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Absrrucr- The purpose of this paper is to report the results 
of a one-year project aimed at demonstrating the concept of 
“Just-In-Time” (JIT) Planning. The project  is  based  on 
existing. JPL software: Apgen (a resource-based  activity 
planner), Spice (a library for accessing and processing 
trajectory information), and DARTS Shell (a SIC attitude 
control and simulation package). The distinguishing feature 
of our approach is that planning is done in  real time, 
concurrently with execution. In this way,  the  planner has 
access to  up-to-date information and  is able to accommodate 
unforeseen variations in  SIC or external  conditions. By 
inserting small amounts of “software glue”  between  these 
three components, we achieved a smooth  transition from 
deterministic execution of a time-ordered  command 
seql;ence to an adaptive system that  responds in closed-loop 
fashion to events predicted by  the  simulator. The main 
benefit  of  this approach is to provide an adjustable level  of 
autonomy, ranging from conventional commanding  to  full 
autonomy. A significant by-product of  the JIT approach is 
that it can eliminate the  need for detailed S/C models,  which 
are  replaced by actual or simulated real-time  data. 
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1 .  INTRODUCTION 

The purpose of this document is  to report the results  of a one 
year project that  was funded as a Continuous  Improvement 
Proposal by both  the Telemetry and Mission Operations 
Technology (TMOT) and  the Center for Space Mission 
Architecture and  Design (CSMAD) at JPL. The central 
concept behind  the proposal was “Just-In-Time” (JIT) 
Planning, an  idea  which  has  been  proposed  by  other authors 
in a somewhat different context [ I ] .  The  nuts  and  bolts of 
the  proposal consisted in combining existing tools  for 
planning, sequencing, navigation, and  S/C attitude control 
modeling with the minimum amount of glue  necessary  for 
these components to  work in harmony. 

The conceptual framework for the  work  described  here  owes 
much  to  an ongoing project at JPL called  X2000. This 
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project is  aimed at showcasing a number  of new 
technologies in the context of near-future space missions.  In 
particular, X2000 has been interested in approaches to S/C 
commanding that allow more autonomy than in the  past. 
Many of the  ideas described in  this paper arose during 
discussions of the  X2000 requirements. 

The primary  focus  of our discussions was to discover how 
one could evolve the existing Planning and Sequencing (P 
and S) system  currently in  use at JPL into one that  is  more in 
tune  with  autonomy requirements. In looking for an answer, 
we did  not  spend a lot of  time  on  the  interesting  but 
somewhat  theoretical issues of data structures and control 
strategies for autonomous  systems. We paid  more  attention 
to  the practical issues  that one runs into when attempting to 
design a ground data system  that can support a partially 
autonomous  S/C.  We also wanted to demonstrate whatever 
concepts we came  up  with  within a short time,  and  this 
forced us to  stay  fairly close to  the tools that we are already 
using  now. 

Within  these  limitations, our work shows that a continuous 
transition  between  the existing, traditional commanding 
system  and a more autonomous system is  possible.  Such an 
approach will demand new skills of ground data systems 
personnel, especially in the area of  “gluing”  together 
planning and modeling engines in a real-time environment. 

This paper  is  organized as follows. In Section 2, we attempt 
to look at  the  interacting ground-flight system as a single 
entity, and  we show  how the current architecture of  the 
ground-flight  system  can be evolved into a system  that 
reduces duplication and enables closed-loop commanding. 
In Section 3,  we present our JIT implementation in the 
context of an observatory-like mission  such  as SIRTF. 
Section 4 presents our conclusions as well as possible future 
extensions of  the present  work. 

2. THE INTERACTING FLIGHT-GROUND SYSTEM 

The purpose of this Section is to paint  the  “grand dream” 
that  motivated us to undertake  the JIT planning  work. The 
ideas  presented here are somewhat speculative, and  they 
represent  “thinking i n  progress” rather than  the finished, 
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optimized  product of a well-organized engineering effort. 
We present  these ideas in their  unfinished state because we 
think that  mature designs are not  yet  available,  yet  there  is a 
need to show a “big picture”. 

As indicated in  the introduction, we differ from other 
approaches because we believe  that in the  short-  to  medium- 
term, achieving autonomy  will be a systems integration 
problem, not a software technology  problem. To support our 
view, we  will present in this Section a simplified picture of 
where we are  today in terms of spacecraft commanding 

In any case, the purpose of the sequence is  to  modify  the 
state of the S/C in a desirable way. As illustrated in Fig. I ,  
each command  can  have  an  influence on  the various state 
variables  that describe the complete state of  the S/C. In 
ground simulations, changes in state variables are simulated 
through “modeling” of  the Spacecraft’s behavior. The 
history of each state variable is maintained by the 
simulation. These simulated histories are then scanned for 
possible  violation  of flight and  mission rules. 

strategy,  and how  we can  migrate  towards the future through 
incremental  steps. Sequences are often represented on a timeline,  which  makes 

the  unfolding of events and activities more  intuitively 

Traditional Sequencing: Time-Tagged Commands obvious. Fig.2 below illustrates this in the context of  power 
usage  and shows how a timeline  might represent activities - - 

The interaction  between  the Flight and  Ground sides of a that  use  power as well as the state of the  power resource 
space mission  is governed by two  documents:  on  the  uplink  itself  and  of  related resources such as battery charge. 
side,  the  “Command Dictionary” (CD) contains a.list of all 
the  commands  which the S/C understands, along with their 

downlink side, the Telemetry Dictionary (TD) specifies the 
- parameters and a description of what  they do. On the 

Activities that  produce  power 

nature  and format of the data that  will  be  transmitted by the 
Activities  that use power 
1-1 1-1 

S/C to  Earth  for analysis. Since we are concerned with 
commanding, we concentrate on the uplink  side. + Current  Requested/Provided  (computed  from  pian) 

time 

0 
The primary  task  of  the  uplink  team in a traditional  mission 
is  to  prepare sequences of  time-tagged  commands for uplink - 
to  the S/C. Schematically, such as sequence  can  be 
represented by the diagram shown below. 

Battery  Charge  (computed by model) 

0 

u2: Activity  and resource timeline 

On-board  the S/C, commands are stored in a special area of 
memory  reserved for  the sequence. When  the  time comes to 
execute a given  sequence (several sequences can execute in 
parallel), the  Command  and  Data Handler subsystem clocks 
out the commands  at their prescribed time  and dispatches 
them  to  the  flight software for execution. 

Fig. :  Traditional sequence of time-tagged  commands 

A sequence is a special case of a more general  “event 
queue”, which could contain (as is  usually  the case in 
ground simulations) events beyond  the  mission  team’s 
control  such as planetary  occultation or downlink 
opportunities involving specific Deep Space Network 
ground  stations. as well as executable commands. The flight 
version o f  the sequence usually contains commands only; 
these  coI1mands  arc a binary  representation of  the  human- 
reudablc  torn1  used o n  the ground. 
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Differences between Flight and Ground 

It is clear from  the above discussion that  although they share 
a common origin, sequences are handled  differently by the 
flight  and  ground systems. The following  Figure  highlights 
the differences: 

Ground 

Flight 

Fig . :  Flight and  Ground Systems handle  command 
sequences (yellow rectangles) in different ways 

On  the ground, the simulation of S/C events is carried out by 
“setting” the simulation time equal to the  tag  of  the  next 
command in the sequence, at  which  point  the  command  is 
executed and  the  time  is  set  to  the  next  tag in the queue. 
There is usually no reason why the  simulation  should wait in 
between  time tags; the  simulation  is  usually  carried  out as 
fast as the processor in  use  will allow, so as to  provide  the 
human analyst in charge of  the simulation with  the fastest 
possible response. 

On-board the S/C, the situation is  different  because 
commands should  only be executed at the  time  specified in 
their  time  tags. In between commands, the  command 
processor is basically idle, although of course considerable 
activity may  be taking  place in the  various  subsystems  while 
waiting  for the  next command. 

One of  the biggest challenges faced by P and S personnel 
supporting a space mission is to come up with models  that 
accurately represent the behavior of  the S/C. Unless  these 
models  are accurate, one cannot guarantee that a proposed 
sequence will  not cause any  harm  to  the S/C or to  the 
mission. The ultimate  tool in sequence verification is  the 
S/C tcsthcd, which reproduces in hardware the precise 
configumtion used on-board. Unfortunately,  S/C  testbeds  are 
not only costly, they are also impractical in all hut the  most 
critical circumstances because they typically run at the  same 
speed as the S/C. A good  planning  and  sequencing tool  must 

be able to  provide a functional  simulation 01 S/C behavior 
that  runs  of  the  order  of 1,OOO times  real-time i n  order to 
provide the fast  turnaround  time  required for efficient 
operations. 

How  can we bring  Flight  and  Ground closer together? Fig. 4 
below shows how some  commonality  can be achieved 
between  the  two  simply by recognizing that  both  rely  on a 
time clock. Because  the  ground software does not require 
1 0 0 %  fidelity, it can  run significantly faster than its flight 
counterpart, as suggested by the different clock rates in the 
figure. The figure  basically suggests that  the  real-time 
C&DH  (Command  and  Data Handling) subsystem  could be 
made common  between  flight  and  ground. This is  not a 
trivial  assumption,  because  the  flight software typically  runs 
under a real-time OS while  the  ground  system  runs  under an 
OS more  commonly  found  on engineering workstations or 
personal  computers.  Some success has  been  achieved in this 
area, and several JPL applications have  been  adapted to run 
both  under the VxWorks  real-time OS (Wind  River  Systems, 
Inc.) and in workstation environments such as Solaris (SUN 
Microsystems Inc.). 

The next step in the path to ground-flight  integration  is to 
address the  adaptation issue. So far, we haven’t said much 

Ground 

I u\mP 
I ”  

Fig. :  Better  integration  between flight and  ground 

about the objects that  commands  act on: subsystems on  the 
flight side, S/C models  on  the  ground side. Traditionally, 
each new space mission  has  had  its  own  brand  of  flight 
software; there was  not  much commonality  between 
successive  missions, and re-inventing  the  flight  software  for 
each  mission  was  not a major  issue. Two factors are driving 
flight  software in the direction of  more  re-use  from one 
mission  to  the  next:  first, radiation-hardened flight 
computers available  today have grown  tremendously in 
sophistication and power,  inviting S/C engineers to  make 
their  flight  s/w  ever  more complex. Second, instead  of a few 
major  missions, JPL is increasingly  looking  at many smaller 
missions.  Such  missions have  much smaller budgets than 
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their predecessors, which makes it mandatory to re-use as board  planner;  there may  be other programs in use  on  the 
much s/w as possible. PlMIlW Ground 

Ground Ground 

which the front-end (API) of each subsystem  has-been 
isolated  and  made common with the ground. The API talks 

to models or simulation S/W on the ground, and  to  the flight 
S/W on  board. 

This trend towards multi-mission, reusable software  was 
started a number of years ago in the ground data systems 
area. As a result, the  main tools used for ground  sequencing 
and commanding at JPL are now fully adaptable, in the 
sense that  the software itself does not change from one 
mission  to the next.  What does change from  one  mission to 
the  next  is  the set of “adaptation data” that  the  software 
needs in order to represent activities and commands  that 
relate to a specific S/C. 

On  the  tlight side, although  the idea of  re-using  software  is 
not new,  the concept of  multi-mission  software  has  not 
reached  the  same  level of maturity as on  the  ground.  With 
the advent of near-compatible  ground  and  flight Operating 
Systems, it should be possible to achieve the same  level  of 
multi-mission  ability on  the flight side as on  the ground. 
This is  illustrated in Fig. 5 above. The new element  here is 
that  both  flight  and  ground systems are  commanded  through 
the  same  “API” (Application Program Interface). By API, 
we  mean a software  interface  which  can be called directly by 
the commanding subsystem  and  which delegates its  tasks  to 
actual  subsystems (on board), functional simulations 
(ground) or S/C models (ground). 

So far in our discussion, we have not  said  anything  about 
commanding strategy. In fact, our diagrams were pretty 
much consistent with the traditional sequencing  and 
commanding methodology  of previous space  missions. To 
support autonomy, however, we  need  to  take  into account 
the  fact  that  the S/C has on-board planning capabilities. This 
fact is emphasized i n  Fig. 6 below. 

1 

Fie.: Unified flight-ground system featuring an on-board 
planner. The building  blocks of both systems have  been 
made common, except of course for the hardware-level 
interfaces which  need to be simulated on  the  ground. 

ground  that  have  planning capabilities. In fact, it is likely 
that in the first implementations of this architecture the on- 
board planner won’t  have  much in common with  the 
planning systems found in the AI literature, but  will  instead 
resemble a sequence with embedded logic in it, along the 
lines of Lockheed-Martin’s Virtual Machine Language 
(VML). 

Time Left 
in Current f \ 

Est.  time 
to come 
up with a 
new pian 

Planning 

Scheduling 

Downlink 

Make Obs. 

Turn 

TCM 

I Elapsed Time 

Fig. :  This activity  timeline shows that  time  needs  to be 
allocated  for  on-board  planning. The key resource is “time 

left in current  plan”, displayed at the  top. When  that 
resource drops into  the  danger  zone, a “Planning” activity 

needs to be scheduled (green rectangle). 

Thc ncw clcment in this  picture is  the  planner.  shown  as  the 
box at  the  top center of  the figure. This is in reality  the on- 

To conclude  this  section. we return  to  the  timeline 
illustration of a S/C activity  plan. The operation of an 
integrated  ground-flight  system  such as illustrated in Fig. 6 
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needs  to  take  into account the  fact  that the  planning  activity 
itself  can  take significant amounts of time. Therefore, it 
needs  to be included among the S/C variables  that  are 
continuously monitored by the flight S/W, as shown in Fig. 
7 above. Note  that  both planning and  scheduling activities 
are  accounted for in this timeline. We are implicitly 
assuming  that scheduling can be done on a short-term  basis, 
as would be the case for  an observatory that  is  given a list  of 
desired (unconstrained) observations. It  is anticipated  that 
this  type  of  short-term scheduling does not  take  much  time 
(see the  orange rectangles in the figure). Planning  will 
generally take longer, first because plans  extend over a 
longer  period  of  time, second because planning may involve 
more iteration if an attempt is made  to  optimize the on-board 
schedule. 

3. PRESENT IMPLEMENTATION OF J I T  PLANNING 

In implementing our approach to  JIT planning, we first 
decided to limit the scope of  the problem so as to give 
ourselves a chance  of producing something tangible  within a 
year.  We  decided to limit ourselves to tools  that  already 
exist and  are  readily available within  the JPL community: 
DARTS Shell, a S/C Attitude Control Subsystem  (ACS) 
simulation tool [2], Spice, a library of navigation aids [3], 
and  Apgen [4], a resource-based activity planner  for  space 
missions, , and.  Apgen  was chosen because it can be easily 
adapted  through external text files, and  because it can 
support interaction  with other processes through  UNIX 
sockets in real  time.  Although Apgen is a planning  tool in 
use for current space missions, we  used it as a short-term 
scheduler, not as a long-term planner. The main reason is 
that when  used in automatic planning mode,  Apgen relies on 
the adapter for avoiding scheduling conflicts, not  on built-in 
conflict avoidance algorithms as some more advanced 
planners do. Developing sturdy scheduling algorithms is 
possible but time-consuming. Since we  wanted  to 
concentrate on systems integration, we decided to keep the 
algorithm development effort to a minimum. 

Planner Ground 

F&&: JIT planning addresses only a subset of unified  flight- 
ground  integration issues: real-time operation, commanding 
syslem. S/C modeling.  and common API. Other issues  such 

as planning optimization and  hardware sensing are not 
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covered. 

Alternatively, we could  have  used a planner  that  has  more 
built-in capabilities for automatic production of conflict-free 
schedules, such as the Remote  Agent planner developed at 
ARC  and JPL. However  at  the  time we started our J I T  effort 
we did not have  sufficient expertise in the  use  of  this  tool. 
We therefore decided  to restrict ourselves to short-term 
scheduling only. We will re-visit  the important issue of 
planning technology in the next Section. 

Fig. 8 above illustrates  how our implementation relates to 
the  general  picture  painted in the previous Section. We  were 
particularly  interested in providing answers to the  following 
questions: 

1 .  What does it take to operate a sequence 
planning  tool in a real-time mode? 

2. What adaptation skills are required to write 
real-time applications? 

3. What  technology  should be used  to  provide  the 
“glue”  between  the applications that contribute 
to  this system? 

Planning Context: Observatory Scheduling 

Although our JIT work  was clearly experimental in nature, 
we wanted to have at least some vague relevance to an 
actual space mission.  We  based our adaptation on  an early 
study of  the SIRTF (Space Infrared Telescope Facility) 
mission  that  took  place a year ago. This study  focused on a 
strategy in which  the telescope was given a list of a few 
hundred observations to  be carried out over a period of 
about  one  month.  The observations had  been  designed so 
that  no  flight rules (such as pointing away  from  the Sun) 
would  be  violated as long as an observation was carried  out 
within  the  indicated I-month period. Just about  the  only 
constraint that had  to be verified  was  that sufficient 
downlink time was allocated to avoid overfilling the solid- 
state recorder (SSR) on-board  the  telescope. 

The original implementation of  the SIRTF prototype was 
quite typical of the situation depicted in Fig. 3, in that  the 
activity  plan was entirely  based on ground-based models of 
S/C behavior.  First, a list of downlink opportunities were 
provided  to the planner. These opportunities are  decided 
ahead of time  and have  to do with scheduling priorities 
between  the  Deep  Space  Network  and  any active space 
missions.  Next, a list  of  pre-processed requests for 
observations are  loaded.  As  indicated above, the  purpose  of 
the pre-processing was  to ensure that  no conflicts would  be 
generated  regardless of  which observations were  picked by 
the  planning  algorithm.  Next, a simple ACS model  was 
activated. All this  model does is keep  track of the current 
attitude of  the S/C (expressed as right ascension and 
declination) and consult an external  module  (Seq-pointer  at 
the time) to  find  out  how  long i t  would  take  to  slew  to  the 
RA/DEC of a proposed observation, or to  Earth for a 



-1 IRS-REQUESTS 

........................................................................................................ 

............................................................................................. 
. . . . .  

Fiq. 9: output of JIT Planner for the SIRTF Prototype Scheduling Problem. The SSR fills up as MIPS and IRAC 
observations are scheduled, and  is  emptied during downlink activities. Each  Slew requires a turn  activity as shown  on 
the ACS line. 

downlink activity. The scheduling algorithm  kept  track of available. To enforce this strategy, three 
the amount of data stored in the  SSR and  knew about the  mutually exclusive enabling activities called 
data rates  that could be sustained during downlink. Since “allow-IRAC”,  “allow-MIPS”, “allow-IRS’ 
each observation request contained a precise  duration for the  were introduced. An instrument can only be 
proposed observation, the scheduling algorithm was able to  used  while  the corresponding enabling activity 
determine whether there was  time  to  perform a given is active. 
observation and still guarantee enough time during the 3. the planner  is  given a list of observations for 
downlink opportunity for emptying the SSR. each one of the three  major instruments. Each 

item in the list specified the  Right  Ascension 
Without getting into too much detail, let us summarize the  and  Declination of the  target as well as the 
main building blocks of the observatory scheduling  duration of the desired observation. 
algorithm used in the  prototype. This will help set the stage Observations were arranged so that  no 
for  the real-time, JIT approach discussed in the  next  geometric constraints would be violated as 
paragraphs. The planning strategy relies on  the following long as an observation was scheduled during a 
items:  given  30-day period. 

4. the planner  has complete freedom to schedule 
I .  downlink opportunities are represented by observations from  the  list i n  any way i t  wants, 

tixed-time activities occurring at  12-hour as long as it does not overfill the SSR. 
intervals. In our prototype, the planner  did not 
have  to  make use  of  the downlink opportunity, Needless to say, this  is a much  simplified  representation  of 
and if  i t  did decide to  make  use  of  it, it did  not reality. No attention was paid to  the  problem of minimizing 
have  to use up the entire time  allocated  overall  slew  time  (the “traveling Salesman” problem), nor  to 

simple “rule of thumb”: exclusive use  of  the activities such as dumping angular momentum  from  the 
spacecraft is granted to one of  three  major  reaction  wheels etc. In spite of this, we found it  helpful  to 
instruments for three days. Which instrument concentrate on something that  has  at  least  some  vague 
should be in charge is determined by a simple resemblance to a real problem. 
rotation algorithm, so that  each  instrument gets Paving the Wrlyfor  Real-Time Scheduling 
exactly one third  of  the  total  observation  time 

2. instrument scheduling is  done  using a very  the  problem  of  scheduling engineering maintenance 
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Converting the SIRTF prototype  to  the JIT approach  took a this  can be done simply by inserting a “wait” instruction in 
number  of steps. Our high-level goal was  to eliminate the the  loop  that scans the event queue; the argument of the  wait 
slew-time model  used in the prototype and  replace it by instruction is  the  time difference between  the  time tag of the 
DARTS Shell, which  actually simulates the  operation of he next event in the  queue  and  the current time. 
ACS. In order to  use this simulation program,  however, we Note  that  this  time difference could in principle become 
needed a number  of  things: negative. This would be the case in a simulation that  is so 

complex that the CPU  would  not  have  time  to  complete  the 

body rotation  matrix (a quaternion, actually) queue  needs  to be processed.  We don’t know of a generally 
way to express “model complexity”, but the following  table 

the  ability  to run Apgen in real-time  mode summarizes our experience with planning and  sirnulation 
software. The data in  the table reflects our experience with 

establish connections between  Apgen  and state-of-the-art hardware environments such as SUN Ultra-2 
external processes engineering workstations as well as PC’s running 300 MHz 

CPU’S. 

0 the ability to specify  the S/C attitude as a solid- simulation of  an event by the  time  the next event in the 

0 a modified  adaptation that would replace  the 
. old  slew  models by calls to  the  DARTS Shell Type of Model Max. Speed (multiple of 

real time) 
TO achieve the first objective, we linked Apgen to a general-  Hi  h-level functional model 
purpose navigation library called Spice. This link gave us  Detailed functional simulation 

(RA, DEC) into S/C attitude expressed as quaternions, but 
access to not only the  ability to translate target  positions in 

also to some very  basic  pieces  of information such as the 
trajectory of  the SIRTF, planetary ephemerides ant many 
other useful data. 

The second item, running  Apgen in real-time  mode,  can be 
explained as follows. Much  of  the  work done by Apgen  is to 
evaluate the  impact of a given activity plan  on  the resources 
that  have  been defined by the adapter. The paradigm used  by 
Apgen  is  the discrete event simulation model,  which had 
been implemented successfully in Apgen’s ideological 
ancestor, Seqgen. Seqgen and Apgen  were  developed in 
response to  the  need for sequencing tools that  would support 
multiple space missions and are now  used by several space 
missions at JPL as well as other institutions. 

According to the discrete event simulation model, the impact 
of a S/C activity on  the  resources  is evaluated through a 
series of “events” that  are  generated  whenever  the  activity 
consumes or otherwise affects the resource. Each event has a 
precise time  tag  associated with it. In Seqgen and  Apgen, 
this  time  tag  is evaluated by “expanding” the  activity  into its 
constituent commands. A consumption event can be looked 
at as a program fragment that has a start time  associated  with 
it.  Note  that  the  program  fragments are not executed until 
after the entire set of activities has  been  expanded  into 
commands. This is because the effect of  commands on 
resources needs  to be evaluated in time order; it would  make 
no sense to turn an inactive  switch OFF at time  t2,  then  turn 
the  switch ON at a previous  time t l  less than t2. Therefore, 
Seqgen (and likewise Apgen) stores all  consumption events 
into an “Event Queue”, then sorts the queue in time order, 
then evaluates the effect of the events on  the resources. 

It is easy  to  see how  the simulation strategy just described 
can be modified to interact with real-time processes. Since 
events have  already h e n  arranged i n  a time-ordered 
sequence, the simplest way  to introduce real  time  into  the 
simulation is  to synchronize the execution of these events 
with an external clock. From a programming  perspective. 

Opening up  the  modeling loop to synchronize it with 
external events allows us to tie the planning process to real- 
time data such as the state of the spacecraft at any  one  time. 
In our case, we concentrated on  the state of the  ACS 
subsystem as modeled by the DARTS Shell system. 
However, in order to carry out scheduling we  needed  to 
endow Apgen  with one more capability, namely  the  ability 
to expand  an  activity concurrently with  the  modeling 
process. The following example will clarify this 
requirement. Suppose that  the decision has been  made to 
schedule an observation. This means that we  must  expand 
the requesting activity R into its constituents, which 
typically  include  the following: 

a pre-conditioning activity P1 
a turnT 
a post-conditioning activity P2 

0 an data collection activity D 1 that  instructs a 
specific instrument to acquire the  observation 
data 

data to  the SSR 
0 a data transfer activity D2 that  transfers  the 

In traditional sequencing, R would be expanded into  all  its 
constituents based on fixed expansion rules that  reflect  the 
ground  personnel’s  understanding of  how  the  SIC  operates. 
In particular, the duration  of  the turn activity T would  be 
computed  based on formulas supplied by the  SIC  ACS 
engineer. In the JIT approach, such formulas are  replaced by 
direct interaction with the  ACS simulation tool, DARTS 
Shell in our case. Since we don’t know  when  the turn will  be 
complete, we  must put the expansion of activities that  follow 
Ton hold until T completes. This represents a change in 
how  the  expansion software operates within the planner; we 
refer  to it as “concurrent expansion” in the  discussion  that 
follows. 

The Apgen  implementation of concurrent expansion is 
actually a two-phase process. The  first  phase  takes  place 
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before the real-time simulation is started. During  this  first 
phase,  background activities that are “cast in stone” are 
expanded in the traditional  way. This includes  things  such as 
downlink opportunities and engineering maintenance 
activitics. The  reason  for processing such activities first is 
that  they  provide  the  necessary context in which scheduling 
decisions can be made. For instance. i n  order  to decide 
whether or not  to start an observation, the S/C needs to 
know  how  much  time  is available before  the  next  downlink 
opportunity. The purpose of the first phase is  to  provide  the 
planner with the ability  to  “peek into the  future”, at least as 
far as background activities are concerned. 

The second, “scheduling” phase  is  then  initiated by resetting 
the internal clock to  the  start  time  of  the  overall  plan. This 
second phase operates at some multiple of  real  time  and 
relies on an inter-process communication (IPC) mechanism 
to exchange data with the  ACS simulation. As  noted earlier, 
the  ACS simulation is slower than the modeling done within 
the planner, and  can be run at a maximum of 7 times  real 
time. In order to  speed  up  the overall simulation process, we 
increase speed  to 3600 times  real  time  immediately after 
each turn, and fall  back  to 7 times real  time  immediately 
before starting a new turn. 

Another change that  is  required by the  transition  to a real- 
time environment is  the ability to communicate with other 
processes. A widespread  mechanism  for implementing IPC 
is  the  Berkeley  socket interface, which  is  commonly 
available on  both  UNIX and PC platforms. Sockets are a 
low-level  interface, but  many public domain as well as 
commercial “wrappers” are available to  facilitate  the task  of 
the integrator. We followed  the  lead  of our co-workers and 
chose to use the  interface  that  is already available in the 
DARTS  Shell  system,  namely  the Tool Command  Language 
(Tcl). We refer  the  reader to Ref. [2] for  more details on this 
topic. 

The last step in implementing JIT planning is  to  put  together 
the  real-time capabilities just discussed through an 
adaptation file  that  provides  the  necessary  “glue”.  In our 
case, we already had at our disposal an activity type  that 
could be used for expressing an observation request.  All we 
had to do was to modify  the part of this activity that had to 
do with slewing. The old slew activity was modified to 
include the  Tcl calls to  the  DARTS Shell simulator. Fig. 10 
displays the  new  maneuver activity as displayed by Apgen, 
together with  the  graphic display of  the S/C as simulated by 
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I f;ig I O :  Mancuvcrs as simulated by  Apgen communicating with DARTS  Shell  at 7 timcs  real  time I 
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DARTS Shell. 

6. SUMMARY AND FUTURE WORK 

The prototype JIT planning  system  discussed  here  was 
implemented  using pre-existing planning  and simulation 
tools with  very  few  changes.  It  took us about 6 months  of 
time  to articulate the concept  of JIT planning  well  enough 
that we could see how we would  implement  it. It took 
another 6 months for us to produce  the  implementation 
shown here, with one of us (A. K.) working  half-time  on this 
project and  the other (P. M.) providing consulting advice. 

We believe that the work  described  here  exemplifies  an 
integration style that will  become  more  common as space 
missions require more  on-board  autonomy.  In  our discussion 
of JIT planning, we deliberately avoided  the issue of  what 
takes place  on the ground vs. what  takes  place  on-board. 
The use  of  high-performance, functional simulations of on- 
board  systems  in  ground data system should be encouraged, 
because  they  provide better fidelity at lower cost than 
ground-based S/C models.  On the flight side, the  on-board 
use of ground-based  planning tools such as Apgen  would 
provide flight engineers  with  ready-to-use,  adaptable  multi- 
mission  scheduling capabilities that would  be costly to 
implement  from scratch. 

Looking  towards the future, we hope  to  have a chance of 
infusing  more  planning  technology into our JIT approach. 
We  have initiated a  program  of collaboration with our 
colleagues at the  NASA  Ames  Research  Center  and are 
exploring  concrete  avenues for linking their  planning tools 
[5], [6] into the  JPL suite of sequencing  tools. 
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