BHMEM version in the near future.

ing framework JOVE allows the mesh size to grow but the Th : P . . o
. o ! - . e primary application of HARP is to dynamically partition
complexity of mesh partitioning remailn_(e_d. T'm'ng results in Ta- . daptivg gridsy InF'sz:is respect, we have put HXRP to Wgrkpin the dy-
ble 9 clearly show that the mesh partitioning times are essentlallg(ramiC load b;sllancing framéwork JOVE. Four snap shots of a
m(:gh Cv%?é?l rtr:]:inrti?nssrtlhles izif;u;ee;Agzjéfu?eppghidc;%;hisd;’?‘lelicopter blade mesh callétACH95 have been drawn from real-
9 rWorld applications to test the capability of HARP. After three mesh

adaptions, the mesh has grown from 60,968 to 765,855 vertices. The
mesh partitioning times, on the other hand, have remained constant
because of the dual graph approach. We have also found that tfg
number of edge cuts decreased file885to 4539even if the mesh

size has grown more than an order of magnitude. This fixed parti-
tioning times and the decrease in edge cuts have indicated that grabh
partitioning can now be truly embedded in dynamically-changing
real-world applications.

18.
Acknowledgments

Andrew Sohn thanks Youngbae Kim and William Saphir of NERSC
for helping to port HARP on T3E while visiting NERSC in January 19,
1997. The full version of this report is available at http://
www.cs.hnjit.edu/sohn/papers.

20.
References
1. T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M.
Dias, and M. Snir, SP2 system architecturelBRl Systems
Journal VVol. 34, No. 2, 1995. 21.

2. S.T.Barnard and H. D. Simon, Fast multilevel implementation
of recursive spectral bisection for partitioning unstructuredo2.
problems, Concurrency: Practice and Experience, Vol. 6,

1994, pp. 101-117.

3. R.Biswas and R. Strawn, A new procedure for dynamic adapz3,
tion of three-dimensional unstructured griégplied Numeri-
cal Mathematics 13 (1994) 437-452.

4. T. Chan, J. Gilbert, and S. Teng. Geometric spectral partition-
ing. Xerox PARC Technical Report, January 1995.

5. W. Chan and A. George, A linear time implementation of the24.
reverse Cuthill-McKee algorithnBI T, Vol. 20, 1980, pp. 8-14.

6. J. De Keyser and D. Roose, Grid partitioning by inertial recur-
sive bisection, Report TW 174, Katholieke Universiteit Leu-
ven, Belgium, 1992.

7. P. Diniz, S. Plimpton, B. Hendrickson and R. Leland, ParaIIeI25'
algorithms for dynamically partitioning unstructured grids, in
Proc. 7th S AM Conference on Parallel Processing for Scien-
tific Computing, 1995, pp.615-620.

8. C. Farhat, A simple and efficient automatic FEM domain de-
composerComputers and Structures 28, 1988, pp. 579-602.

9. C. Farhat, S. Lanteri, and H. Simon, TOP/DOMDEC: A soft-
ware tool for mesh partitioning and parallel processGan-
puting Systemsin Engineering 6, February 1995, pp.13 - 26.

M. Fiedler, A property of eigenvectors of nonnegative symmet-
ric matrices and its application to graph the@ggchosl ovak
Mathematics Journal 25, 1975, pp. 619-633.

R. Grimes, J. Lewis and H. Simon, A shifted block lanczos al-
gorithm for solving sparse symmetric generalized eigenprob-
lems,SAM J. on Matrix Analysis and Applications 15, 1994,
pp.228 - 272.

B. Hendrickson and R. Leland, A multilevel algorithm for par-
titioning graphs, Report SAND93-1301, Sandia National Lab-
oratories, Albuquerque, NM, 1993.

B. Hendrickson and R. Leland, Multidimensional spectral load
balancing, Report SAND93-0074, Sandia National Laborato-
ries, Albuquerque, NM, 1993.

G. Karypis and V. Kumar, A fast and high quality multilevel
scheme for partitioning irregular graphs, Report 95-035, Uni-
versity of Minnesota, Minneapolis, MN, 1995.

B.W. Kernighan and S. Lin, An efficient heuristic procedure

10.

11.

12.

13.

14.

15.

10

for partitioning graphsThe Bell System Technical Journal,
Vol. 49, 1970, pp. 291-308.

. S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vechhi, Optimization

by simulated annealingcience, Vol. 220, 1983, pp. 671-680.

S. Khuri and A. Baterekh, Genetic algorithms and discrete op-
timization,Methods of Operations Research, Vol. 64, 1991, pp.
133-142.

A. Pothen, H.D. Simon, and K.-P. Liou, Partitioning sparse ma-
trices with eigenvectors of graphS,AM Journal of Matrix
Analysis and Applications, Vol. 11, 1990, pp. 430-452.

P. Sadayappan and F. Ercal, Nearest-neighbor mapping of fi-
nite element graphs onto processor mediEE Transactions
on Computers, Vol. 36, 1987, pp. 1408-1424.

S. Scott, “Synchronization and communication in the T3E mul-
tiprocessor,” irProceedings of ACM International Conference

on Architectural Support for Programming Languages and
Operating Systems, Boston, MA, October 1996.

H. D. Simon, Visualization of sparse matrix algorithiri\
Europe Workshop, Oberlech, Austria, August 1990.

H. D. Simon, Partitioning of unstructured problems for parallel
processingComputing Systems in Engineering, Vol. 2, 1991,
pp. 135-148.

A. Sohn, R. Biswas, and H. Simon, A dynamic load balancing
framework for unstructured adaptive computations on distrib-
uted-memory multiprocessors,Pnoc. of the 8th ACM Sympo-
sium on Parallel Algorithms and Architectures, Padua, Italy,
June 1996, pp.189-192.

A. Sohn, R. Biswas, and H. Simon, Impact of load balancing on
unstructured adaptive computations for distributed-memory
multiprocessors, ifProc. of the 8th IEEE Symposium on Par-

allel and Distributed Processing, New Orleans, Louisiana, Oc-
tober 1996, pp.26-33.

R. Van Driessche and D. Roose, A graph contraction algorithm
for the fast calculation of the Fiedler vector of a grapProt.

7th SAM Conference on Parallel Processing for Scientific
Computing, 1995, pp. 621-626.

