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Abstract - Partitioning unstructured graphs is central to the parallel
solution of computational science and engineering problems. Spec-
tral partitioners, such recursive spectral bisection (RSB), have
proven effective in generating high-quality partitions of realistical-
ly-sized meshes. The major problem which hindered their wide-
spread use was their long execution times. This paper presents a new
inertial spectral partitioner, called HARP. The main objective of the
proposed approach is to quickly partition the meshes at runtime in a
manner that works efficiently for real applications in the context of
distributed-memory machines. The underlying principle of HARP is
to find the eigenvectors of the unpartitioned vertices and then project
them onto the eigenvectors of the original mesh. Results for various
meshes ranging in size from 1000 to 100,000 vertices indicate that
HARP can indeed partition meshes rapidly at runtime. Experimental
results show that our largest mesh can be partitioned sequentially in
only a few seconds on an SP2 which is several times faster than other
spectral partitioners while maintaining the solution quality of the
proven RSB method. A parallel MPI version of HARP has also been
implemented on IBM SP2 and Cray T3E. Parallel HARP, running
on 64 processors SP2 and T3E, can partition a mesh containing more
than 100,000 vertices into 64 subgrids in about half a second. These
results indicate that graph partitioning can now be truly embedded
in dynamically-changing real-world applications.

1 Introduction
One of the most difficult problems to implement on a distributed
memory parallel machine is a problem with a dynamically changing
data structure, which requires repeated load balancing and which is
coupled to an implicit computational solver [23]. This situation is
typical for applications in computational fluid dynamics or compu-
tational structural mechanics, which involve grid adaptation,
automatic mesh refinement or multizonal grid technologies [3]. An
important aspect of the overall implementation of such dynamically
changing applications, is the partitioning of the underlying grid.
Mesh or graph partitioning algorithms for static grids have been ex-
tensively investigated in the last five years, and significant progress
has been made both in improved heuristic algorithms, as well as in
high quality software. In this paper we want to show, how a partic-
ularly successful approach for graph partitioning based on spectral

algorithms can be extended to handle the dynamic case. Our goal is
to combine the overall effectiveness of the spectral type partitioners
in terms of reducing the cutsize of the partition, with some tech-
niques, which use the dynamic character of the calculation to also
produce a fast repartitioning of the grid.

The most general approach to mesh partitioning is to use generic
combinatorial optimization techniques based on a cost function.
Two methods that yield good suboptimal solutions are simulated an-
nealing (SA) [16] and genetic algorithms (GA) [17]. SA is
analogous to a method in statistical mechanics designed to simulate
the slow cooling of a physical system. It works by iteratively propos-
ing new partitions, evaluating their quality, and accepting them
based on the Metropolis criterion. The method requires several user-
specified parameters that makes it difficult to find good partitions in
a problem-independent manner. GA are a model of machine learn-
ing which derives its behavior from the processes of evolution in
nature. Such methods start with an initial population of randomly-
generated partitionings. New partitionings are then generated from
the current population using the natural processes of reproduction,
crossover, and mutation. Individual partitionings that contribute to
the minimization of an objective function are more likely to repro-
duce. Once again, a large number of parameters must be set for a
successful partition. In general, stochastic optimization techniques
when used on their own, can be slow, trapped in local minima, and
depend on many application-specific parameters. However, these
methods may be very useful in fine tuning an existing partition.

Another intuitive approach to mesh partitioning is to use cluster-
ing techniques. The nearest-neighbor algorithm in [19] generates
initial clusters so that neighboring grid points are assigned to the
same partition or to neighboring partitions. These clusters are then
modified using a boundary refinement procedure to improve the par-
titions. The greedy algorithm in [8] grows the first partition from a
given starting point until the correct number of grid points has been
included. Construction of the next partition begins from the bound-
ary of the previous partition, and so on, until the whole domain is
decomposed. Despite its simplicity, it often yields partitions with
low edge cuts. Since it is not a recursive process and the partitioning
time is independent of the number of partitions, this algorithm is
considered one of the fastest partitioners. Bandwidth reduction algo-
rithms also belong to this class of mesh partitioning techniques.
Essentially, if the mesh elements are renumbered to reduce the band-
width of the adjacency matrix, a lexicographic decomposition of the
mesh can be performed to obtain good partitions. The Reverse
Cuthill-McKee (RCM) ordering scheme [5] is one of the most pop-
ular methods for bandwidth reduction; however, subdomains
usually have bad aspect ratios. This problem can be reduced if the
scheme is used recursively, as in recursive graph bisection (RGB)
[22]. Two vertices at maximal or near-maximal distance in the graph
are first determined. All other vertices are then sorted by distance
from one of these extremal vertices, and partitioned to two subdo-
mains. The RCM scheme is used to find the level structure, a
convenient way of organizing the vertices in sets of increasing dis-
tance from one of the extremal vertices.

The class of geometry-based bisection algorithms recursively di-
vide the mesh into two parts by exploiting its geometric properties.
Recursive coordinate bisection (RCB) [22] sorts the mesh vertices
according to their coordinates in the direction of the longest spatial
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extent of the domain. Half the vertices are then assigned to each sub-
domain, and the process is repeated recursively. This is a simple,
intuitive, and cheap technique, but one which provides poor separa-
tors as a result of excluding all graphical information. The recursive
inertial bisection (RIB) algorithm [6] instead considers the inertial
coordinate system, where the origin is the center of gravity of the
mesh. The vertices are considered point masses with mass values set
to the vertex weights. The vertices are then orthogonally projected
onto the principle axis of this structure, and sorted into two sets. This
technique is more expensive than RCB but generally produces much
better results. RIB is especially used in conjunction with local re-
finement strategies such as the Kernighan-Lin (KL) heuristic [15].
Repeated pairwise exchanges are performed on an initial partition to
improve the quality. A salient feature of KL is that sequences of per-
turbations are considered rather than single exchanges to bypass
local minima.

A considerably less intuitive class of mesh partitioning algorithms
are based on spectral methods. The most widely-used technique is
Recursive Spectral Bisection (RSB) [22] that is derived from a graph
bisection strategy [22] based on a specific eigenvector of the Lapla-
cian matrix of the graph. In particular, the eigenvector
corresponding to the second smallest eigenvalue gives some direc-
tional information about the graph. The special properties of this
eigenvector have been extensively investigated by Fiedler [10];
hence, called the Fiedler vector. The computational challenge of the
RSB algorithm is the efficient calculation of the Fiedler vector. RSB
is regarded as one of the best partitioners due to its generality and
high quality; however, the method is very expensive since it requires
computing the Fiedler vector at each recursive step. The multidi-
mensional spectral partitioning (MSP) [12] algorithm improves
RSB by considering several cuts at each recursive step. For example,
it can perform spectral octasection to partition a graph into eight sets
using three eigenvectors. MSP requires less computations than RSB
to generate the same partitions; however, they are still too slow for
many applications. These algorithms are often combined with KL to
improve the fine details of the partition boundaries.

The partitioning time for large meshes can be considerably re-
duced by contracting the graph. Multilevel algorithms reduce the
size of the mesh by collapsing edges, partitioning the smaller graph,
and then uncoarsening it back to obtain a partition for the original
mesh. The most sophisticated schemes use a sequence of successive-
ly smaller contracted meshes, and smooth the partitions using KL
during the uncoarsening phase. The multilevel implementation of
RSB, called MRSB [2], calculates the Fiedler vector for the coarsest
graph, and then prolongates it for the original mesh. Alternative
graph contraction strategies are described in [12,25], but they all use
spectral methods on the coarsest mesh. The fastest multilevel
scheme to date is MeTiS [14], which claims to produce partitions
that are of higher quality than those generated by spectral partition-
ing schemes. MeTiS uses heavy edge matching during the
coarsening phase, a greedy graph growing algorithm for partitioning
the coarsest mesh, and a combination of boundary greedy and KL re-
finement during the uncoarsening phase.

The HARP algorithm which will be discussed in this paper can be
described in the context of the above approaches to graph partition-
ing fairly easily, as a combination of the efficiency of spectral
algorithms (in terms of finding small cutsets), with the speed of RIB.
A very closely related algorithm has been proposed in [4]. We will
explore the relationship of HARP with spectral algorithms in section
2. In section 3 we will discuss the serial and parallel versions of
HARP in more detail, and in section 4 we will present some numer-
ical results. After a comparison to other (static) partitioning
algorithms, we are going to demonstrate in section 6 the perfor-
mance of HARP in the framework of an unstructured adaptive mesh
refinement code for computational fluid dynamics, which solves for
the flow around a helicopter blade.

2 Motivation and General Description of the Algorithm
2.1. Laplacian Eigenvectors as Euclidean Coordinates
The first important element in motivating and understanding the
HARP algorithm is to take a fresh look at the geometric interpreta-
tion of the Laplacian eigenvectors. The view we take here is that the
first several eigenvectors of the Laplacian matrix of a graph can be
viewed as coordinates in Euclidean space. This view has been taken
as early as [21], and was implicitly present in many investigations of
spectral algorithms. For example spectral quadra and octasection as
proposed by Hendricksen and Leland [13] can be viewed as taking
the first two or three nontrivial eigenvectors of the Laplacian matrix
of a graph as coordinates of the vertices of the graph in the plane or
in three dimensional space. Qudrasection is then equivalent to find-
ing a rotation and translation of the plane so that the new coordinate
axis partition the vertices into four equal sets. Use of spectral coor-
dinates makes the resulting cut sets relatively small.

Similarly, Chan, Gilbert, and Teng [4] used the Laplacian eigen-
vectors as Euclidean coordinates, and then performed inertial
bisection with respect to this coordinate system. HARP differs from
that in [4] in two ways, both related to the fact that we also consider
the Laplacian eigenvalues:

(a) HARP does not a priori make a decision on the number of
eigenvectors to compute. Instead, HARP compares the magnitude of
the corresponding eigenvalue to the smallest nonzero Laplacian
eigenvalue. Eigenvalues which have grown above a certain thresh-
old are discarded. Our numerical results in section 4.1 indicate that
even for very large graphs, a few (less than a hundred) eigenvalues
are sufficient to capture the global properties of the graph. A physi-
cal analogue of this procedure is the dynamic analysis in structural
engineering. It is common engineering practice to compute a few of
the smallest eigenvalues and vectors of the finite element model of
a large structure, and then use the subspace spanned by these few
eigenvectors for an analysis of the dynamic response of the structure
to wind loading or to an earthquake. HARP uses a similar heuristic
argument to claim that the essential features of a graph are represent-
ed in a relatively small subspace spanned by the smallest Laplacian
eigenvectors.

(b) After a set of smallest eigenvectors has been selected, HARP
uses the scaled eigenvectors as coordinates. Each eigenvector is
scaled by square root of the inverse of corresponding eigenvalue.
We call Laplacian eigenvectors scaled in this way the spectral coor-
dinates of the graph. In this way the eigenvector corresponding to
the smallest non-zero eigenvalue, which is often called Fiedler vec-
tor, will be the most heavily weighted coordinate direction. Since the
Fiedler vector has been proven to be useful for partitioning in many
experiments, this scaling of the vectors results in emphasizing the
most important coordinate direction for bisection.

Another way to motivate the scaling by the values is that in this
way we construct the best low rank approximation to the (pseudo)
inverse of the Laplacian matrix. This of course begs the question
what relationship there is between the (pseudo) inverse of the Lapla-
cian matrix of a graph and any geometric embedding in Euclidean
space. There are some more involved relationships, which will be
discussed in a forthcoming paper.

We have thus argued that Laplacian coordinates are a canonical
way to embed a graph in Euclidean space, and that recursive inertial
bisection using this new coordinate system is an effective partition-
ing algorithm, which combines the efficiency of RSB with the speed
of recursive inertial bisection. We will demonstrate this with a set of
numerical tests on some standard meshes in section 4.

2.2 Dynamic Partitioning
So far all we have constructed is yet another static partitioner and
added just another new variation to the existing knowledge. In order
to make this partitioner useful in the context of a dynamically chang-
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ing calculation, we need to make two additional observations.
Observation 1 For many (but not all) dynamically changing cal-

culations, the changing computational load can be easily expressed
as a graph partitioning problem with dynamically changing vertex
weights. For example, in a simple case of adaptive unstructured grid
calculations with triangular elements, we can consider the coarsest
mesh as the one to be used with a graph partitioner, all elements be-
ing weighted equally with one. If the mesh gets refined at a later
stage in the calculation, we don’t need to partition the refined mesh.
We can equally well partition the coarse mesh, but change the vertex
weights. Any refined triangle will now have the weight four (or any
other weight reflective of the increased amount of calculation for the
refined mesh). This implies that we would not partition across a re-
fined element. Even though this may be suboptimal from the
partitioning point of view, it is very sensible from an implementa-
tion point of view, since we do not want to split the data structures
associated with a refined element across multiple processors.

There is one set of applications where this model of changing ver-
tex weights does not apply: these are applications where topological
changes occur. In the finite element world, the canonical example
would be crash codes, where previously disconnected parts of a
mesh may have contact and then interact. This situation is discussed
in detail by Diniz et al. [7], who also present a distributed memory
implementation. Our approach is not well suited to handle topolog-
ical changes.

Observation 2 The success of many practical implementations of
graph partitioning algorithms rests on the application of multilevel
schemes, as was discussed in section 1. Multilevel schemes work,
because even a very coarse approximation of the graph can given
some very good general information about how to optimally parti-
tion the graph in a global sense.

Combining these observations is the foundation for the HARP al-
gorithm for dynamic partitioning. HARP consists of two parts:

(a) Precomputation of the spectral basis. We compute once and
for all a spectral basis set of eigenvectors for the coarsest mesh in a
given simulation. Although this calculation may be costly, it needs
to be done only once for a given mesh. Since the same geometry and
the same mesh are often used over and over again for design studies,
the cost of the initial eigenvector calculation can be amortized over
many simulations. In our current work we perform the initial eigen-
vector calculation with a shift-and-invert Lanczos algorithm
described in [11]. We claim that the spectral basis, even for a coarse
graph, captures the essential features of the graph, and can be used
for effective partitioning.

(b) Repartitioning because of dynamic changes. At any time dur-
ing the simulation when the characteristics of the calculation are
changing because of refinement, derefinement, adaptation, etc. we
compute a new vertex weight vector corresponding to the changed
computational load. We repartition the graph with recursive inertial
bisection in the spectral coordinates for the coarsest mesh. The
change in vertex weights will affect the load balancing and hence the
distribution of partitions, but it   does not affect the initially comput-
ed spectral coordinates. Hence the repartitioning step is very fast,
but continues to have the spectral information available, which make
repartitioning also very efficient, and comparable to spectral
partitioners.

3 The HARP Algorithm
We will not discuss the precomputation phase here. This is well doc-
umented elsewhere, and we simply used a Cray library routine on
the C90 to precompute the eigenvectors. Instead, we will list the ex-
ecution times of the eigen solver for the meshes used in the report.

As was mentioned before, the serial version of the repartitioning
is essentially equivalent to recursive inertial bisection (RIB). Our
implementation follows exactly this algorithm as described in [9].
The only difference is that RIB in [9] was physically motivated, i.e.

based on a physical meaningful mesh with coordinates in three di-
mensional Euclidean space. Here we are using spectral coordinates
in a generally larger than three dimensional space, with a cut-off de-
pending on the growth of the Laplacian eigenvalues.

RIB involves several components: The original eigenvector
evec[v][n], wheren is the number of eigenvectors of the grid andv is
the number of vertices. Given the originaln EVs, the inertial center
center[n] of the unpartitioned vertices will be computed, and in turn
the inertial matrixinertia[n][n]. Inertial centercenter[n] needsn com-
ponents each of which bears the inertial distance between the
vertices and the center.Inertia[n][n] indicates how far then inertial
vectors are away from each other. The following algorithm briefly
outlines HARP.

for (i=0; i<log(npart); i++) { /* npart = total # of partitions */

for (j=0; j<2i; j++) {
1 Find an inertial center of the unpartitioned vertices
2 Construct an inertial matrix using the inertial vector
3 Symmetrize the inertial matrix
4 Find the eigenvectors of the inertial matrix
5 Project the vertex coordinates

on the dominant inertial direction (eigenvector 0)
6 Sort the projected coordinates
7 Divide the unpartitioned vertices into two sets

according to the sorted values
}

}

Specifically, each step of the inner loop can be implemented as
follows:

for (i=0; i<v; i++) /* find inertial center */
for (j=0; j<n; j++) center[j] = center[j] + evec[i][j];

for (i=0;i<v;i++) { /* compute the inertial distance */
for (j=0;j<n;j++)

for (k=0;k<n;k++)
inertia[j][k] = inertia[j][k] +

(evec[i][j] − center[j]) ∗ (evec[i][k] − center[k]);
for (i=0;i<n;i++) /* symmetrize the inertial matrix */

for (j=i+1;j<n;j++) inertia[j][i] = inertia[i][j];
inertial_eigenvector[n] =

compute the dominant eigenvector of inertia[n][n];
for (i=0; i<v; i++) /* project */

for (j=0; j<n; j++)
key[j] = key[j] + evec[i][j] ∗ inertial_eigenvector[j];

sort key in an ascending order using float radix sorting;
split the sorted key into half;
place the two partitions each into an appropriate place.

The steps listed above are only for presentation purposes. Numer-
ous steps are missing from the steps as they will unnecessarily
complicate the understanding of the overall organization. Two rou-
tines ofTRED2 andTQLI are used to find eigen vectors. They are
derived from EISPACK, the eigen system subroutine package.
TRED2 subroutine reduces a real symmetric matrix to a symmetric
tridiagonal matrix using and accumulating orthogonal similarity
transformations.TQLI subroutine finds the eigenvalues and eigen-
vectors of a symmetric tridiagonal matrix by theQL method. A 32-
bit float radix sorting is used in the sorting step. We have written this
routine from scratch. The float radix sorting is based on IEEE float-
ing point standard, where bits 0..22 are significand, the bits 23..30
are exponent, and the bit31 is the sign bit. The radix of eight bits (the
bucket size of 256) is used in the implementation.

Before we discuss the performance of HARP, we shall briefly
identify how each of the above steps performs in terms of execution
time. The most time consuming step is the inertial matrix computa-



4

tion step, which consists of three nested loops. The second most
time-consuming step is sorting. It appears that the eigen solver can
be a major bottleneck but it turned out trivial. For small problem size
of below 10,000 vertices, the eigen solver can be of significance.
However, for large problem sizes, the solver is a fraction of the over-
all computation time. We list some plots in Fig. 1 to show the
distribution of the individual steps.

The results in Fig. 1 indicate that the majority of the times is spent
on computing the inertial matrix of the unpartitioned vertices.
Again, the second most time consuming step is the sorting step
which occupies approximately 20%. There is a slight difference for
the two grids. For a larger grid, the sorting time increases. As we
shall come back to this issue later, the main target of parallel HARP
is therefore the inertial computation time.

A parallel version of HARP has been designed and implemented
on SP-2 [1] and T3E [20]. Two types of parallelism are used: loop
level parallelism and recursive parallelism. The primary objective of
reporting the parallel version in this paper is to demonstrate that
HARP can be effectively parallelized and used in parallel environ-
ments. Significant performance improvement is expected in the near
future. Porting a working SP-2 version of HARP to T3E was not
straight forward due to some difference in machine architecture and
compiler. Readjustment and even recoding of some functions were
needed especially for floating point radix sorting. Due to space lim-
itations, the details of parallel HARP are not included in this report.
Instead, we will list some experimental results in the following
sections.

Two of the five modules of HARP have been parallelized to date.
In iteration 0, all the eight processors work together to find the iner-
tial center of the unpartitioned vertices. This step is the most
expensive since it involves all the unpartitioned vertices and their
original eigenvectors in order to find their relative position inM-di-
mensional space. In comparison, the second step of finding the eigen

vectors of the inertial matrix of dimensionM is relatively trivial for
large meshes and is therefore not parallelized. The third step, where
the vertex coordinates of the unpartitioned vertices are projected
onto the major inertial direction (corresponding to eigenvector 0) is
somewhat expensive, but not the major bottleneck. This step has
also been parallelized. Sorting is still done sequentially in the cur-
rent parallel version of HARP. The final step, where the
unpartitioned vertices are divided into two sets, requires a negligible
amount of time and is thus not parallelized. The most time-consum-
ing modules of parallel HARP are to find the inertial matrix of the
unpartitioned vertices, to project them onto the dominant inertial di-
rection, and to sort the projected coordinates. This can be seen from
the histograms in Figure 2.

The current parallel version parallelizes only the inertial matrix
construction and the projection modules. These still require 31% and
17% of the total time, respectively. Sorting is done sequentially in
the current version, and constitutes more than 47% of the total par-
titioning time. The sorting module will be parallelized in the future
that will result in significant performance improvement. There is
also scope for substantial improvement in the first step where block-
ing send/receive commands are used.

4 Results
4.1 Test meshes and experimental settings
To verify the performance of HARP, we have done substantial ex-
perimentation over the last two years. The IBM SP-2 installed at
NASA Ames Research Center and the Cray T3E installed at NER-
SC, Lawrence Berkeley Laboratory are used in this study. While the
main emphasis of this report is on the evaluation of the new HARP
algorithm, we will briefly present some parallel results in the context
of dynamically-changing adaptive mesh computations.

Seven different two- and three-dimensional test meshes are used
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SPIRAL LABARRE STRUT BARTH5 HSCTL MACH95 FORD2

Type, 2D or 3D 2D 2D 3D 2D 3D 3D 3D
Number of verticesV 1200 7959 14,504 30,269 31,736 60,968 100,196
Number of edgesE 3191 22,936 57,387 44,929 142,776 118,527 222,246

Table 1: Characteristics of the seven test meshes.

in this study. They varied in size from 1200 vertices to more than
100,000 vertices. Table 1 shows the characteristics of the test mesh-
es. SPIRAL is a very small toy grid which is a long chain
geometrically arranged in a spiral. This mesh has no computational
significance other than to serve as a difficult test case for partition-
ers. STRUT is a three-dimensional mesh used in civil engineering
problems for structural analysis. BARTH5 is a dual graph for a four-
element airfoil. HSCTL is a 3-dimensional mesh for a high-speed
civil transport configuration. MACH95 is a tetrahedral mesh around
a helicopter rotor blade. FORD2 is a surface mesh of a Ford car.

Table 2 lists the precomputation times of the eigen solver for the
test meshes on a C90. The eigenvectors are computed in the precom-
putation stage. Once they are computed, they are used over and over
again for the next experiments.

We note from the table that the eigenvector computation times are
not substantial considering that they are done once and only once for
the lifetime of the meshes. The maximum memory usage is also lim-
ited to 50 mega words on Cray C90. It should be noted that the
eigensolver timedoes not linearly increase as the number of eigen-
vectors increases. For example, the solving time of Ford2 is 60
seconds for 10 eigenvectors. When the number of eigenvectors is in-
creased to 100, the solving time is increased slightly more than 6
times. This relatively slow rate of increase indicates that solving
more than 100 eigenvectorsis not prohibitively expensive if such
number of eigenvectors is desired. As we will shows shortly, we find
that 10 eigenvectors are suitable for our purposes.

The result of applyingHARP to partition SPIRAL, BARTH5,
HSCTL, andMACH95 into eight subdomains is shown in Figures 3-
6. The partitions are false color coded. These pictures are shown
only to give a qualitative flavor of the new partitioner. Extensive
quantitative analysis is presented later in the paper.

Two parameters characterize the performance of all graph parti-
tioning algorithms: the number of cut edgesC and the total
partitioning timeT. Throughout this report, we will compare these
parameters whenever appropriate.

We have performed three types of experiments. First, we identify
the partition quality in terms of the number of eigenvectors that are
used. Results do not depend on whether the serial or the parallel ver-
sion of HARP is used. The experiment is thus performed on a single
processor. Both the number of cut edges and the execution time will
be presented to identify the trade-off between partition quality and

Test
meshes

10 eigenvectors 20 eigenvectors 100 eigenvectors

mem time mem time mem time

SPIRAL 0.3 0.54 0.4 0.98 0.6 4.71
LABARRE 2.1 4.25 2.2 6.25 3.5 29.73
STRUT 3.9 8.50 4.2 17.26 6.5 55.63
BARTH5 7.6 15.40 8.2 22.04 13.0 104.03
HSCTL 9.1 23.11 9.8 29.48 14.8 144.93
MACH95 39.2 192.68 40.5 209.56 50.1 687.89
FORD2 26.7 60.25 28.7 84.39 44.6 386.52

Table 2: Precomputation times on Cray C90, performed once and for
all. (mem = memory size in mega words; time in seconds.)

execution time. Second, we identify the partition quality across dif-
ferent grids when the number of eigenvectors remain fixed. This
experiment is also independent of sequential or parallel settings. It
is thus performed on a single processor. Third, we run the parallel
version of HARP on more than one processor. Partition quality re-
mains unchanged from that for the serial version. Only the execution
time will therefore be investigated.

Several other parameters are used throughout the study:V is the
number of vertices,E is the number of edges,M is the number of
eigenvectors of the original grid,P is the number of processors, and
S is the number of sets (or partitions). The words sets and partitions
are used interchangeably throughout this paper.

4.2 Number of eigenvectors and partition quality
Figure 7 illustrates the effect of the number of eigenvectors used on
the partition quality and the execution time for 128 partitions. Both
the number of edges cut and the execution time are normalized by
their respective values when using only one eigenvector. It is clear
that the solution quality improves for all the meshes except SPIRAL
as the number of eigenvectors is increased. There is a drastic change
when two eigenvectors are used instead of one. A gradual improve-

Figure 7: Effect of the number of eigenvectors on the number
of cut edges and execution time for 128 sets.
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ment is noticed for up to 10 eigenvectors. There is very little
reduction in the number of cut edges beyondM=10. The reason that
the partition quality forSPIRAL remains essentially unchanged is be-
cause it is geometrically a spiral in cartesian coordinates. However,
in eigenspace, it is a long chain and its spectral property can be cap-
tured with only one eigenvector.

The execution time, on the other hand, keeps increasing as the
number of eigenvectors increases. For 20 eigenvectors, the execu-
tion time has increased almost four-fold. There is a clear trade-off
between the solution quality and the execution time. In fact, we
reach a point of diminishing returns beyond a certain number of
eigenvectors. The partition quality improves only slightly at the cost
of significantly higher execution time.

Table 3 shows the absolute number of edge cuts and the execution
time forMACH95. The execution times are for a single processor of

an SP2. The table clearly indicates that increasing the number of
eigenvectors is beneficial for the partition quality. However, doing
so will significantly increase the partitioning time.

4.3 Number of partitions and partition Quality
In the previous section, we examined the relationship between the
number of eigenvectors used and the partition quality for 128 parti-
tions across the seven meshes. In this section, we look at how the
number of eigenvectors affects the quality in terms of number of
partitions. Figure 8 presents the number of cut edges and the execu-
tion time for two meshes: HSCTL and FORD2.

Four observations can be made from the results in Fig. 8. First, the
partition quality improves as the number of partitions increases. Sec-
ond, when the two meshes are cross-compared, the larger meshes
shows greater improvement in quality with more partitions. This is

HSCTL (31736,142776) HSCTL (31736,142776)

Figure 8: Effects of the number of eigenvectors on edge cuts and execution time for different number of partitions.
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# of
partitions

Edge cuts Execution time

1 EV 2 EVs 4 EVs 8 EVs 16 EVs 1 EV 2 EVs 4 EVs 8 EVs 16 EVs

2 817 817 817 817 817 0.186 0.193 0.202 0.249 0.470
4 2442 1657 1657 1657 1657 0.360 0.372 0.390 0.484 0.927
8 5734 3283 3514 3733 3730 0.543 0.553 0.580 0.724 1.439

16 12312 5020 5431 5693 5731 0.729 0.741 0.777 0.970 1.861
32 25441 8443 8710 8662 8041 0.920 0.927 0.973 1.213 2.340
64 51651 13495 13404 12818 10814 1.110 1.117 1.173 1.469 2.838

128 72512 18542 19743 15822 14804 1.304 1.298 1.368 1.730 3.371
256 74109 28059 28798 21870 19929 1.491 1.483 1.571 2.018 3.968

Table 3: Effects of the number of eigenvectors on edge cuts and execution time for MACH95 on a single-processor SP-2.
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# of
sets

SPIRAL LABARRE STRUT BARTH5 HSCTL MACH95 FORD2

HARPα MeTiS2 HARPα MeTiS2 HARPα MeTiS2 HARPα MeTiS2 HARPα MeTiS2 HARPα MeTiS2 HARPα MeTiS2

2 9 9 169 144 82 82 109 86 1484 576 817 815 324 379
4 29 29 423 325 539 528 296 201 1958 1322 1657 1623 911 817
8 67 65 759 530 1027 1005 513 381 3180 2393 3731 3161 1826 1303

16 151 145 1150 864 1970 1939 855 588 5770 4371 5687 4600 3062 2146
32 301 290 1775 1381 3757 3261 1315 985 9652 6970 8664 6128 4732 3203
64 623 589 2667 2132 6879 4947 2012 1561 15896 10306 11557 8467 7561 4928

128 1234 985 4093 3227 8723 7287 3186 2427 22454 15102 15001 10981 11318 7616
256 2156 1526 6140 4806 13263 10551 4954 3672 34980 21857 20954 13966 17425 11332

Table 4: Comparison of the number of cut edges for varying number of partitions. The HARPα results are based on 10 eigenvectors. The
MeTiS results are based on version 2.0.

# of
sets

SPIRAL LABARRE STRUT BARTH5 HSCTL MACH95 FORD2

HARPα MeTiS2 HARPα MeTiS2 HARPα MeTiS2 HARPα MeTiS2 HARPα MeTiS2 HARPα MeTiS2 HARPα MeTiS2

2 0.011 0.02 0.043 0.10 0.103 0.19 0.149 0.28 0.157 0.48 0.298 0.79 0.488 1.18
4 0.013 0.03 0.078 0.22 0.137 0.42 0.286 0.60 0.300 1.00 0.583 1.62 0.989 2.40
8 0.020 0.05 0.118 0.33 0.208 0.65 0.429 0.88 0.451 1.84 0.871 2.42 1.424 3.59

16 0.029 0.11 0.161 0.50 0.279 0.92 0.578 1.21 0.605 2.24 1.166 3.17 1.899 4.78
32 0.042 0.14 0.207 0.70 0.355 1.22 0.776 1.59 0.765 2.93 1.460 4.29 2.377 5.92
64 0.062 0.21 0.261 0.90 0.437 1.65 0.920 2.08 0.926 3.76 1.769 5.46 2.865 7.50

128 0.098 0.28 0.332 1.18 0.536 2.17 1.057 2.70 1.104 4.90 2.089 6.77 3.371 9.23
256 0.164 0.45 0.441 1.56 0.670 2.87 1.257 3.29 1.315 5.97 2.489 8.23 3.901 11.35

Table 5: Comparison of the execution times in seconds on a single-processor SP2. The HARPα results are based on 10 eigenvectors.

because we have more fine-grained control on how the partitions are
generated. Third, the conclusions about partition quality versus the
number of eigenvectors that were drawn from Fig. 7 for 128 parti-
tions hold true for any number of partitions. Fourth, it should be
noted that the nature of the normalized execution time does not
change across different meshes. Contrary to the expectation of in-
creased execution time, larger meshes tend to give lower execution
time as the number of eigen vectors increases. Furthermore, as the
number of eigen vectors increases, the execution times tend to settle
in, resulting in less fluctuation.

5 Comparative Performance of HARP
5.1 Serial performance of HARP
The HARP results are compared with the MeTiS2.0 multilevel par-
titioner. All HARP results in this section are based on 10
eigenvectors, and are denoted as HARPα. Two parameters are used
for comparison: number of edge cuts and partitioning time. All exe-
cution times are based on a single-processor SP2. Tables 4 and 5
show the absolute numbers of edge cuts and execution times on SP2.

Table 6 shows the execution times of HARP on Cray T3E in-
stalled at NERSC.

# of sets Spiral Labarre Strut Barth5 Hsctl Mach95 Ford2

2 0.005 0.036 0.069 0.144 0.151 0.288 0.477
4 0.010 0.081 0.152 0.313 0.331 0.643 1.052
8 0.017 0.125 0.227 0.479 0.501 0.997 1.621

16 0.025 0.168 0.298 0.635 0.665 1.342 2.188
32 0.037 0.215 0.366 0.782 0.818 1.664 2.748
64 0.056 0.268 0.442 0.928 0.971 1.975 3.266

128 0.089 0.340 0.534 1.086 1.132 2.280 3.761
256 0.149 0.441 0.656 1.281 1.324 2.609 4.270

Table 6: Execution times of HARPα in seconds on a single-proces-
sor T3E, using 10 eigenvectors.

(b) Ratio of partitioning time

Figure 9: Comparison between HARPα and Metis2.0 on SP-2
in terms of edge cuts and execution time.
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We find from the table that the T3E results are comparable to SP2
results listed in Table 5. The difference in the execution results
comes from the machine’s absolute performance and compiler opti-
mization. SP2 consists of Power2 processors which can issue up to
six instructions per clock while T3E consists of DEC Alpha 21164
processors which can issue up to four instructions per clock. The
higher superscalar capability coupled with wider memory band-
width has contributed to the higher performance on SP2.

Figure 9 plots the ratio of HARPα to MeTiS2.0. Figure 9(a)
shows that HARPα gives partitions that are of poorer quality than
MeTiS2.0. We find that the maximum overall difference is between
30% and 40%. It should be noted however that the HARPα results
are based on 10 eigenvectors.

The execution times shown in Figure 9(b) indicate that HARPα is
more than twice as fast as MeTiS2.0. As we shall discuss in the next
section, this is precisely the purpose of developing HARP. Since dy-
namically-changing computations require rapid runtime mesh
repartitioning, this fast algorithm is perfectly suitable for our pur-
poses. The fact that the partition quality is somewhat poor is not a
major concern when dealing with adaptive computations. Since rep-
artitioning has to be performed fairly frequently, it is more important
to decrease the partitioning time than reducing the number of cuts.

5.2 Parallel performance of HARP
The main target of a preliminary version of parallel HARP is the step
that computes the inertial matrix of the unpartitioned vertices. This
module has been parallelized, as well as the projection step. A brief
profile of the execution times for the individual modules for the se-
quential and parallel versions of HARP are shown in Figs. 1 and 2.
The sorting step is the most expensive module in parallel HARP as
it requires almost half the total execution time. Our next step, there-
fore, is to parallelize the sorting step.

Execution times on up to 64 processors of an SP2 and T3E are
presented in Tables 7 and 8 when parallel HARPα is applied to the
two largest test meshes. For a given numberP > 1 of processors, the
meshes were partitioned into 20P, 21P, ..., 256 subgrids. For com-
parison, the times for the serial version of HARPα are also shown
for up to 256 partitions. As indicated earlier, the current parallel im-
plementation can be vastly improved. The main purpose of

presenting these results here is to demonstrate that HARP can be ef-
fectively parallelized.

Three key observations can be made from these results. First, the
parallel code shows modest speedup as the number of processors in-
creases while keeping the total number of partitions unchanged. For
example, the speedup values are about 5.5X, 6.5X, and 7.6X on 64
processors for 64, 128, and 256 partitions, respectively. These are
very preliminary results for the parallel version of HARP and signif-
icant improvement is expected in the near future. Second, the
partitioning time increases less than linearly with the number of par-
titions for a fixed number of processors. In fact, when 16 processors
are used, the partitioning time for 256 partitions is only 20% more
than that for 16 partitions. With more and more processors, the par-
titioning time actually seems to become independent of the number
of partitions.

Third, the partitioning time gradually decreases with the number
of processors when the ratio of the number of partitions to the num-
ber of processors is held constant. This can be observed by scanning
diagonally across the entries in Tables 7 and 8. For example, the
time to partition the FORD2 grid into four subgrids on one processor
is 0.989 secs but only 0.528 secs for 256 subgrids on 64 processors.
Similar results were observed for all the other grids. The relative re-
duction in the partitioning time with increasing number of
processors is more pronounced as the ratio of the number of subgrids
to the number of processors increases. This is because whenS > P,
there is no communication after logP iterations. These results and
observations demonstrate that HARP will remain a viable partitioner
on massively-parallel systems.

6 HARP in the Dynamic Load Balancer JOVE
The primary application of HARP is to dynamically partition adap-
tive grids at runtime [3]. The motivation for HARP originated from
the context of load balancing unstructured adaptive grid computa-
tions on distributed-memory machines [23,24]. The dynamic load
balancing framework JOVE is described in [23] and its impact on
adaptive grid computations are reported in [24]. The framework em-
ploys dual-graph representation. CFD flow solvers usually solve for
the solution variables at the vertices of the computational mesh. A
parallel implementation requires a partitioning of the computational

# of
processors

MACH95 FORD2

2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

1 0.298 0.583 0.871 1.166 1.460 1.769 2.089 2.489 0.488 0.989 1.424 1.899 2.377 2.865 3.371 3.901
2 0.250 0.370 0.498 0.625 0.756 0.889 1.036 1.200 0.411 0.609 0.818 1.024 1.234 1.448 1.671 1.912
4 • 0.324 0.381 0.446 0.511 0.577 0.649 0.732 • 0.532 0.627 0.730 0.835 0.940 1.053 1.172
8 • • 0.337 0.363 0.396 0.429 0.466 0.508 • • 0.553 0.595 0.648 0.701 0.755 0.815

16 • • • 0.332 0.343 0.359 0.377 0.398 • • • 0.544 0.559 0.586 0.616 0.644
32 • • • • 0.328 0.328 0.338 0.349 • • • • 0.532 0.535 0.550 0.563
64 • • • • • 0.322 0.324 0.325 • • • • • 0.523 0.518 0.528

Table 7: Partitioning times on an IBM SP2. • indicates not applicable.

# of
processors

MACH95 FORD2

2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

1 0.288 0.643 0.997 1.342 1.664 1.975 2.280 2.609 0.477 1.052 1.621 2.188 2.748 3.266 3.761 4.270
2 0.373 0.554 0.733 0.906 1.070 1.227 1.385 1.552 0.614 0.906 1.195 1.484 1.773 2.037 2.292 2.547
4 • 0.498 0.586 0.673 0.753 0.830 0.905 0.988 • 0.818 0.959 1.107 1.250 1.379 1.506 1.631
8 • • 0.512 0.555 0.596 0.634 0.673 0.713 • • 0.843 0.913 0.983 1.047 1.107 1.168

16 • • • 0.493 0.514 0.533 0.552 0.575 • • • 0.817 0.849 0.882 0.913 0.943
32 • • • • 0.474 0.484 0.494 0.505 • • • • 0.780 0.796 0.813 0.827
64 • • • • • 0.459 0.464 0.469 • • • • • 0.758 0.766 0.773

Table 8: Partitioning times on a Cray T3E. • indicates not applicable.
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mesh such that each element belongs to a unique partition. Commu-
nication is required across faces that are shared by adjacent
tetrahedral elements residing on different processors. Hence for the
purposes of partitioning, we consider the dual of the originalCFD
mesh such asMACH95 shown in Figure 6.

The tetrahedral elements of theCFD mesh are the vertices of the
dual graph. An edge exists between two dual graph vertices if the
corresponding elements share a face in the original mesh. A graph
partitioning of the dual graph thus yields an assignment of tetrahedra
to processors. Each dual graph vertex has two parameters associated
with it. The computational weight,wcomp, is a measure of the work-
load for the corresponding element of theCFD mesh. The
communication weight,wcomm, measures the cost of moving the el-
ement from one processor to another. The connectivity pattern and
thewcomp determine how dual graph vertices should be grouped to
form partitions that minimizes the disparity in the partition weights.
Thewcomm determine how partitions should be assigned to proces-
sors such that the cost of data movement is minimized.

The most significant advantage of using a dual graph is that its
complexity and connectivity remainsunchanged during the course
of an adaptive computation. This is because the vertices of the dual
graph correspond to the elements of the initialCFD mesh. The parti-
tioning and load-balancing times therefore depend only on the initial
problem size. New grids obtained by mesh adaption are translated to
the two weights,wcomp andwcomm, for every element in the initial
CFD mesh.

To put HARP in the dynamic load balancing perspective, we
demonstrate HARP at work using a set of snap shots taken in real
world situations. In particular, we use four helicopter meshes de-
rived fromMACH95 (Fig. 6). The initial mesh has 60968 tetrahedral
elements and 78343 edges. As the simulation progresses, mesh re-
finement (coarsening) takes place, resulting in the change in mesh
size. Table 9 shows the change in the number of vertices, edges, and
elements over three refinements. The initial mesh size and their re-
spective values are listed in the first row.

After the first adaption, the size has grown to 179355 elements
and 220077 edges. In each adaption, an element can be refined up to
8 smaller elements. After the three adaptions, the mesh size has
grown to 765855 elements, which is an order of magnitude larger
than the initial mesh. Runtime load balancing is indispensable when
such mesh adaption is implemented on a distributed-memory multi-
processor. It is highly likely that some processors will have a very
large number of elements while some perhaps have little change
since mesh refinement tends to be localized over time. Table 9 also
presents an important feature of HARP in JOVE, where the number
of edge cuts decreased from5685 to 4539 even if the mesh size has
grown more than an order of magnitude.

The dual-graph approach employed in the dynamic load balanc-
ing framework JOVE allows the mesh size to grow but the
complexity of mesh partitioning remainfixed. Timing results in Ta-
ble 9 clearly show that the mesh partitioning times are essentially
fixed. Again, the reason is because HARP is applied to the dual
mesh which maintains the initial mesh structure but changes the

weight of the original elements.
The mesh partitioner HARP as well as the load balancing frame-

work JOVE is currently being applied to rotorcraft fluid dynamics to
study of helicopter wake systems. Several plans are currently under-
way to apply JOVE and HARP, including simulations of deep
submicron semiconductor modeling and computational nano-tech-
nology at the Numerical Aerospace Simulation of NASA Ames
Research Center and NERSC at Lawrence Berkeley Laboratory.

7 Summary
Computational science and engineering problems involve runtime
mesh partitioning when implemented on distributed-memory multi-
processors. We have presented in this paper a fast spectral
partitioner, called HARP, which can quickly partition realistically-
sized meshes while maintaining the partition quality of spectral par-
titioners such as recursive spectral bisection. To demonstrate the
effectiveness of HARP, we have selected various 2D and 3D meshes
with the size of up to 100,196 vertices. Both the serial and parallel
versions of HARP have been implemented on two distributed-mem-
ory platforms, IBM SP-2 and Cray T3E, installed respectively at
NASA Ames and NERSC of Lawrence Berkeley Laboratory.

Several types of experiments have been performed to find the ef-
fects of the number of eigenvectors on partition quality, the trade-off
of the number of eigenvectors with respect to the partition quality
and computation time, and the fast partitioning capabilities in the
context of dynamically changing mesh adaption. We have identified
that the larger meshes tend to show higher partition quality for more
partitions due to the fine-grained control on how partitions are gen-
erated. The partition quality has improved as the number of
eigenvectors increases at the expense of increased computation
time. We have also observed that the partition quality improves as
the number of partitions increases.

The performance of HARP has been compared against other par-
titioners such as MeTiS2. Experimental results have indicated that
the execution times of HARP are three to four times faster than Me-
TiS 2.0. The solution quality of HARP, on the other hand, is poorer
than MeTiS2. We find that the overall difference is between 30% to
40%. It should be noted that the HARP results are based on 10 eigen-
vectors. The fact that the partition quality is somewhat poor is not a
major concern when dealing with adaptive computations. Since par-
titioning has to be performed fairly frequently, it is more important
to reduce the partitioning time than the number of edge cuts.

The parallel version of HARP has been implemented in Message
Passing Interface. It can run on any platform which supportsMPI.
The sole purpose of the preliminary parallel version is to demon-
strate that the serial HARP can be effectively parallelized on
distributed-memory machines. The most time-consuming step of the
partitioner has been parallelized and its effects have been significant
in terms of execution time. The largest mesh among those we usedis
FORD2 for modeling a Ford car with 100,196 vertices and 222,246
edges. Parallel HARP has shown to partitionFORD2 into 256 parti-
tions in 0.5 sec on 64 processors.

The T3E version of HARP has been implemented in MPI. If
HARP were implemented inSHMEM with which T3E performs best,
the performance of HARP can be further improved. Regardless of
the paradigm used for implementation, parallel HARP can further
reduce the current partitioning time since less than half the individ-
ual modules of HARP are parallelized in the preliminary version.
Our immediate plan is to parallelize the sorting step, which is cur-
rently the most time consuming step. The MPI version will be
converted to aSHMEM version in the near future.

The primary application of HARP is to dynamically partition
adaptive grids. In this respect, we have put HARP to work in the dy-
namic load balancing framework JOVE. Four snap shots of a
helicopter blade mesh calledMACH95 have been drawn from real-
world applications to test the capability of HARP. After three mesh

adaption
number

# of elements
(weight)

# of
edges

16 partitions 256 partitions

cuts time cuts time

0 60968 78343 5685 1.024 20204 2.176
1 179355 220077 5229 1.024 18191 2.177
2 389947 469607 4833 1.023 15536 2.177
3 765855 913412 4539 1.021 14039 2.178

Table 9: Runtime behavior of Mach95 over three mesh adaptions.
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adaptions, the mesh has grown from 60,968 to 765,855 vertices. The
mesh partitioning times, on the other hand, have remained constant
because of the dual graph approach. We have also found that the
number of edge cuts decreased from5685 to 4539 even if the mesh
size has grown more than an order of magnitude. This fixed parti-
tioning times and the decrease in edge cuts have indicated that graph
partitioning can now be truly embedded in dynamically-changing
real-world applications.
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