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Abstract

Determining whether an equation of state (EOS) table is valid for a given regime requires several
steps that include confirming that it obeys the thermodynamic consistency relations and that the table
matches available existing experimental data. Once the EOS is analyzed, then we must ensure the
simulation code can reproduce analytical results.

In this report, we show analytical results of Hugoniot calculations and compare them with values
calculated from experimental US — Up data . Next we check that the tables are thermodynamically
consistent . Then, we show analytical results of impedance matching using one of the aluminum
EOS models and compare those analytical results to data . Finally, ALEGRA-HEDP is used to
run a pseudo 1-D shock simulation, which is compared to the analytical model with an error of
approximately 0 .1% . This implies that ALEGRA-HEDP can simulate the shock Hugoniot to within
the error of the EOS table when compared to the experimental data for an ideal simulation.
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1 Introduction

Within the high-energy-density-physics community, SESAME [7] is the most widely referenced equa-
tion of state (EOS) implementation . When a SESAME EOS table is created, using the GRIZZLY [4]
model, the PANDA [5] model, or others, several sub-models are used where each sub-model special-
izes in a limited region of density/temperature phase space . The outputs from these sub-models are
then blended together to form a broad range EOS table. Quite often, the sub-models are adjusted to fit
experimental data or theoretical approximations . Therefore, the final EOS table usually approximates
the Hugoniot data to a reasonable degree (better at lower pressures) . Because each table may be built
to better represent different regimes of EOS phase space, there may be more than one table for each
material (for example, aluminum has at least 8) . As such, each table must be analyzed to ensure that it
yields good results in the regime to be simulated.

This document illustrates one method of establishing confidence in the choice of an EOS for an
intended simulation regime . The method is particularly helpful when SESAME tables are provided as
second party information, rather than developed by the user of the table. This is the case for many
of our current applications of SESAME with ALEGRA-HEDP . The steps are : comparing analytically
calculated Hugoniots from the EOS table to the experimental Hugoniot data, checking thermodynamic
consistency, and using impedance matching to simulate realistic hydrodynamic processes or to match
with a known analytic solution. Once these steps are completed and we have selected a table, we will
then run ALEGRA [2, 11] in a simple 1-D hydrodynamic shock simulation and compare the pressure
and particle velocity to the analytical results of the impedance matching.

2 Calculating Hugoniots

The first step to impedance matching is to calculate the Hugoniot, which is a locus of points achiev-
able under shock conditions, generally from ambient conditions . To do this we wrote an IDL [10]
routine which uses the secant-solve method to find the root (specific volume or inverse density) of
Equation 2 .1 . [3, 12]

e i —eo+(Po+Pi)*(V,—Vo)*0.5=0.0

	

(2 .1)

where e is specific energy, P is pressure, V is specific volume. Vo and Po are the initial volume and
pressure, VV and P, are the volume and pressure points along the Hugoniot. Since P(p, T) and e(p, T )

are constrained by a given temperature, the dependent variable becomes density . Therefore, we can give
the Hugoniot solve routine the arrays of density, temperature, pressure P(p,T), energy e(p,T), and a
temperature grid along which to search for Hugoniot points . Figure 1 shows several of the Hugoniot
curves plotted on an EOS pressure/density plot (for scale).

The experimental data [6] is obtained as Us/Up data that is converted to density/pressure data by

P = PoUsUP

	

(2 .2)
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(2 .3)
1

	

Up
P= — 1

Po

	

Us

and

where, for aluminum,

Po = 2.7 g/cm 3	(2 .4)

Up is particle velocity, and U. is shock velocity.

The error bars for the data in Figure 1 are calculated using methods outlined in Reference [1].

(
S
) 2 Us ) 2 + () 2 (wP ) 2 (2 .5)

(P0 -1 / P \ Uss / z+ \

	

/ 2Up

Similarly,

(SUs1 2 + (wp 2

US)

	

Up )
where SUS and 8Up are the reported errors in the data.

Once the data is converted to the same variables as our tables, we can calculate the error between
each EOS table's Hugoniot and the data using a reduced x 2 fit. [1]

x2

_ (P—Ps\2

1 + (P — Peos)
2 1

Peos J SPp	P eos J SPpressure

For aluminum, the results of the reduced x2 are :

Table 1 : x2 Results
EOS Table x 2 < 6 MBar > 6 MBar

3700 0.116 0.050 0.188
3711 0.375 0.256 0.503
3715 0.118 0.118 0.118
3719 0.137 0.138 0.137
3720 0.087 0.069 0.106
QEOS 0.140 0.148 0.132

We chose the aluminum EOS tables most commonly used for a wide variety of simulations and
computed a x 2 for each of them . Table 1 lists those results . From the x 2 comparison, we would choose
Table 3720 for shock physics simulations in this regime, and for the remainder of this document, we
will use aluminum Table 3720 . For completeness, the data seems to deviate from the analytical curves
at about 6 Mbar, therefore, we did an independent x2 test both below and above this pressure. In both
cases, Table 3720 was clearly the best choice.

8P =P (2.6)

(2 .7)
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3 Thermodynamic Consistency

Next, because many EOS tables are spliced together from several models that are accurate within a
limited regime, we must check the thermodynamic consistency of the entire blended EOS table . Figure 2
plots isothermal representations of the pressure and energy tables.

In most cases the pressure is held to be absolute and the energy is relative . Using Equation 3 .8 [9],

where T is temperature, P is pressure, e is specific energy, and V is specific volume, we can check for
any significant errors in the table creation. In this case

aP
T

aT
=0

T

(3 .8)

Error = T aT —P— ae
ae
av

(3 .9)

However, because we have discrete data points, we cannot simply take the derivative of a function, but
must take into account the slope differences on either side of each table data point . A simple way to do
this is to use

aP 1 Pi —

	

Pi+i — Pi_
(3 .10)

aT 2 T — T~_1 + Tt+1 — Ti

and similarly
ae 1 e j —e j_ 1	e j+ i — e j_
aV 2 Vj — Vj_ 1 + Vj+1 — Vj (3 .11)

This differencing scheme will introduce some error (—1% for a finely gridded table), but we are only
looking for major problems . If two tables are similar in x2 and both cover the pressure/energy regime
desired, then a more quantitative consistency analysis would be done . For Table 3720, there is some
inconsistency in the regime just over the vapor dome (Figure 3) . If we expect our material to pass
through this area, we would need to quantify this error, perhaps by re-solving the energy table and
re-running the simulation.

Table aluminum 3719 (Figure 4) has Maxwell constructions . Maxwell constructions replace the Van
der Waals loop pressure isotherms in the vapor dome area of the pressure table with pressure isotherms
that satisfy ap = 0. Quite often, splicing in the Maxwell constructions when creating EOS tables leads
to worse thermodynamic consistency around the edges of the vapor dome.

Aluminum 3719 does not follow the Hugoniot as well as aluminum 3720, but, from experience,
we know that wire initiation problems require Maxwell constructions, therefore, we may be required to
use Table 3719 anyway. However, if the simulation is going to compress and then release significantly
above the vapor dome, Table 3720 would be the better table . As a check for the methods used to calculate
consistency, we used QEOS [8] to generate an EOS table and then applied our consistency methods to
that table . QEOS is an analytic EOS code that produces thermodynamically consistent pressure and
energy results . We calculated the error using this approach where we were sure QEOS is consistent, and
this error was — 1% . We then subtracted this error from the quantified thermodynamic consistency error
in Figures 3, 4, and 5 as a measure of bias in our numerical approximation of the error.
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We have shown that one table is thermodynamically more consistent than another, but we do not
know what effect inconsistent tables will have on any given simulation . Possible issues of an inconsistent
table are overly rapid material expansion, overly slow expansion, and incorrect material heating. To
examine these issues, we ran a series of isentropic release simulations and modified the pressure returned
from QEOS by a constant when in a particular regime of the EOS.

We created a finely gridded table (100 points per decade) from QEOS . We then used this table to
calculate a Hugontiot starting from room temperature solid . At each point along the Hugoniot, we cal-
culated the release isentrope and continued until we found a starting density/temperature (7 .156 g/cm3
and 62000 K) that released just above the vapor dome. From this starting point, the material was al-
lowed to release as a Lagrangian free gas expansion simulation . However, for all material temperatures,
if the density was between 0 .5 g/cm3 and 4 g/cm3 , the pressure returned from QEOS was multiplied by
a constant ranging between 0 .9 and 1 .8.

In examining the results, we assumed the simulation without any multiplier was correct and calcu-
lated the error of the other simulations as

Error(%) = Q1Q1Qc * 100

	

(3 .12)

where Q1 is the simulation with no pressure multiplier and Qc is with a constant multiplier. Figure 6
shows the error at a time slice during the release . The thermodynamic consistency error for the baseline
simulation never gets above 1%, and this error might be attributed to the fact that QEOS calculates all
of the needed values (g, P etc.) internally except av which we calculated using

ae

	

ev — ev*1 .0001

	

(3 .13)
aV V—V*1 .0001

It was found that 1 .0001 to 1 .00001 made very little difference in the reported thermodynamic consis-
tency error, but much smaller caused small-divisor issues and much larger caused differencing inaccu-
racies.

The resulting figure shows that a 100% error in the thermodynamic consistancy gives an initial
simulation difference of between 20% and 40%, but that the error is not guarenteed to be constant as
can be seen by comparing the error trend of the density or velocity with respect to temperature . Once
the simulation has gone into an inconsistent area of the EOS, it may be dominated by that induced error
for the remainder of the simuation.

An item of future work is the case where a table is locally consistent, but global inconsistent . This
can occur when several tables are blended together.

4 Impedance Matching

Once the preferred table is selected, we can match the aluminum shock impedance analytically . To
do this, we impact one aluminum plate on another aluminum plate of equal but opposite velocity . We
chose an impact velocity of 104 m/s because it is a particle velocity close to one of the experimental data
points . The aluminum flyers are assumed to be infinitely thick to eliminate any rarefaction issues . For
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convenience, the two plates are of the same material and equal but opposite velocities . This causes the
particle velocity of both plates behind the shock to be zero because of the configuration symmetry [3].
Therefore, we set the initial velocities to ±104 m/s, toward each other. We then solve Equation 4 .14 [3]

PHugoniot — Pinitial

	

P initial

Pinitial

	

PHugoniot
(4 .14)Upar le = Uflyer —

1

for the particle velocity for each of the flyers . Because the pressure and velocity must be continuous
across the boundary, we can use a secant solver to iteratively find the pressure and velocity where the
Hugoniot points are equal on the P —Up curve (Figure 7) . Because each P — Up pair along the Hugoniot
is unique, we also have the density, temperature, and energy for that point . To check the error in the
iterative solver, the number of points in each curve was increased by 100 times and no appreciable
difference was seen. Next, we confirmed that the ALEGRA-HEDP code can simulate the analytical
problem.

5 ALEGRA-HEDP Simulation

The ALEGRA-HEDP simulation was configured as pseudo-1D Lagrangian, meaning the mesh had only
one cell in the y-direction, with appropriate symmetry boundary conditions at the cell y-boundaries . The
resolution in the x-direction was 10 nm per cell and the total length of the simulation was 10 ,um . The
simulation was run for 0 .2 ns and was stopped before the shock hit the edge of the simulation . Therefore,
no rarefaction waves or secondary shocks need be taken into account . Figure 8 displays the results at
the end of the ALEGRA-HEDP simulation . The error between the simulation and the analytical model
for the shock velocity are :

Table 2: Ideal Simulation Results
Property Analytical Simulation Error
Density 5 .942801 g/cm 3 5.942414 g/cm 3 6.52 x 10 —5
Temperature 27265.84 K 27277.36 K 4.20 x 10 —4
Pressure 494 .81 MBar 494.828 MBar 3.64 x 10 —5
Up 0.0 m/s 5 .9 x 10 5 m/s Round Off
Us. 18 .326 x 10 3 m/s 18.356 x 10 3 m/s 1 .64 x 10 —3

The analytical shock velocity is Equation 5 .15 [3]

PHugoniot —Pinitial

Ushock =
	 PHugoniot

	

(5 .15)
/l —	 Pinitial

PHugoniot

relative to the particle velocity. By relative to particle velocity, we mean the shock velocity is taken in
the lab frame of reference, but traveling into material that is still traveling the opposite direction at some
velocity. Therefore, when the shock velocity is calculated in the lab frame, the material velocity must
be taken into account . Because of ringing at the shock front in the calculation (computational error), we
compare to the shock speed as position of the shock over the length of the simulation, and estimate the
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velocity from the slope of the resulting line . This removed the majority of the instantaneous velocity
oscillations (Figure 9).

In Figure 8, there are sharp spikes at the interface between materials after impact. Currently we
are assuming these are due to artificial viscosity errors . These artifacts appear in both Lagrangian and
Eulerian simulations.

6 Comparing ALEGRA-HEDP with Experimental Data

ALEGRA-HEDP generated shock data has been shown to match the analytical EOS data . Now we
can compare to experimental data . First, we set up the simulation to more accurately represent the
experiment by impacting one flyer at an initial velocity on a stationary target plate . Figure 10 shows the
expected values of shock velocity, particle velocity, and pressure based on the EOS model . Figure 11 is
a time slice from the ALEGRA-HEDP simulation . The errors between the simulation and the analytical
model are

Table 3 : Flyer Impacting Target Results
Property Analytical Simulation Error
Density 6 .198652 g/cm 3 6.199115 g/cm 3 7 .47 x 10-5
Temperature 32719.83 K 32704.76 K 4.60 x 10-4
Pressure 578 .83 MBar 578 .788 MBar 7 .26 x 10-5
Up 11,000 m/s 10999 .94 m/s 5.42 xi 0-6
Us 19 .489 x 10 3 m/s 19 .496 x 103 m/s 3 .60 x 10 -4

The experimental data point we are focusing on is particle velocity 11 x 10 3 ± 110 m/s and shock
velocity 19 .4 x 10 3 ± 400 m/s . We set up the simulation with the initial block velocity at 22 x 10 3 m/s
which gives the target a particle velocity of 10999 .94 m/s ; its shock velocity is 19 .496 x 10 3 m/s, which
is within the error bars of the experimental data.

7 Conclusion

We have compared analytical Hugoniot points to Hugoniot points calculated from experimental data.
We then chose the table that best represented that data. Next, we checked to determine if that table was
thermodynamically consistent . Unfortunately, we do not currently have a test to quantify the effects of
an inconsistent table, but it is assumed that material expansion will be too slow or too fast, and material
heating could be incorrect . Finally, we calculated the analytical P -Up values for a flyer impacting a
flyer and a flyer impacting a stationary target, and compared ALEGRA-HEDP code to those values.
This demonstrated that ALEGRA-HEDP can simulate the analytical model to less than the error bars
on the experimental data . As such, for simulations in this regime, ALEGRA-HEDP's evaluation of the
EOS table is good to within the error bars of the experimental data.
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Figure 1 : Hugoniot points for 6 FOS tables and experimental data on a pressure/density plot . The
background lines are pressure isotherms from aluminum Table 3720 . The data points are U, — Up data
that have been converted to pressure/density points . The error bars are errors in U, Up that have also
been converted . The EOS tables plotted are those most commonly used for a wide variety of simulations.
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Figure 2 : Aluminum 3720 EOS Tables : Pressure (Upper), Energy (Lower) . These figures plot the
isotherms for pressure and energy. The pressure is negative where the pressure isotherms extend off the
bottom of the graph .
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Aluminum 3720 Thermodynamic Consistency

ct
0

Error
%

100

80

60

40

20

0

10 0	10 2	10 `	10 6
Density (kg/m^3)

Figure 3 : En-or in thermodynamic consistency for aluminum Table 3720 . The color scale indicates the
% error in thermodynamic consistency. For simplicity, all errors above 50% are given the same color.
The breaks in the pressure isotherms indicate that P < O . The inlay is a regime in EOS phase space just
above the vapor dome that many simulations use . (Figure should be viewed in color)
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Aluminum 3719 Thermodynamic Consistency
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Figure 4 : Error in thermodynamic consistency for aluminum Table 3719 . The color scale indicates the
% error in thermodynamic consistency. For simplicity, all errors above 50% are given the same color.
The inlay is a regime in EOS phase space just above the vapor dome that many simulations use . (Figure
should he viewed in color)
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Aluminum QEOS Thermodynamic Consistency
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Figure 5 : Error in thermodynamic consistency for aluminum QEOS . The color scale indicates the % er-
ror in thermodynamic consistency. For simplicity, all errors above 50% are given the same color . The

line segments indicate P < O . (Figure should be viewed in color)
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Figure 6 : From a starting point of 7 .156 glcm 3 and 62000 K, a material was allowed to expand isentrop-
ically . In each simulation, as it expanded and the density decreased to between 4 g/cm 3 and 0 .5 */cm',
the pressure was multiplied by a constant ranging from 0 .9 to 1 .8 . The error shown is relative to the
multiplier=l .0 simulation. This figure shows the thermodynamic consistency error, density error, tem-
perature error and velocity error for each multiplier . P0.9 signifies the pressure was multiplied by 0 .9.
(Figure should he viewed in color)
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Figure 7 : Impedance matching on a P —Up plot . Two flyers are launched at each other at equal and
opposite velocities (l0 4 mis) . Their Hugoniots can be mapped to pressure/particle velocity curves.

Pressure and particle velocities must be continuous across an interface for two similar materials, so the
curves should have a unique intersection point . This point gives the final pressure to which the material

will be shocked, and the final particle velocity behind the shock.
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Figure 8 : Time slice from the end of an ALEGRA-HEDP simulation . In this simulation two aluminum
flyers were impacted with equal and opposite velocity . The sharp gradients are the interface between
the shocked and unshocked material . The sharp spikes in the center of the density and temperature
plots are located at the boundary between the two flyers . These high-temperature/low-density artifacts
occurs regardless of the artificial viscosity . These spikes are common to most Lagrangian and Eulerian
simulation codes .

t

22



Shock Position vs Time . Us = 8.3555765e3 m/s1
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Figure 9: Shock position vs . time. Two flyers of the same material and equal but opposite velocity are
impacted on each other. The shock passing through them will cause a pressure and density discontinuity.
This plot tracks the position of the discontinuity as a function of time . The shock velocity is then taken
as the slope of the plot. Shocks create oscillations in the EOS variables at the shock edge, so taking
the position from one time step to the next could give erroneous results . The shock velocity is listed as

18 x 10 4 m/s because it is traveling into material that is still going the opposite direction at 104 mis.
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AI3720 P-Up curve. Rhof = 6198 .6519 kg/m''3 Tf = 32719 .828 Kelvin Us = 19489 .086 m/s
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Figure 10: Impedance matching on a P —Up plot . One flyer is launched at stationary target at 22 x
10 4 mis. Note the intersection velocity is half the initial velocity.
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Figure 11 : Time slice from the end of an ALEGRA-HEDP simulation. Note the offset from the center
(10 µm). The material is traveling to the right at half the velocity of the original flyer.
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Shock Position vs Time . Us = 19 .496886e3 m/s
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Figure 12: Shock position vs . time for a flyer impacting a stationary target . Because the shock is
traveling into stationary material, the plot shows the actual shock velocity.
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