
JIT Planning: an Approach to Autonomous Scheduling
for Space Missions

Pierre F. Maldague, Adans Y. KO
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 9 1 109-8099

maldague@jpl.nasa.gov, ako@jpl.nasa.gov
818-354-0152

Absrrucr- The purpose of this paper is to report the results
of a one-year project aimed at demonstrating the concept of
“Just-In-Time” (JIT) Planning. The project is based on
existing. JPL software: Apgen (a resource-based activity
planner), Spice (a library for accessing and processing
trajectory information), and DARTS Shell (a SIC attitude
control and simulation package). The distinguishing feature
of our approach is that planning is done in real time,
concurrently with execution. In this way, the planner has
access to up-to-date information and is able to accommodate
unforeseen variations in SIC or external conditions. By
inserting small amounts of “software glue” between these
three components, we achieved a smooth transition from
deterministic execution of a time-ordered command
seql;ence to an adaptive system that responds in closed-loop
fashion to events predicted by the simulator. The main
benefit of this approach is to provide an adjustable level of
autonomy, ranging from conventional commanding to full
autonomy. A significant by-product of the JIT approach is
that it can eliminate the need for detailed S/C models, which
are replaced by actual or simulated real-time data.

TABLE OF CONTENTS

1. INTRODUCTION
2. THE INTERACTINGFLIGHT-GROUND SYSTEM
3. PRESENT IMPLEMENTATION OFJIT PLANNING
4. SUMMARY AND FUTURE WORK

1 . INTRODUCTION

The purpose of this document is to report the results of a one
year project that was funded as a Continuous Improvement
Proposal by both the Telemetry and Mission Operations
Technology (TMOT) and the Center for Space Mission
Architecture and Design (CSMAD) at JPL. The central
concept behind the proposal was “Just-In-Time” (JIT)
Planning, an idea which has been proposed by other authors
in a somewhat different context [I] . The nuts and bolts of
the proposal consisted in combining existing tools for
planning, sequencing, navigation, and S/C attitude control
modeling with the minimum amount of glue necessary for
these components to work in harmony.

The conceptual framework for the work described here owes
much to an ongoing project at JPL called X2000. This

’ 0- I234-5678-0/99/$5.00 0 I999 IEEE

project is aimed at showcasing a number of new
technologies in the context of near-future space missions. In
particular, X2000 has been interested in approaches to S/C
commanding that allow more autonomy than in the past.
Many of the ideas described in this paper arose during
discussions of the X2000 requirements.

The primary focus of our discussions was to discover how
one could evolve the existing Planning and Sequencing (P
and S) system currently in use at JPL into one that is more in
tune with autonomy requirements. In looking for an answer,
we did not spend a lot of time on the interesting but
somewhat theoretical issues of data structures and control
strategies for autonomous systems. We paid more attention
to the practical issues that one runs into when attempting to
design a ground data system that can support a partially
autonomous S/C. We also wanted to demonstrate whatever
concepts we came up with within a short time, and this
forced us to stay fairly close to the tools that we are already
using now.

Within these limitations, our work shows that a continuous
transition between the existing, traditional commanding
system and a more autonomous system is possible. Such an
approach will demand new skills of ground data systems
personnel, especially in the area of “gluing” together
planning and modeling engines in a real-time environment.

This paper is organized as follows. In Section 2, we attempt
to look at the interacting ground-flight system as a single
entity, and we show how the current architecture of the
ground-flight system can be evolved into a system that
reduces duplication and enables closed-loop commanding.
In Section 3, we present our JIT implementation in the
context of an observatory-like mission such as SIRTF.
Section 4 presents our conclusions as well as possible future
extensions of the present work.

2. THE INTERACTING FLIGHT-GROUND SYSTEM

The purpose of this Section is to paint the “grand dream”
that motivated us to undertake the JIT planning work. The
ideas presented here are somewhat speculative, and they
represent “thinking i n progress” rather than the finished,

I

mailto:maldague@jpl.nasa.gov
mailto:ako@jpl.nasa.gov

optimized product of a well-organized engineering effort.
We present these ideas in their unfinished state because we
think that mature designs are not yet available, yet there is a
need to show a “big picture”.

As indicated in the introduction, we differ from other
approaches because we believe that in the short- to medium-
term, achieving autonomy will be a systems integration
problem, not a software technology problem. To support our
view, we will present in this Section a simplified picture of
where we are today in terms of spacecraft commanding

In any case, the purpose of the sequence is to modify the
state of the S/C in a desirable way. As illustrated in Fig. I ,
each command can have an influence on the various state
variables that describe the complete state of the S/C. In
ground simulations, changes in state variables are simulated
through “modeling” of the Spacecraft’s behavior. The
history of each state variable is maintained by the
simulation. These simulated histories are then scanned for
possible violation of flight and mission rules.

strategy, and how we can migrate towards the future through
incremental steps. Sequences are often represented on a timeline, which makes

the unfolding of events and activities more intuitively

Traditional Sequencing: Time-Tagged Commands obvious. Fig.2 below illustrates this in the context of power
usage and shows how a timeline might represent activities - -

The interaction between the Flight and Ground sides of a that use power as well as the state of the power resource
space mission is governed by two documents: on the uplink itself and of related resources such as battery charge.
side, the “Command Dictionary” (CD) contains a.list of all
the commands which the S/C understands, along with their

downlink side, the Telemetry Dictionary (TD) specifies the
- parameters and a description of what they do. On the

Activities that produce power

nature and format of the data that will be transmitted by the
Activities that use power
1-1 1-1

S/C to Earth for analysis. Since we are concerned with
commanding, we concentrate on the uplink side. + Current Requested/Provided (computed from pian)

time

0
The primary task of the uplink team in a traditional mission
is to prepare sequences of time-tagged commands for uplink -
to the S/C. Schematically, such as sequence can be
represented by the diagram shown below.

Battery Charge (computed by model)

0

u2: Activity and resource timeline

On-board the S/C, commands are stored in a special area of
memory reserved for the sequence. When the time comes to
execute a given sequence (several sequences can execute in
parallel), the Command and Data Handler subsystem clocks
out the commands at their prescribed time and dispatches
them to the flight software for execution.

Fig. : Traditional sequence of time-tagged commands

A sequence is a special case of a more general “event
queue”, which could contain (as is usually the case in
ground simulations) events beyond the mission team’s
control such as planetary occultation or downlink
opportunities involving specific Deep Space Network
ground stations. as well as executable commands. The flight
version o f the sequence usually contains commands only;
these coI1mands arc a binary representation of the human-
reudablc torn1 used o n the ground.

2

Differences between Flight and Ground

It is clear from the above discussion that although they share
a common origin, sequences are handled differently by the
flight and ground systems. The following Figure highlights
the differences:

Ground

Flight

Fig . : Flight and Ground Systems handle command
sequences (yellow rectangles) in different ways

On the ground, the simulation of S/C events is carried out by
“setting” the simulation time equal to the tag of the next
command in the sequence, at which point the command is
executed and the time is set to the next tag in the queue.
There is usually no reason why the simulation should wait in
between time tags; the simulation is usually carried out as
fast as the processor in use will allow, so as to provide the
human analyst in charge of the simulation with the fastest
possible response.

On-board the S/C, the situation is different because
commands should only be executed at the time specified in
their time tags. In between commands, the command
processor is basically idle, although of course considerable
activity may be taking place in the various subsystems while
waiting for the next command.

One of the biggest challenges faced by P and S personnel
supporting a space mission is to come up with models that
accurately represent the behavior of the S/C. Unless these
models are accurate, one cannot guarantee that a proposed
sequence will not cause any harm to the S/C or to the
mission. The ultimate tool in sequence verification is the
S/C tcsthcd, which reproduces in hardware the precise
configumtion used on-board. Unfortunately, S/C testbeds are
not only costly, they are also impractical in all hut the most
critical circumstances because they typically run at the same
speed as the S/C. A good planning and sequencing tool must

be able to provide a functional simulation 01 S/C behavior
that runs of the order of 1,OOO times real-time i n order to
provide the fast turnaround time required for efficient
operations.

How can we bring Flight and Ground closer together? Fig. 4
below shows how some commonality can be achieved
between the two simply by recognizing that both rely on a
time clock. Because the ground software does not require
1 0 0 % fidelity, it can run significantly faster than its flight
counterpart, as suggested by the different clock rates in the
figure. The figure basically suggests that the real-time
C&DH (Command and Data Handling) subsystem could be
made common between flight and ground. This is not a
trivial assumption, because the flight software typically runs
under a real-time OS while the ground system runs under an
OS more commonly found on engineering workstations or
personal computers. Some success has been achieved in this
area, and several JPL applications have been adapted to run
both under the VxWorks real-time OS (Wind River Systems,
Inc.) and in workstation environments such as Solaris (SUN
Microsystems Inc.).

The next step in the path to ground-flight integration is to
address the adaptation issue. So far, we haven’t said much

Ground

I u\mP
I ”

Fig. : Better integration between flight and ground

about the objects that commands act on: subsystems on the
flight side, S/C models on the ground side. Traditionally,
each new space mission has had its own brand of flight
software; there was not much commonality between
successive missions, and re-inventing the flight software for
each mission was not a major issue. Two factors are driving
flight software in the direction of more re-use from one
mission to the next: first, radiation-hardened flight
computers available today have grown tremendously in
sophistication and power, inviting S/C engineers to make
their flight s/w ever more complex. Second, instead of a few
major missions, JPL is increasingly looking at many smaller
missions. Such missions have much smaller budgets than

3

their predecessors, which makes it mandatory to re-use as board planner; there may be other programs in use on the
much s/w as possible. PlMIlW Ground

Ground Ground

which the front-end (API) of each subsystem has-been
isolated and made common with the ground. The API talks

to models or simulation S/W on the ground, and to the flight
S/W on board.

This trend towards multi-mission, reusable software was
started a number of years ago in the ground data systems
area. As a result, the main tools used for ground sequencing
and commanding at JPL are now fully adaptable, in the
sense that the software itself does not change from one
mission to the next. What does change from one mission to
the next is the set of “adaptation data” that the software
needs in order to represent activities and commands that
relate to a specific S/C.

On the tlight side, although the idea of re-using software is
not new, the concept of multi-mission software has not
reached the same level of maturity as on the ground. With
the advent of near-compatible ground and flight Operating
Systems, it should be possible to achieve the same level of
multi-mission ability on the flight side as on the ground.
This is illustrated in Fig. 5 above. The new element here is
that both flight and ground systems are commanded through
the same “API” (Application Program Interface). By API,
we mean a software interface which can be called directly by
the commanding subsystem and which delegates its tasks to
actual subsystems (on board), functional simulations
(ground) or S/C models (ground).

So far in our discussion, we have not said anything about
commanding strategy. In fact, our diagrams were pretty
much consistent with the traditional sequencing and
commanding methodology of previous space missions. To
support autonomy, however, we need to take into account
the fact that the S/C has on-board planning capabilities. This
fact is emphasized i n Fig. 6 below.

1

Fie.: Unified flight-ground system featuring an on-board
planner. The building blocks of both systems have been
made common, except of course for the hardware-level
interfaces which need to be simulated on the ground.

ground that have planning capabilities. In fact, it is likely
that in the first implementations of this architecture the on-
board planner won’t have much in common with the
planning systems found in the AI literature, but will instead
resemble a sequence with embedded logic in it, along the
lines of Lockheed-Martin’s Virtual Machine Language
(VML).

Time Left
in Current f \

Est. time
to come
up with a
new pian

Planning

Scheduling

Downlink

Make Obs.

Turn

TCM

I Elapsed Time

Fig. : This activity timeline shows that time needs to be
allocated for on-board planning. The key resource is “time

left in current plan”, displayed at the top. When that
resource drops into the danger zone, a “Planning” activity

needs to be scheduled (green rectangle).

Thc ncw clcment in this picture is the planner. shown as the
box at the top center of the figure. This is in reality the on-

To conclude this section. we return to the timeline
illustration of a S/C activity plan. The operation of an
integrated ground-flight system such as illustrated in Fig. 6

4

needs to take into account the fact that the planning activity
itself can take significant amounts of time. Therefore, it
needs to be included among the S/C variables that are
continuously monitored by the flight S/W, as shown in Fig.
7 above. Note that both planning and scheduling activities
are accounted for in this timeline. We are implicitly
assuming that scheduling can be done on a short-term basis,
as would be the case for an observatory that is given a list of
desired (unconstrained) observations. It is anticipated that
this type of short-term scheduling does not take much time
(see the orange rectangles in the figure). Planning will
generally take longer, first because plans extend over a
longer period of time, second because planning may involve
more iteration if an attempt is made to optimize the on-board
schedule.

3. PRESENT IMPLEMENTATION OF J I T PLANNING

In implementing our approach to JIT planning, we first
decided to limit the scope of the problem so as to give
ourselves a chance of producing something tangible within a
year. We decided to limit ourselves to tools that already
exist and are readily available within the JPL community:
DARTS Shell, a S/C Attitude Control Subsystem (ACS)
simulation tool [2], Spice, a library of navigation aids [3],
and Apgen [4], a resource-based activity planner for space
missions, , and. Apgen was chosen because it can be easily
adapted through external text files, and because it can
support interaction with other processes through UNIX
sockets in real time. Although Apgen is a planning tool in
use for current space missions, we used it as a short-term
scheduler, not as a long-term planner. The main reason is
that when used in automatic planning mode, Apgen relies on
the adapter for avoiding scheduling conflicts, not on built-in
conflict avoidance algorithms as some more advanced
planners do. Developing sturdy scheduling algorithms is
possible but time-consuming. Since we wanted to
concentrate on systems integration, we decided to keep the
algorithm development effort to a minimum.

Planner Ground

F&&: JIT planning addresses only a subset of unified flight-
ground integration issues: real-time operation, commanding
syslem. S/C modeling. and common API. Other issues such

as planning optimization and hardware sensing are not
5

covered.

Alternatively, we could have used a planner that has more
built-in capabilities for automatic production of conflict-free
schedules, such as the Remote Agent planner developed at
ARC and JPL. However at the time we started our J I T effort
we did not have sufficient expertise in the use of this tool.
We therefore decided to restrict ourselves to short-term
scheduling only. We will re-visit the important issue of
planning technology in the next Section.

Fig. 8 above illustrates how our implementation relates to
the general picture painted in the previous Section. We were
particularly interested in providing answers to the following
questions:

1 . What does it take to operate a sequence
planning tool in a real-time mode?

2. What adaptation skills are required to write
real-time applications?

3. What technology should be used to provide the
“glue” between the applications that contribute
to this system?

Planning Context: Observatory Scheduling

Although our JIT work was clearly experimental in nature,
we wanted to have at least some vague relevance to an
actual space mission. We based our adaptation on an early
study of the SIRTF (Space Infrared Telescope Facility)
mission that took place a year ago. This study focused on a
strategy in which the telescope was given a list of a few
hundred observations to be carried out over a period of
about one month. The observations had been designed so
that no flight rules (such as pointing away from the Sun)
would be violated as long as an observation was carried out
within the indicated I-month period. Just about the only
constraint that had to be verified was that sufficient
downlink time was allocated to avoid overfilling the solid-
state recorder (SSR) on-board the telescope.

The original implementation of the SIRTF prototype was
quite typical of the situation depicted in Fig. 3, in that the
activity plan was entirely based on ground-based models of
S/C behavior. First, a list of downlink opportunities were
provided to the planner. These opportunities are decided
ahead of time and have to do with scheduling priorities
between the Deep Space Network and any active space
missions. Next, a list of pre-processed requests for
observations are loaded. As indicated above, the purpose of
the pre-processing was to ensure that no conflicts would be
generated regardless of which observations were picked by
the planning algorithm. Next, a simple ACS model was
activated. All this model does is keep track of the current
attitude of the S/C (expressed as right ascension and
declination) and consult an external module (Seq-pointer at
the time) to find out how long i t would take to slew to the
RA/DEC of a proposed observation, or to Earth for a

-1 IRS-REQUESTS

..

...
.

Fiq. 9: output of JIT Planner for the SIRTF Prototype Scheduling Problem. The SSR fills up as MIPS and IRAC
observations are scheduled, and is emptied during downlink activities. Each Slew requires a turn activity as shown on
the ACS line.

downlink activity. The scheduling algorithm kept track of available. To enforce this strategy, three
the amount of data stored in the SSR and knew about the mutually exclusive enabling activities called
data rates that could be sustained during downlink. Since “allow-IRAC”, “allow-MIPS”, “allow-IRS’
each observation request contained a precise duration for the were introduced. An instrument can only be
proposed observation, the scheduling algorithm was able to used while the corresponding enabling activity
determine whether there was time to perform a given is active.
observation and still guarantee enough time during the 3. the planner is given a list of observations for
downlink opportunity for emptying the SSR. each one of the three major instruments. Each

item in the list specified the Right Ascension
Without getting into too much detail, let us summarize the and Declination of the target as well as the
main building blocks of the observatory scheduling duration of the desired observation.
algorithm used in the prototype. This will help set the stage Observations were arranged so that no
for the real-time, JIT approach discussed in the next geometric constraints would be violated as
paragraphs. The planning strategy relies on the following long as an observation was scheduled during a
items: given 30-day period.

4. the planner has complete freedom to schedule
I . downlink opportunities are represented by observations from the list i n any way i t wants,

tixed-time activities occurring at 12-hour as long as it does not overfill the SSR.
intervals. In our prototype, the planner did not
have to make use of the downlink opportunity, Needless to say, this is a much simplified representation of
and if i t did decide to make use of it, it did not reality. No attention was paid to the problem of minimizing
have to use up the entire time allocated overall slew time (the “traveling Salesman” problem), nor to

simple “rule of thumb”: exclusive use of the activities such as dumping angular momentum from the
spacecraft is granted to one of three major reaction wheels etc. In spite of this, we found it helpful to
instruments for three days. Which instrument concentrate on something that has at least some vague
should be in charge is determined by a simple resemblance to a real problem.
rotation algorithm, so that each instrument gets Paving the Wrlyfor Real-Time Scheduling
exactly one third of the total observation time

2. instrument scheduling is done using a very the problem of scheduling engineering maintenance

6

Converting the SIRTF prototype to the JIT approach took a this can be done simply by inserting a “wait” instruction in
number of steps. Our high-level goal was to eliminate the the loop that scans the event queue; the argument of the wait
slew-time model used in the prototype and replace it by instruction is the time difference between the time tag of the
DARTS Shell, which actually simulates the operation of he next event in the queue and the current time.
ACS. In order to use this simulation program, however, we Note that this time difference could in principle become
needed a number of things: negative. This would be the case in a simulation that is so

complex that the CPU would not have time to complete the

body rotation matrix (a quaternion, actually) queue needs to be processed. We don’t know of a generally
way to express “model complexity”, but the following table

the ability to run Apgen in real-time mode summarizes our experience with planning and sirnulation
software. The data in the table reflects our experience with

establish connections between Apgen and state-of-the-art hardware environments such as SUN Ultra-2
external processes engineering workstations as well as PC’s running 300 MHz

CPU’S.

0 the ability to specify the S/C attitude as a solid- simulation of an event by the time the next event in the

0 a modified adaptation that would replace the
. old slew models by calls to the DARTS Shell Type of Model Max. Speed (multiple of

real time)
TO achieve the first objective, we linked Apgen to a general- Hi h-level functional model
purpose navigation library called Spice. This link gave us Detailed functional simulation

(RA, DEC) into S/C attitude expressed as quaternions, but
access to not only the ability to translate target positions in

also to some very basic pieces of information such as the
trajectory of the SIRTF, planetary ephemerides ant many
other useful data.

The second item, running Apgen in real-time mode, can be
explained as follows. Much of the work done by Apgen is to
evaluate the impact of a given activity plan on the resources
that have been defined by the adapter. The paradigm used by
Apgen is the discrete event simulation model, which had
been implemented successfully in Apgen’s ideological
ancestor, Seqgen. Seqgen and Apgen were developed in
response to the need for sequencing tools that would support
multiple space missions and are now used by several space
missions at JPL as well as other institutions.

According to the discrete event simulation model, the impact
of a S/C activity on the resources is evaluated through a
series of “events” that are generated whenever the activity
consumes or otherwise affects the resource. Each event has a
precise time tag associated with it. In Seqgen and Apgen,
this time tag is evaluated by “expanding” the activity into its
constituent commands. A consumption event can be looked
at as a program fragment that has a start time associated with
it. Note that the program fragments are not executed until
after the entire set of activities has been expanded into
commands. This is because the effect of commands on
resources needs to be evaluated in time order; it would make
no sense to turn an inactive switch OFF at time t2, then turn
the switch ON at a previous time t l less than t2. Therefore,
Seqgen (and likewise Apgen) stores all consumption events
into an “Event Queue”, then sorts the queue in time order,
then evaluates the effect of the events on the resources.

It is easy to see how the simulation strategy just described
can be modified to interact with real-time processes. Since
events have already h e n arranged i n a time-ordered
sequence, the simplest way to introduce real time into the
simulation is to synchronize the execution of these events
with an external clock. From a programming perspective.

Opening up the modeling loop to synchronize it with
external events allows us to tie the planning process to real-
time data such as the state of the spacecraft at any one time.
In our case, we concentrated on the state of the ACS
subsystem as modeled by the DARTS Shell system.
However, in order to carry out scheduling we needed to
endow Apgen with one more capability, namely the ability
to expand an activity concurrently with the modeling
process. The following example will clarify this
requirement. Suppose that the decision has been made to
schedule an observation. This means that we must expand
the requesting activity R into its constituents, which
typically include the following:

a pre-conditioning activity P1
a turnT
a post-conditioning activity P2

0 an data collection activity D 1 that instructs a
specific instrument to acquire the observation
data

data to the SSR
0 a data transfer activity D2 that transfers the

In traditional sequencing, R would be expanded into all its
constituents based on fixed expansion rules that reflect the
ground personnel’s understanding of how the SIC operates.
In particular, the duration of the turn activity T would be
computed based on formulas supplied by the SIC ACS
engineer. In the JIT approach, such formulas are replaced by
direct interaction with the ACS simulation tool, DARTS
Shell in our case. Since we don’t know when the turn will be
complete, we must put the expansion of activities that follow
Ton hold until T completes. This represents a change in
how the expansion software operates within the planner; we
refer to it as “concurrent expansion” in the discussion that
follows.

The Apgen implementation of concurrent expansion is
actually a two-phase process. The first phase takes place

7

before the real-time simulation is started. During this first
phase, background activities that are “cast in stone” are
expanded in the traditional way. This includes things such as
downlink opportunities and engineering maintenance
activitics. The reason for processing such activities first is
that they provide the necessary context in which scheduling
decisions can be made. For instance. i n order to decide
whether or not to start an observation, the S/C needs to
know how much time is available before the next downlink
opportunity. The purpose of the first phase is to provide the
planner with the ability to “peek into the future”, at least as
far as background activities are concerned.

The second, “scheduling” phase is then initiated by resetting
the internal clock to the start time of the overall plan. This
second phase operates at some multiple of real time and
relies on an inter-process communication (IPC) mechanism
to exchange data with the ACS simulation. As noted earlier,
the ACS simulation is slower than the modeling done within
the planner, and can be run at a maximum of 7 times real
time. In order to speed up the overall simulation process, we
increase speed to 3600 times real time immediately after
each turn, and fall back to 7 times real time immediately
before starting a new turn.

Another change that is required by the transition to a real-
time environment is the ability to communicate with other
processes. A widespread mechanism for implementing IPC
is the Berkeley socket interface, which is commonly
available on both UNIX and PC platforms. Sockets are a
low-level interface, but many public domain as well as
commercial “wrappers” are available to facilitate the task of
the integrator. We followed the lead of our co-workers and
chose to use the interface that is already available in the
DARTS Shell system, namely the Tool Command Language
(Tcl). We refer the reader to Ref. [2] for more details on this
topic.

The last step in implementing JIT planning is to put together
the real-time capabilities just discussed through an
adaptation file that provides the necessary “glue”. In our
case, we already had at our disposal an activity type that
could be used for expressing an observation request. All we
had to do was to modify the part of this activity that had to
do with slewing. The old slew activity was modified to
include the Tcl calls to the DARTS Shell simulator. Fig. 10
displays the new maneuver activity as displayed by Apgen,
together with the graphic display of the S/C as simulated by

T v n d t a t T m . T u n S t a t 1 u n . T m S t a r t

n

I K-Stntus kt lw-

IlLktiw

I f;ig I O : Mancuvcrs as simulated by Apgen communicating with DARTS Shell at 7 timcs real time I
8

DARTS Shell.

6. SUMMARY AND FUTURE WORK

The prototype JIT planning system discussed here was
implemented using pre-existing planning and simulation
tools with very few changes. It took us about 6 months of
time to articulate the concept of JIT planning well enough
that we could see how we would implement it. It took
another 6 months for us to produce the implementation
shown here, with one of us (A. K.) working half-time on this
project and the other (P. M.) providing consulting advice.

We believe that the work described here exemplifies an
integration style that will become more common as space
missions require more on-board autonomy. In our discussion
of JIT planning, we deliberately avoided the issue of what
takes place on the ground vs. what takes place on-board.
The use of high-performance, functional simulations of on-
board systems in ground data system should be encouraged,
because they provide better fidelity at lower cost than
ground-based S/C models. On the flight side, the on-board
use of ground-based planning tools such as Apgen would
provide flight engineers with ready-to-use, adaptable multi-
mission scheduling capabilities that would be costly to
implement from scratch.

Looking towards the future, we hope to have a chance of
infusing more planning technology into our JIT approach.
We have initiated a program of collaboration with our
colleagues at the NASA Ames Research Center and are
exploring concrete avenues for linking their planning tools
[5], [6] into the JPL suite of sequencing tools.

ACKNOWLEDGMENTS
Boris Semenov in Chuck Acton's group provided very
helpful guidance in how to link and use the Spice library.
Abhi Jain was most helpful in providing us with the DARTS
Shell simulation tool, which was developed by him and his
group at JPL. This work was performed by the Jet
Propulsion Laboratory, California Institute of Technology
under contract with the National Aeronautics and Space
Administration.

REFERENCES

[I] Jill C. Novak. Felesha Robertson, Application of Artificial
intelligence to Planning and Scheduling for Operations On-
hoard the Russian Mir Space Station, Proc. International
Workshop on Planning and Scheduling for Space Exploration
and Science, p. 28- I , 1997

[2] Jeffrey J. Biesiadecki, David A. Henriquez. and Abhinandan
Jain. A Resuable. Real-Time Spacecraft Dynamic Simulator, in
6Ih Digital Avionics Systems Conference, (Irvine, CA), Oct. 1997

[4] Pierre F. Maldague, Adans Y. KO. Dennis N. Page, and
Thomas W. Starbird, APGEN: A Multi-Mission Semi-Automated
Planning Tool, Proc. International Workshop on Planning and
Scheduling for Space Exploration and Science, p. 28- I , I997

[5] N. Muscettola, HSTS: Integrating planning and scheduling,
in Fox, M., and Zweben, M., editors, Intelligent Scheduling.
Morgan Kaufmann.

[6] Barney Pell, Erann Gat, Ron Keesing, Nicola Muscettola, and
Ben Smith, Robust Periodic Planning and Execution for
Autonomous Spacecraft, Proc. International Workshop on
Planning and Scheduling for Space Exploration and Science, p.
36- 1, 1997

Pierre Maldague is a software designer in the Ground Data
Systems Section of the Jet Propulsion Laboratory. Prior to
joining JPL in 1989, he developed mathematical algorithms
and applied them to physical systems in a wide variety of
settings, including Quantum Mechanics, medical imaging,
combustion in laminar flames, Diesel engine design,
visualization of Earth based on satellite data, Solids
Modeling, CAD/CAM, and image processing. He published
a number of papers on theoretical Solid-state Physics,
wrote software used in brain surgery, led R & D software
teams in several entrepreneurial ventures, and generally
has a great time trying to find the right questions to ask. He
has a MSEE from Louvain University (Belgium) and a Ph.
D. in Physics from MIT.

Aa'ans KO is the Development Manger for the Sequence
Subsystem of the Mission Services and Applications
Program at the Jet Propulsion Laboratory. During his
tenure at JPL, he made contributions to many Flight
Missions, including flight software for Voyager and mission
planning software for Galileo. He was also responsible for
High-speed Simulation for Cassini, and Uplink Operations
as a Team Leader for Cassini. Prior to joining JPL in 1983,
he worked on software for statistical analysis of natural
resources and built an IT department in Mainland China as
Project Manager for Hopewell Holding Co. Ltd. He holds a
B.Sc. in Computer Science from Utah State University and
an M.B.A. from UCLA..

[31 Charles H. Acton, Jr , Ancillury Data Services of NASA S
Nuvigution und Ancillary injn-motion Faciliry, Planetary and
Spacc Science, Vol. 44, No. I , pp. 65-70, 1996

9

