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Abstract

This paper is a theoretical and empirical investigation of
the connection between science, R&D and the growth of capital. 
Studies of high technology industries and recent labor studies
agree in assigning a large role to science and technology in the
growth of human and physical capital, although direct tests of
these relationships have not been carried out.  This paper builds
on the search approach to R&D of Ecenson and Kislev (1976) to
unravel the complex interactions between science, R&D, and factor
markets suggested by these studies.  In our theory lagged science
increases the retruns to R&D, so that scientific advance later
feeds into growth of R&D.  In turn, product quality improvements
and price declines lead to the growth of industry by shifting out
new product demand, perhaps at the expense of traditional
industries.  All this tends to be in favor of the human and
physical capital used intensively by high technology industries. 
This is the source of the factor bias which is implicit in the
growth of capital per head.  Our empirical work overwhelmingly
supports the contention that growth of labor skills and physical
capital are linked to science and R&D.  It also supports the
strong sequencing of events that is a crucial feature of our
model, first from science to R&D, and later to output and factor
markets.
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I. Introduction

Studies of high technology industries assign to science a

pivotal role in the conduct of R&D and the subsequent growth of

business capital, while labor economists have pointed to

technology as a key force behind the recent rise in the return to

skills . Together these findings imply strong links between1

knowledge and capital in its many forms, and yet the links have

been elusive. In seeking a remedy for this situation we are led

in two principal directions.

First, we apply Evenson and Kislev's (1976) search approach

to R&D to the relation between scientific and industrial

progress . A fundamental advantage of this approach is that the2

results of R&D are stochastic, thereby allowing for failure as

well as success in the quest for new technologies, with science

tilting the odds towards success.

 Second, we carry the link between knowledge and growth

beyond total factor productivity . The additional link with3

growth "explained" by factors follows from the dependence of

input growth on technology. The topic clearly touches on the role

of embodiment in growth . Knowledge is almost surely biased4

towards human and physical capital because of the embodying

function of capital . And though we cannot identify embodiment,5

still we can probe the relation between knowledge and particular

inputs for pertinent evidence . Indirect evidence for our6
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perspective is already present in studies of capital deepening.

General growth of human and physical capital per head has been

documented by Schultz (1961), Denison (1962), Griliches and

Jorgenson (1967), Becker (1975), Kendrick (1976), and Jorgenson,

Gollop, and Fraumeni (1987).

The theory proceeds from the assumption that science is

helpful in the R&D search process, so that advances in science

increase R&D. Furthermore, it assumes that human and physical

capital are employed intensively by R&D intensive industries, and

that demand curves for the output of such industries are shifted

out in response to quality improvements from new technology even

while costs decline, provoking entry and growth in input demand.

Factor bias then follows from the intensity assumptions.

   In the empirical work we find that science and technology are

biased in favor of physical capital, especially equipment. We

also find powerful effects in favor of college trained labor, and

from science to R&D. We employ two sets of manufacturing

production data. The first is Jorgenson, Gollop, and Fraumeni's

(1987). Their data include growth in labor, physical capital, and

intermediate goods. The second is from the Bureau of Labor

Statistics (Gullickson and Harper [1987]). It consists of

distinct categories of labor and capital plus intermediate goods.

We study growth in two kinds of physical capital, equipment and

all other, and two labor categories, college-educated workers and

less than college.
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Each has its advantages. The Jorgenson et alia data express

growth in the quantity and quality of inputs in convenient

summary form. But key avenues of technical change are concealed

by this aggregation. The BLS data are able to capture some of

these through the disaggregation of factor categories.

The paper is arranged as follows. Section II models the link

between knowledge and R&D, derives industry factor demand curves

in growth rate form, and draws implications for these demands.

Section III discusses the data we have collected to study this

problem. Estimates of input growth equations are reported in

section IV, section V concludes, and an Appendix spells out the

derivations. 

II. Analytical Framework

A.  Heterogeneous Firms and Technologies 

This paper relates factor growth and factor bias to

industrial R&D and academic science. To account for this behavior

we consider heterogeneous firms using distinct processes. We

depart from the idea of production as one process and use a

mixture of simple production functions to generate observed

factor biases. Our approach tallies closely with Census data,

which reveal large differences in plants within and between firms

(see Dunne, Roberts, and Samuelson [1989]).

Industries use a mix of processes, but most are unprofitable

and inactive at any one time. A key parameter that determines



4

activity is the productivity state, defined as best practice in

that process. In this paper, productivity evolves stochastically

with current R&D but stays the same when R&D is zero . And since7

process and product R&D are often inseparable, technology raises

both the demand curve and productive efficiency.

We sharply distinguish R&D spillovers and science in their

effects on the time path of the firm's R&D. Spillovers accelerate

productivity gains through imitation but have little or no effect

on technological opportunity. Spillovers tend to replace future

R&D with present R&D since less remains to be discovered if

opportunities are held constant. In contrast science improves the

distribution of returns to R&D. Otherwise R&D eventually ceases

because search over a fixed distribution encounters falling

payoffs as higher productivities are reached. In this manner

science sustains future as well as present R&D.

We proceed comparatively simply, leaving Section II.D to

informally extend our arguments to other cases. There are two

processes, 1 and 2. Identical type 1 firms specialize in process

1 and conversely for type 2s.  Specialization follows from a

comparative advantage argument. Firms stay type 1s even when

profits are higher for incumbent type 2s because they lack inputs

that would render them profitable as type 2s.

The scientific foundations of 1 stay the same, no R&D is

performed, and productivity stays the same. Since 1 relies on old

technology it uses unskilled labor intensively . In contrast, the8
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(1)

(2)

science underlying 2 changes rapidly, R&D is large, and

technology rises apace. Type 2 firms use skilled labor heavily in

line with rapid changes in their technology.

To keep matters simple there are two inputs, skilled and

unskilled labor. We could, at this stage, include several forms

of physical capital, but the analytical gains would not equal the

resulting notational complexity. Per firm quantities are output

q , unskilled labor l , skilled labor h , and productivity A ,it it it it

all type i (i=1,2). Production is Cobb-Douglas:

Diminishing returns prevail given A , so " +" <1. Assumed factorit li hi

intensity differences imply " >"  and " <" , while the staticl1 l2 h1 h2

technology of 1 means that A =A  for all t. Now, process 21t 1

employs R&D scientists and engineers (hereafter S&Es, or R )t

whose purpose is to raise future productivity. Thus R  is not ant

argument of (1), though past values of it influence the expected

value of A . p  is the price of output i, s  is the price of2t it jt

input j, the wage of S&Es is w , and amortized fixed costs aret

c . In terms of our notation profits are it

where R =0, since there is no R&D in process 1. (2) is concave in1t

labor and S&Es. Let E  be the expectation at time t and $ be thet

discount factor (0<$<1). Present value is then
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(3)

(4)

Market conditions are that process 1 is competitive so p1t

is fixed to individual firms. We assume that skills required of

innovative firms are limited in supply, so 2 is an oligopoly

limited to R&D firms with market power.

Outputs of 1 and 2 are substitutes in consumption. Also,

type i technology raises demand for good i and lowers demand for

j (i,j=1,2). Reflecting this, market demand is

where Q  is type i industry output. We have 0 <0 but 0 >0, i…j,it ii ij

since i and j are price substitutes; and we have , >0, but , <0,ii ij

i…j, since i and j are "quality" substitutes. Technical change in

good 2, the only active technology, lowers demand for 1 by

improving 2's quality and perhaps by reducing p . The demand for2

2 is increased by the same forces, and this is at the heart of

our explanation of factor bias within and between industries.

(1)-(4) comprise the production and revenue side of the industry.

B. Factor Demands at the Firm Level

Type 1 Firms

Decisions of type 1 firms are essentially static, involving

repeated choice of l  and h  to maximize (3) subject to (1) and1t 1t

(2). First order conditions are
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(5)

(6)

Part A of the Appendix derives factor demand curves from (5). In

log differential form these are

where all coefficients N  are negative because of the Cobb-ij

Douglas assumption.

Type 2 Firms

Type 2 firms solve an inherently dynamic problem, since R&D

involves search and the forecasting of future rewards. By hiring

appropriately trained S&Es, R&D firms learn about science and R&D

spillovers, apply that learning to industrial designs, and

produce goods embodying the designs whose lower cost and higher

quality are reflected in (1) and (4) above. For R&D to be

profitable firms must have property rights in their inventions

and market power despite imitation and entry. Imitation seems to

occur more rapidly than the acquisition of science (Griliches,

ed. [1984], Adams [1990]), and we emphasize this with lags of 0

and M on spillovers and science respectively.

S&Es (R ) perform two functions (Bernstein and Nadirit

[1989], Cohen and Levinthal [1989]). They improve productivity by
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(7)

(8)

increasing n , aided by R&D spillovers, and by searching thet

science literature for ways to raise quality and productivity. We

express these considerations in the rule,

where SP  is R&D spillovers and n  is concave. R  and SP  aret t t t

clearly complementary in this formulation . 9

Future productivity is a random variable which we call a ,2

as opposed to current productivity A . We assume that a  is2t 2

exponentially distributed with parameters 1  and 6 :t
10

The mean and variance of the exponential are E (a )=6+1/1  andt 2 t

V (a )=1/1 . Let the stock of scientific results be KN . R  andt 2 t t-M t
2

KN  increase the mean and variance by decreasing 1  and they aret-M t

again complementary, so 1 = 1(R ,KN ), where 1 , 1 , 1 <0. Int t t-M 1 2 12

this simple world a  is identically and independently distributed2

over projects. We assume that spillovers increase projects but

not the productivity distribution, while science shifts the

distribution but not projects. Though it is exaggerated we

believe in the asymmetry for the following reasons. Since firms

perform similar R&D spillovers are unlikely to change research

opportunities very much. Science does improve the distribution,

through well-founded departures from received knowledge.

We now proceed to the probabilities of failure and success
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(9)

(10)

(11)

(12)

in R&D. Let G  be the cumulative of a  and let A  be actual2t 2 2t

productivity. Then a project fails with probability 

The R&D program of a firm includes n  projects and fails becauset

none of these succeed in raising productivity. Given independence

over projects, the probability of failure is

and the probability of success is the complement,

The density for productivity improvements is therefore

In summary, (7)-(12) specify the R&D side of type 2 firms.

Type 2s maximize (3) subject to (1),(2),(4), and (7)-(12).

Controls are conventional labor and S&Es (l , h , and R ). State2t 2t t

variables are productivity, the stock of academic science, R&D

spillovers (A , KN , SP ), and prices, suppressed here for2t t-M t

simplicity. The optimization method is Dynamic Programming.

The value of the firm equals current profit plus the

expected value next period. This is the value if productivity

stays the same times the probability of it staying the same, plus

the expected value given varying degrees of improvement.
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(13)

(14)

(15)

(16)

Bellman's equation for this problem is

We assume that (13) is concave in the states and controls. First

order conditions for l and h equate marginal revenue product with

factor price: 

where mr =(1-f /00 0)p , f  is market share, and 1>f /00 0. For2t t 22 2t t t 22

later reference, in our symmetric case f  equals 1 over thet

number of firms N . Note that l and h depend retrospectively on2t

technology since marginal product depends on A .2t

 The first order condition for S&Es, reflecting their

forward-looking aspect, equates marginal benefit with earnings:

The right hand terms of (15) are signed as follows. Using (7) and

(10) the effect of S&Es on the probability of failure is

(16) is less than zero . This follows from G <1, so RnG <0, and11
2t 2t

from the fact that R  shifts the productivity distribution to thet
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(17)

(18)

right, so MG /MR <0. This last result implies that the integral2t t

term in (15) is positive. From (11) the integrand is

By (16) this is positive on average . Put differently, S&Es 12

increase the firm's value given that A  is surpassed.2t

(15) shows that the demand for S&Es depends prospectively on

technology and the market and that the probability that R&D fails

goes to 1 given KN , since A  rises against fixed opportunities.t-M 2t

Thus S&Es go to zero under static conditions of knowledge.

(14) implies a system of demands for l  and h . The system2t 2t

is nonlinear because mr  is a nonlinear function of firm output.2t

Part B of the Appendix derives the following linear approximation

in factor growth rates:

where N  is the jth factor price elasticity for z, and N  is2zj 2A

the technology elasticity. Given the Cobb-Douglas assumption, it

comes as no surprise that price elasticities are negative and

that the technology elasticity is positive and neutral. 

While a detailed analysis is beyond this paper, we comment

briefly on the demand for S&Es. Qualitative properties can be
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(19)

(20)

derived from the value function. The value function is concave in

S&Es and the effect of S&Es increases as spillovers and science

increase. Using these properties part C of the Appendix shows

that R  decreases with scientific earnings and increases with R&Dt

spillovers and stocks of academic science:

X = a vector of future prices. From what has gone before N <0,t Rw

N >0, and N >0. Effects of future prices are as follows. GrowthRSP RKN

in output price increases growth of S&Es, but increases in real

interest lower growth. Comparison of (18) with (19) shows that

science cascades through time, affecting S&Es with lag M, only

later affecting l and h through A  .2t

C. Industry Factor Demands

In our representative firm setting, industry input growth

equals growth in the number of firms plus employment growth per

firm in each process. As before let z  stand for any input. Sincet

N  is the number of firms and z  is employment of z per firm init it

process i, process employment is Z =N z , while industryit it it

employment is Z =Z +Z . Log differentiating Z , percentage growtht 1t 2t t

in industry employment is the weighted sum of employment growth

per firm and growth in the number of firms,
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(21)

where <  is the type 2 share in the employment of Z. 2z

Employment growth per firm derives from the input growth

equations (6) and (18). However, these depend on equilibrium

growth in output price, marginal revenue, and entry. Thus entry,

output price, and per firm employment growth are simultaneously

determined by factor prices and technology.

Part D of the Appendix isolates the effects of changes in

A  by holding factor prices and thus p  constant . In this case,2t 1t
13

reduced form, equilibrium growth of p  and mr  is2t 2t

The signs of d ,h ,k -- these "supply" terms are defined in thei i i

Appendix-- are all positive. Furthermore, , >0, and 0 <0, and22 22

the denominators are strictly positive. The numerator of the

expression for DRnp , on the other hand, combines two opposing2t

effects of technical progress. ,  expresses the rightward shift22

in demand due to higher quality, which tends to raise price. d2

reflects entry and increased output per firm, which tend to lower

price. The expression for DRmr  includes these two effects and2t

adds a third, the direct effect on entry from lower average cost.

Equilibrium entry, which is determined by price-average cost

margins (see Bresnahan and Reiss [1991]) is given by
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(22)

(23)

The equation for DRnN  reflects price and quality substitution as1t

does that for DRnN . However, the latter also includes cost2t

reductions that encourage entry. Since 0 >0, exit from 1 occurs12

given that p  declines (, <d ), and quality substitution2t 22 2

increases the rate of exit from 1, since , <0. The reverse12

occurs in process 2. Note that it is quite possible to observe

exit from 1 in spite of a rise in p , and entry into 2 despite a2t

fall in p . Hereafter we shall take the pattern of exit from 12t

and entry into 2 as the leading case for analysis, because

industries with growing technologies often seem to show entry

despite falling product price.  

 Combining (6), (18), (20)-(22) we obtain industry growth in

Z  due to technology,2t

where N  and N  are common effects of marginal revenue and2mr 2A

technology on l and h in process 2 (see the Appendix). In our

leading case, growth in A  causes entry in 2, so that N >0, and2t 2NA

exit from 1, so that N <0. Now, there are two forces at work in1NA

our model that generate growth of particular inputs. First there
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(24)

is the rightward shift of demand for type 2 output due to rising

product quality. Second, there is the concentration of particular

inputs in process 2, the growing sector. With this in mind we are

ready to discuss factor biases.

We consider within and between industry effects in turn.

Within industry factor bias is measured by the difference in

growth rates of high and low skilled labor. Evaluating (23) for

H  and L  and taking the difference yieldst t

Since the high technology sector is skill intensive, < >< . And2H 2L

because of entry into 2 and exit from 1, N -N >0. If incumbents2NA 2NA

in process 2 share the expansion (N N +N >0) then growth of2mr 2mrA 2A

high skilled labor exceeds that of low skilled.

Between industry effects are complicated by differing demand

conditions, but the same key elements should serve a similar

role. Factors should grow faster in more rapidly changing

industries, provided that product demand shifts and entry are

dominant. Simply treat 1 and 2 as homogeneous industries rather

than processes. In that case industry 1 contracts due to price

and quality substitution, while 2 expands. Our framework

accomodates factor bias both within and between industries. Both

effects seem to favor high skilled labor in the U.S. during the

1963-1988 period (Katz and Murphy [1992]).

 Our theory traces technology back to its origins at
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(25)

(26)

(27)

different levels of the science and technology system, since

productivity growth can be traced to science, R&D spillovers,

S&Es, and a component reflecting luck in R&D. To see this, note

that actual productivity growth equals expected growth plus the

difference between actual and expected:

We approximate the first term on the right using

EDRnA .(EA -EA )/EA . Supposing that the flow of R&D activity2t 2t+1 2t 2t

depends on the stock of scientific knowledge, and as in Bartel

and Lichtenberg [1989], on recent changes in the stock, and on

S&Es, we can futher decompose expected productivity growth.

Expanding EA  around EA  to the first order using rates of2t+1 2t

growth in science, R&D spillovers, and S&Es, and expressing the

result in elasticity form we find

Differences in lags reflect shorter lags on technology as

compared with science and the idea that knowledge must first be

acquired before it can be applied to the search for productivity

gains. Substituting (26) in (25) yields

To a first approximation (27) shows that productivity growth is

due to current luck in R&D search, recent R&D spillovers, S&Es at
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a somewhat earlier time, and knowledge still further back.

Substituting (27) into (23) we see that the same factors tend to

accelerate growth of inputs in process, or industry, 2. 

D. Extensions

Allowing for more processes and more dynamic technologies

would allow us to generate a richer set of factor biases. Similar

to the breakdown by types of labor, we could consider multiple

forms of capital, especially equipment versus other capital, in

which equipment represents the particular embodiment of new

technologies (DeLong and Summers [1991]). Equipment would exhibit

faster growth than other capital since it conveys new technology.

We could allow, thirdly, for direct effects of S&Es on

production. This extension would break the separability of the

input demand systems and subject S&Es to realized productivity

shocks, though to a lesser degree than ordinary labor. Since we

are interested in the research function of S&Es, we are

consigning their human capital function to high skilled labor.

For this reason the extension would address measurement of true

research activity rather than any substantive change.

III. Description of the Knowledge Data

Our production data are discussed with considerable clarity

in Jorgenson et al. (1987) and Gullickson and Harper (1987), so

we focus on our measures of knowledge and R&D in industry.
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Knowledge is a stock that is increasingly based on academic

science, despite the dominance of trial and error in earlier

times (Rosenberg [1982]). Presumably this change reflects

increasing division of labor in knowledge production: see Rosen

(1983), and Becker and Murphy (1992) for related analyses.

 But different industries draw upon science differently, and

we assume that the result of their absorption is to create two

stocks of applied knowledge. One represents externalities

generated within an industry. This is the own stock. The other is

the externality between industries, or spillover stock. The

destination of the externalities is controlled by imitative R&D,

as in Rosenberg (1976) and Schmitz (1989). Each depends on

academic science and includes a repackaging-imitation mechanism

mapping science into industry.

Since the knowledge stocks depend on underlying science and

applied R&D resources, it should come as no surprise that they

turn out to be index numbers of interactions between lagged

industry scientists and stocks of academic papers. Two

assumptions underlie the indexes: that scientific papers are

units of theoretical innovation in the same sense as patents are

units of applied innovation; and that industrial S&Es index the

value of science to industry through willingness to pay.

Moreover, the theory tells us that lagged scientists, even

interacted with lagged science stocks in the absorbed stock of

knowledge, are predetermined variables in input demand curves.
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(28)

Our index of the own stock of knowledge in an industry is

in which R  is the employment of scientists in industry i andjt-D

field j at time t-D and the N  are article count stocks injt-L

field j at time t-L. This statistic requires distributions of

industrial scientists by field and stocks of scientific papers.

The industrial distribution of scientists derives from U.S.

Department of Labor (1973), National Science Foundation (various

years), and unpublished National Science Foundation tabulations.

These sources yield R  in (28), which we introduce by itself injt-D

differenced form in the regressions below. 

Sources for the article count stocks are described at length

in Adams (1990). Annual data on scientific papers are drawn from

major abstracting journals in their respective fields. These are

world-wide flows of publications usually beginning early in the

20th century and ending in 1983. Flows are accumulated into

stocks at various rates of obsolescence. Weighting the stocks by

industry scientists and summing yields (28). In the regressions

below we sometimes enter the difference of (28) in the recent

past to capture impact effects of newer academic research. 

Advantages of the scientific papers entering the stock are

that they stand for the underlying science rather than industrial

development; that they cover a wide range of studies; that the

series begin earlier than R&D and offer greater flexibility in
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(29)

testing lags in effect; that, given their world-wide scope, they

are more exogenous than R&D; and that, while papers vary in

value, the mean value is captured in large samples.

 The interindustry spillover stock is defined as

Cos 1  is the uncentered correlation between S&Es in industry iit

in different fields and their counterparts in the rest of

industry. The remainder of (29) is the absorbed stock elsewhere,

defined as in (28), but using as weights R , S&Es in field j injt

the rest of industry. 

We also employ estimates of R&D stocks and flows by applied

product field-- industry of use-- from 1950 to 1986. The flow

data were linked to research laboratory data classified by

industry in 1960 and before, at intervals extending back to 1921.

The resulting series extend from 1921-1986 .14

This concludes the description of the technology data.

IV. Empirical Results

A. Transition to Empirical Work

Our theory imposes a tight sequencing of events running from

sceince to R&D in which percentage growth of inputs is treated as

an approximate log linear function of percentage growth in input

prices, percentage growth of nearly contemporaneous R&D

expenditures, recent percentage growth of S&Es, percentage growth
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(30)

in the stock of knowledge somewhat further in the past, and the

stock of knowledge, perhaps extending from the distant past. We

follow this approximation, testing over various lags for the

sequencing of events described, and finding, on usual criteria of

statisticial significance, that effects of R&D are indeed the

most recent, followed by growth in S&Es, and lastly by the stock

of knowledge and its growth. Thus the sequencing argument

receives considerable support in the pretests.

We depart from the elasticity form of the factor demands

(see eq. (23), (25), and (26) above) in the case of our

technology variables. Since we use pooled data across industries

and time, we hesitate to force constant technology elasticities

across industries. Instead we convert products of elasticities

and technology growth rates into products of derivative effects

on factors and of technology divided by input levels. Considering

one technology term, and letting J be a technology indicator, 

Z  is lagged on the right to avoid division error bias witht

factor growth DRnZ  in the demand equation. The reason for t

conversion to intensity form is that effects of technology on

inputs are more nearly equal across industries than are the

elasticities. And the fit of the intensity regressions judged by

adjusted R  is in fact superior to the fit of the constant2

elasticity regressions. 
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Table 1 offers a description of the technology variables in

intensity form. In the pretesting significant effects were found

only for very short lags on R&D of 1-2 years. Somewhat stronger 

results were found on lags of 1-10 years on S&Es, lags of 5-10

years on academic research in computer science and engineering,

and 20-30 years on basic science research in chemistry, physics,

and the like. Our choice of technology indicators is conditioned

on collinearity diagnostics (Belsley, Kuh, and Welsch [1980]),

which strongly suggested that growth in the industry knowledge

intensity be replaced by growth in the knowledge intensity per

S&E. With that substitution, collinearity is no longer a major

issue in our data. Tables 2 and 3 display descriptive statistics

on rates of input growth and the main science and technology

indicators for each of our two samples. From the factor growth

rates in Table 2 we observe that capital and intermediate goods

rise relative to labor. But Table 3 shows that college trained

labor rises quite rapidly, noncollege hardly at all. The large

size of the spillover intensity in either Table reveals the large

number of sectors entering this variable and an average cosine

between scientific employments (see (30)) of about 0.6. Finally,

variation in the same intensity across factors is due to

differences in factor employments. Since college employment is

atypically low, though fast growing, its intensities are

unusually large. 
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Table 1
Description of Technology Indicators

Concept Formula Lags
Selected

in
Pretest

Industry
Coverage

Intensity of Own
Knowledge Stock in
an Industry;
Intensity Relative
to Input Z)

KN /Z ; see (28)t t-2

of the text for
the numerator 

5 years
on S&E
weights;
5-20
years on
article
counts

14-15
manuf.
industries 

Growth of the Own
Knowledge Intensity

(KN -KN )/5Zt t-5 t-2 past 5-
10 years
of
growth

14-15
manuf.
industries

Growth of R&D
Spending Intensity

(RD -RD )/Zt-1 t-2 t-2 last
period's
growth

14-15
manuf.
industries

Growth of Industry
S&Es

(SE -SE )/10t t-10 growth
over
past 10
years

14-15
manuf.
industries

Spillover Stock of
Knowledge Between
Industries

SP /Z ; see (29)t t-2

of the text for
the numerator

5 years
on S&E
weights;
10-30
years on
article
counts

18 manuf.
industries
; 9
sectors
outside
manuf.



24

Table 2
Means and Standard Deviations of

Input Growth and Selected Science and Technology Indicators
Jorgenson, Gollop, and Fraumeni Data
(Standard Deviations in Parentheses)

Variable Labor Capital Intermediate
Goodsa

Rate of Growth 0.014
(0.066)

0.041
(0.046)

0.038
(0.117)

Own Stock of
Knowledge
Intensity

8.1
(6.7)

5.4
(5.0)

5.9
(6.4)

Spillover Stock of
Knowledge
Intensity

297.2
(210.6)

177.9
(130.7)

213.9
(225.8)

Change in Real R&D
Intensity

3.1
(11.0)

3.2
(10.9)

2.9
(10.1)

 Intermediate goods include materials, services, and energy.a

Table 3
Means and Standard Deviations of

Input Growth and Selected Science and Technology Indicators
Bureau of Labor Statistics Data

(Standard Deviations in Parentheses)

Variable College
Trained
Labor

Non-
College
Labor

Equip-
ment

Capital

Other
Cap.a

Intermed-
iate
Goods

Rate of
Growth

0.038
(0.063)

 0.0003
(0.054)

0.038
(0.031)

0.029
(0.038)

0.032
(0.074)

Own Stock of
Knowledge
Intensity

55.5
(29.3)

12.1
(12.5)

13.6
(14.9)

8.9
(8.2)

7.5
(7.4)

Spillover
Stock of
Knowledge
Intensity

2849.3
(2382.5)

407.6
(351.7)

427.5
(372.9)

301.8
(228.2)

258.5
(189.1)

Change in
Real R&D
Intensity

21.0
(52.5)

3.9
(10.6)

6.5
(21.3)

4.2
(12.7)

3.2
(8.8)
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Notes.  All other capital includes buildings, land, anda

inventories.
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B. Findings from the Jorgenson, Gollop, and Fraumeni Data

Tables 4 to 6 present estimated factor growth equations

using the Jorgenson data. Dependent variables in all these tables

are annual percentage rates of growth in labor, capital, and

intermediate goods, just as in Table 2.

Since we are regressing small growth rates on technology

intensities which are large in the case of the knowledge stocks

(see Table 2), the estimated coefficients are rather small.

Furthermore, the factors entering the denominators of the

intensities vary in size, causing movements in the coefficients

in the opposite direction. This suggests that mean effects should

be reported, the product of means of the independent variables

and their regression coefficients. Also, besides indicators of

science and technology, all equations include growth in the three

factor prices, the Federal Reserve Board's capacity utilization

index, and growth in the price of energy. The last two variables

control for the business cycle and energy price shocks. However,

to save space, and since the other variables typically behave as

expected, we limit our reporting to the science and technology

indicators and summary goodness of fit statistics.

 Table 4 reports regressions omitting industry dummies. This

means that the estimated coefficients combine within and between

industry effects. Table 4 shows generally positive and

significant effects of science and technology on the growth of

capital and labor, and very little for intermediate goods, but



27

with some differences. Stocks of knowledge favor the growth of

labor and capital, particularly capital. "Shock" effects of

growth in the stock of knowledge and R&D spending are the

reverse, promoting growth of labor but not capital. One

interpretation is that the shock effects result in capital

obsolescence, even though knowledge builds capital in the long

run, as is shown by the significant effects of the knowledge

stocks on the growth of capital. As in Bartel and Lichtenberg

(1989), shocks may promote human capital to assist in the

adjustment to new technology.

Table 5 includes industry dummies. Curiously, the resulting

within industry effects, although similar to before, are even

more favorable to science and technology. Notice that shock

effects of knowledge continue to be strong in the labor equation,

but not for capital. It seems strange that when cross industry

variation is discarded the findings should increase in

significance. The reason is probably that industries decline for

reasons that are outside our hypothesis, for example increased

foreign competition, and that this biases cross industry effects

downward.

Table 6 revisits the setup of Table 4 allowing for

endogeneity of the factor prices. The method of estimation is

3SLS. The system contains six equations corresponding to prices

and quantities for the inputs . Though the results for capital15

are somewhat weaker, generally the findings are similar to Table
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4. This is because the second stage equations explain much of the

variation in growth of the factor prices.



29

Table 4

Academic Science, Industrial R&D, and the Growth of Inputs
Findings from the Jorgenson, Gollop, and Fraumeni Data

Within and Between Industry Regressions
Dependent Variable: % Growth of Factors

(t statistics in parentheses)
[mean effects in brackets]

Variable or
Statistic

 Labor

4.1

   Capital 

4.2

Intermediate
Goods
  4.3

Industry
Dummies

No No No

Growth in R&D
Spending

0.79x10-3

(2.9)
[0.0022]

0.38x10-3

(1.9)
[0.0012]

0.89x10-3

(1.6)
[0.0026]

Own Stock of
Knowledge

1.18x10-3

(2.4)
[0.0095]

2.15x10-3

(3.8)
[0.0115]

1.79x10-3

(1.3)
[0.0053]

Growth in Own
Stock of
Knowledge per
S&E

1.44
(2.8)

[0.0055]

-1.84
(-2.6)

[-0.0026]

1.36
(1.0)

[0.0023]

Annual Growth
in S&Es over
the past 10
years

-0.03
(-1.0)

[-0.0026]

-0.04
(-1.9)

[-0.0039]

-0.06
(-1.0)

[-0.0053]

Spillover
Stock of
Knowledge

-0.01x10-4

(-0.0)
[-0.0002]

0.83x10-4

(5.1)
[0.0149]

0.15x10-4

(0.5)
[0.0033]

Estimation
Method

 OLS OLS OLS

Root MSE 0.058 0.040 0.105

Adjusted R2 0.235 0.249 0.190

F Statistic 13.9 14.9 10.8
Notes. Sample is 15 manufacturing industries. Period is 1952-
1979. Other variables in the regression include growth in all 3
factor prices, growth in the price of energy, and the Federal
Reserve Board index of capacity utilization.
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Table 5

Academic Science, Industrial R&D, and the Growth of Inputs
Findings from the Jorgenson, Gollop, and Fraumeni Data

Within Industry Regressions
Dependent Variable: % Growth of Factors

(t statistics in parentheses)
[mean effects in brackets]

Variable
or

Statistic

 Labor

5.1

  Capital 

5.2

Intermediate
Goods

  5.3  

Industry
Dummies

Yes Yes Yes

Growth in R&D
Spending

0.62x10-3

(2.6)
[0.0019]

0.53x10-3

(2.7)
[0.0017]

0.58x10-3

(1.1)
[0.0017]

Own Stock of
Knowledge

2.30x10-3

(2.4)
[0.0185]

4.48x10-3

(2.8)
[0.0240]

4.93x10-3

(1.5)
[0.0292]

Growth in Own
Stock of
Knowledge per
S&E

1.82
(4.2)

[0.0070]

-0.40
(-0.5)

[-0.0006]

4.45
(3.1)

[0.0075]

Annual Growth
in S&Es over
the past 10
years

0.03
(1.2)

[0.0032]

-0.03
(-1.2)

[-0.0025]

0.07
(1.2)

[0.0064]

Spillover
Stock of
Knowledge

0.56x10-4

(2.0)
[0.0167]

2.54x10-4

(4.6)
[0.0452]

0.81x10-4

(0.8)
[0.0174]

Root MSE 0.047 0.037 0.094

Adjusted R2 0.488 0.353 0.357

F Statistic  17.6  10.5  10.7
Notes. Sample is the same as in Table 1.
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Table 6

Academic Science, Industrial R&D, and the Growth of Inputs
Findings from the Jorgenson, Gollop, and Fraumeni Data

3SLS Between and Within Industry Regressions
Dependent Variable: % Growth of Factors
(asymptotic t-statistics in parentheses)

[mean effects in brackets]

Variable or
Statistic

 Labor

6.1

  Capital 

6.2

Intermediate
Goods

  6.3  

Industry
Dummies

No No No

Growth in R&D
Spending

0.71x10-3

(2.8)
[0.0022]

0.24x10-3

(1.5)
[0.0008]

1.05x10-3

(2.0)
[0.0031]

Own Stock of
Knowledge

0.94x10-3

(2.2)
[0.0075]

1.16x10-3

(2.6)
[0.0062]

0.80x10-3

(0.7)
[0.0047]

Growth in Own
Stock of
Knowledge per
S&E

1.29
(3.0)

[0.0050]

-0.45
(-0.8)

[-0.0006]

1.62
(1.4)

[0.0027]

Annual Growth
in S&Es over
the past 10
years

-0.01
(-0.4)

[-0.0009]

-0.01
(-0.8)

[-0.0013]

-0.02
(-0.3)

[-0.0015]

Spillover
Stock of
Knowledge

-0.03x10-4

(-0.2)
[-0.0009]

0.42x10-4

(3.2)
[0.0076]

-0.06x10-4

(-0.2)
[-0.0012]

Estimation
Method

3SLS 3SLS 3SLS

Notes. Sample is 15 manufacturing industries. Period is
1953-1979. The system to which 3SLS is applied includes the
3 input growth equations and the 3 input price growth equations.
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Finally, we estimated equations relating percentage growth in R&D

to science intensity. A representative equation, where the intensities

are relative to R&D stock, is the following (t-statistics in

parentheses):

% change in R&D stock= 0.045+ 0.363*(own knowledge intensity)+
                                    (7.2)     
            13.209*(change in knowledge intensity per S&E)-
             (2.1)
             0.0001*(spillover knowledge intensity)+...+
             (-0.5)
                       Adj. R =0.248.2

Other variables in the equation included input price growth, growth in

energy price, and capacity utilization. The preferred lags resembled

closely those in the input growth equations. This too suggests the

sequencing notion of Section II.C between science and R&D.

C. Findings from the BLS Data

Table 7 reports findings from BLS data that separate college

trained from noncollege trained labor and equipment capital from other

capital . The idea of this table is that high skilled labor embodies16

the knowledge required by fast growing processes, and that equipment

capital is more likely to embody the fruits of sectoral R&D than is

other capital. The results for college trained labor are supportive,

even though they are downward biased due to the large errors in the

college trained series . As far as equipment capital is concerned,17

mean effects for the own industry science and technology variables are

somewhat in its favor. But interindustry knowledge effects are the

reverse, suggesting that disembodied spillovers between industries
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also promotes growth of capital and industry. The generally strong

links between human and physical capital are consistent with

Dertouzos, et al. (1989), which promotes the wisdom of technical

sophistication, and bureaucratic attneuation, in successful plant

retoolings. 

Table 8 presents results with industry dummies. In some ways the

findings for the college trained are weaker, but knowledge spillovers

are stronger, and the bias against noncollege labor continues to

prevail. In relative terms the results for equipment and other capital

remain unchanged, though links with technology in both sets of results

are generally stronger than in Table 7. Thus the results for capital

strengthen at the expense of labor. The unavoidable time series errors

in the college trained series very likely play a role in this.

Table 9 presents 3SLS results which treat input prices as

endogenous . These are counterparts to Table 7 since industry dummies18

are omitted. As was the case with the Jorgenson data, findings for the

most part stay the same. This concludes the presentation of the

empirical work.
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Table 7

Academic Science, Industrial R&D, and the Growth of Inputs
Findings from the Bureau of Labor Statistics Data

Within and Between Industry Regressions
Dependent Variable: % Growth of Factors

(t statistics in parentheses)
[mean effects in brackets]

Variable
or
Statistic

        Labor
             
 College  Noncollege

    7.1        7.2

       Capital

 Equipment    Other

    7.3        7.4

Intermed-  
  iate
  Goods

   7.5  

Industry
Dummies

 No No    No  No No

Growth in
R&D
Spending

0.16x10-3

(2.9)
[0.0034]

0.28x10-3

(1.6)
[0.0011]

0.14x10-3

(2.3)
[0.0009]

-0.04x10-3

 (-0.3)
[-0.0002]

-0.41x10-3

(-1.1)
[-0.0013]

Own Stock
of
Knowledge

0.32x10-3

(3.0)
[0.0177]

0.09x10-3

(0.5)
[0.0011]

0.95x10-3

(8.4)
[0.0129]

1.40x10-3

(5.6)
[0.0116]

1.28x10-3

(2.7)
[0.0096]

Growth in
Own Stock
of
Knowledge
per S&E

 0.02
(0.7)

[0.0011]

 0.14
(1.0)

[0.0017]

-0.34
(-3.2)

[-0.0024]

-0.78
(-4.0)

[-0.0045]

-0.63
(-1.6)

[-0.0034]

Annual
Growth in
S&Es over
the past
10 years

 0.01
(2.0)

[0.0063]

 0.03
(2.8)

[0.0031]

-0.01
(-2.3)

[-0.0023]

0.01
(0.7)

[0.0008]

0.03
(1.3)

[0.0031]

Spillover
Stock of
Knowledge

0.04x10-4

(2.9)
[0.0114]

-0.04x10-4

(-0.5)
[-0.0016]

0.04x10-4

(1.3)
[0.0019]

0.34x10-4

(4.9)
[0.0103]

0.36x10-4

(2.2)
[0.0094]

Estimatio
n Method

OLS OLS OLS OLS OLS

Root MSE 0.056 0.037 0.024 0.032 0.059

Adjusted
R2

0.208 0.528 0.412 0.308 0.361

F
Statistic

 11.4  45.2  29.5  19.2   24.0
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Notes. Sample is 14 manufacturing industries. Period is 1953-1986.
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Table 8

 Academic Science, Industrial R&D, and the Growth of Inputs
Findings from the Bureau of Labor Statistics Data

Within Industry Regressions
Dependent Variable: % Growth of Factors

(t statistics in parentheses)
[mean effects in brackets]

Variable
or
Statistic

Labor

College  Noncollege

 8.1         8.2

Capital

Equipment  Other

8.3        8.4

Intermed-
iate
Goods

  8.5  

Industry
Dummies

Yes Yes Yes Yes Yes

Growth in
R&D
Spending

0.14x10-3

(2.5)
[0.0029]

0.29x10-3

 (1.6)
[0.0011]

0.19x10-3

(3.2)
[0.0012]

-0.02x10-3

 (-0.2)
[-0.0009]

-0.55x10-3

(-1.5)
[-0.0017]

Own Stock
of
Knowledge

0.32x10-3

(1.6)
[0.0177]

0.12x10-3

(0.4)
[0.0014]

1.66x10-3

(5.2)
[0.0224]

2.2x10-3

(3.6)
[0.0196]

0.83x10-3

(0.8)
[0.0062]

Growth in
Own Stock
of
Knowledge
per S&E

 0.05
(1.5)

[0.0027]

0.06
(0.4)

[0.0007]

-0.40
(-3.4)

[-0.0030]

-0.79
(-3.9)

[-0.0045]

-0.98
(-2.3)

[-0.0053]

Annual
Growth in
S&Es over
the past
10 years

0.01
(1.7)

[0.0063]

0.03
(2.0)

[0.0031]

-0.01
(-2.3)

[-0.0021]

0.01
(1.0)

[0.0013]

0.02
(0.8)

[0.0021]

Spillover
Stock of
Knowledge

0.14x10-4

(4.5)
[0.0399]

0.14x10-4

(1.0)
[0.0057]

0.02x10-4

(0.2)
[0.0010]

0.34x10-4

(4.9)
[0.0130]

1.55x10-4

(3.5)
[0.0399]

Estimation
Method

OLS OLS OLS OLS OLS

Root MSE 0.055 0.036 0.023 0.032 0.059

Adjusted
R2

0.244 0.559 0.475 0.330 0.369

F
Statistic

   7.1  25.1  18.7  10.6  12.5
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Notes. Sample is 14 manufacturing industries. Period is 1953-1986.
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Table 9

Academic Science, Industrial R&D, and the Growth of Inputs
Findings from the Bureau of Labor Statistics Data

3SLS Between and Within Industry Regressions
Dependent Variable: % Growth of Factors
(asymptotic t-statistics in parentheses)

[mean effects in brackets]

Variable
or

Statistic

 Labor

College  Noncollege

9.1       9.2

  Capital 

Equipment   Other 

 9.3        9.4

Intermed-
iate
Goods

 
  9.5  

Industry
Dummies

 No No  No  No  No

Growth in
R&D
Spending

0.14x10-3

(2.5)
 [0.0029]

0.36x10-3

(2.1)
[0.0014]

0.13x10-3

(2.2)
[0.0008]

0.00x10-3

(0.1)
[0.0000]

0.18x10-3

(0.5)
[0.0006]

Own Stock
of
Knowledge

0.28x10-3

(2.6)
 [0.0155]

0.12x10-3

(0.8)
[0.0015]

0.74x10-3

(6.5)
[0.0100]

0.71x10-3

(3.2)
[0.0063]

0.43x10-3

(0.9)
[0.0032]

Growth in
Own
Stock of
Knowledge
per S&E

 0.01
 (0.2)

 [0.0005]

0.23
(1.9)

[0.0028]

-0.25
(-2.3)

[-0.0020]

-0.63
(-3.4)

[-0.0038]

-0.19
(-0.5)

[-0.0011]

Annual
Growth in
S&Es over
the past
10 years

 0.01
(1.9)

 [0.0063]

0.03
(2.8)

[0.0031]

-0.01
(-1.4)

[-0.0019]

0.02
(1.7)

[0.0024]

0.04
(1.7)

[0.0036]

Spillover
Stock of
Knowledge

0.03x10-4

(2.8)
 [0.0114]

-0.06x10-4

(-1.0)
[-0.0024]

0.01x10-4

(0.3)
[0.0004]

0.16x10-4

(2.6)
[0.0048]

-0.00x10-4

(-0.0)
[-0.0001]

Estimation
Method

3SLS 3SLS 3SLS 3SLS 3SLS

Notes. Sample is 15 manufacturing industries. Period is 1953-1986. The
system to which 3SLS is applied includes 10 equations: 5 for input
growth and 5 for input price growth.



39

V. Conclusion

This paper has presented a new model of industry growth with

factor bias that is a synthesis of a large body of earlier research.

The theory exposits the connections between science and technology by

assuming that science plays a critical role in the R&D search process,

and by assuming that human and physical capital are employed

intensively by technologically dynamic processes and industries.

Precisely because of their growing technology the latter experience

large and favorable shifts in product demand, and considerable growth

in diverse forms of capital. Our empirical findings are supportive of

this idea, and also of the idea that science and technology cascade

through time, with the results of science leading the results of R&D.

Science and technology matter to the growth of inputs and industries,

and they appear to be a potent force responsible for capital deepening

in the U.S. and other economies. They are a powerful mover of the

entire structure of production, with consequences no doubt mostly

unforeseen by the originators of the underlying science.
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(A.1)

(A.2)

(A.3)

(B.1)

Appendix

Part A. Derivation of Derived Demands by Type 1 Firms

Taking logs of (5) yields

Solving (A.1) we reach

Diminishing returns (" +" <1) implyl1 h1

First differencing yields the derived demands in growth rate form,

Part B. Derivation of Derived Demands by Type 2 Firms

We approximate factor growth rates for type 2 firms. Consider

(14) at t+1 and expand around period t values to the first order. The

result is 
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(B.2)

(B.3)

(B.4)

(B.5)

where zero order terms vanish by (14) and the vector on the right is  

Note that changes in mr  are exogenous changes on the right.2t

Factors are complements so off-diagonal terms on the left of

(B.1) are positive. Diagonal terms are negative since marginal product

is diminishing. Multiplying by the inverse of the matrix on the left

of (B.1) we arrive at the expression

where c  and *A*, the determinant of the left hand matrix of (A.3),iit

are positive and negative by the second order conditions. Further,

factor complementarity implies that c >0, sinceijt

The growth rate form of (B.3), which is (18), is:

The signs, negative except for N , follow from signs of the c .2A ijt

Furthermore, N  is positive and the same for l  and h , as can be2A 2t ht
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(C.1)

(C.2)

(C.3)

shown by expanding (B.3) in the percentage change form of A . 2t

Part C. Derivation of Derived Demands for S&Es by Type 2 Firms

We apply a similar procedure to part B to the derived demand for

S&Es. Index (15) at time t+1, and expand in Taylor's Series to the

first order around period t values:

where the zero order term vanishes by (15). On the right we have

Solving (C.1) we obtain 

The term M EV /MR  is negative by the concavity of the value function2 2
t+1 t

in R . (C.3) in log differential form is (19).t

D. The System of Industry Relationships

Equilibrium expressions for entry and percent change in price and

marginal revenue are derived as follows. Fixing factor prices pegs p1t

in constant cost competitive markets.

By (4) growth in final demand for type 1 and 2 output is
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(D.1)

(D.2)

(D.3)

(D.4)

Here 0 >0, 0 <0, while , <0, , >0.12 22 12 22

Output in each process is Q =q N . q  stays the same so changesit it it 1t

in Q  and N  are equal. Change in Q  is split between q   and N .1t 1t 2t 2t 2t

Thus percentage changes in Q  and Q  are1t 2t

Market equilibrium requires DRnQ =DRnQ .it it
d s

q  depends on mr  and mc , the latter declining with A ; entry2t 2t 2t 2t

depends on p  versus ac , also declining in A . Therefore,2t 2t 2t

Signs are g , g >0 and h , h >0 from what has gone before.1 2 1 2

Percent change in mr  completes the system. Since mr =(1-2t 2t

f /000)p , and f =1/N  in the symmetric case, we obtain,t 2t t 2t

where k , k >0 from the definition of mr .1 2 2t

Solving (D.1)-(D.4) we reach
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(D.5)

(D.6)

(D.7)

The coefficients d  and d  are1 2

Both are positive. Similarly, equilibrium entry is given by

(D.5) and (D.7) are (21) and (22) of the text.
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1. See Nelson (1982), Hounshell and Smith (1988), and Mowery and
Rosenberg (1989) among other industry studies. Notable labor
studies include Murphy and Welch (1992), Bound and Johnson
(1992), and Murphy and Katz (1992).

2. Search theory in its general form was developed by Stigler
(1961, 1962) and McCall (1970). 

3. By total factor productivity we mean the Divisia index
consisting of percentage output growth between periods minus the
weighted average of input growth between periods, where the
weights are cost shares. The latter weighted average is often
refered to as "explained" output growth.

4. See Griliches and Jorgenson (1967) and Denison (1969). We are
aware that breaking the effect of knowledge into an "explained"
part embodied in factors and an "unexplained" productivity part
linked to research spillovers does require knowledge of
embodiment. If all prices and quantities were correctly measured
then productivity would reflect only disembodied knowledge and
explained growth would capture only embodiment. In such a world
the effects of knowledge would be additive. But true productivity
is unobserved so the decomposition is impossible. 

5.  For a compelling study of this effect, see Horowitz and
Sherman [1980]).

6. We do not mean that the observed rate of growth is independent
of embodiment. In new growth theory models observed growth falls
short of optimal growth to the extent that growth is disembodied.
See Romer (1986, 1990), and Lucas (1988). 

7. The term productivity state distinguishes stochastically
evolving productivity from deterministic R&D capital stock. The
concept of productivity state separates R&D output from R&D
inputs. Productivity state need not increase with R&D
expenditures, whereas R&D stock does. This view is close to that
of Evenson and Kislev (1976).

8. The factor intensity ordering can be motivated by appealing to
the demands for an influx of human and physical capital imposed
adjustments to changes in technology, as in Nelson and Phelps
(1966) and Bartel and Lichtenberg (1989). We do not pursue this
connection in detail. 

9. Concavity means that 8  and 8  lie between zero and 1 and sumSPt Rt

to less than 1.

Footnotes
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   In this formulation spillovers have a stochastic effect on
productivity. Let the firm's current productivity state be A  A2t.

deterministic effect of spillovers could be obtained by defining
the new productivity state, A' =g(R ,SP ), where g is an2t t t

increasing function oF S&Es and spillovers. In this case A' >A2t 2t

and G =0 once the number of scientists and spillovers exceed a2t

critical mass, but A' <A  if spillovers are small, regardless of2t 2t

the number of S&Es. We do not pursue this alternative approach
here, in part because adaptive invention is probably not a sure
bet.

10. The exponential distribution is commonly used to descibe
continuous non-negative random variables. In our case it is an
approximation, since productivity has a finite upper bound while
the domain of an exponential variate is unbounded above. We bound
productivity at a high level so that the resulting truncated
distribution is approximated by the exponential.

11. The derivative in (16) follows from differentiation of the
exponent as well as the base. To see this, use the formula
y=f(x) /e , make the appropriate substitutions for y,g(x) g(x)Rnf(x)

f(x), and g(x), and differentiate. 

12. Recall that h =n g G . Repeated application of the product2t t 2t 2t
nt-1

rule and application of the result in fn. 10 yields (17).

13. Type 1 is a competitive activity with identical firms, 
changes in p  are entirely driven by factor prices, and changes1t

in mr  partly so. Though we worked out this more general case,2t

we opted for the simpler presentation in the text.

14. Estimates of research and development expenditures from 1921
to 1960 were based on information on employment in individual
research laboratories included in directories published by the
National Research Council.  Individual laboratories were assigned
to product fields based on their stated areas of research.
     Directory information for 1921, 1927, 1933, 1940, 1946,
1950, 1955, and 1960 was used in these calculations.  Since the
wartime pattern of research cannot reasonably be determined from
data for 1940 and 1946 alone, estimates of the wartime pattern of
R & D expenditures were constructed from The Government's Wartime
Research and Development, 1940-44, a report from the Subcommittee
on War Mobilization to the Senate Committee on Military Affairs,
and from other sources.
     The 1921-1960 data were benchmarked to national data on
research and development expenditures published in BLS Bulletin
2331, The Impact of Research and Development on Productivity
Growth.  The individual industry estimates were linked to the
standard National Science Foundation applied product field data
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in 1960.  Data were collected from both the directories and NSF
sources in 1960, and linked;  this adjustment procedure made it
possible to modify the directory data to allow for the fact that
research laboratories of the type covered by the directories
account for a larger proportion of the total research effort in
some industries (chemicals) than in others (aircraft).
     The NSF applied product field data have not been published
on a comparable basis after 1983.  Therefore, estimates of
applied product field data were constructed for 1984 to 1986
using an alternative NSF industry series for these years. 
Subsequently, the 1921-1960 data from the directories, the NSF
applied product field data for 1960-1983, and the further
estimates for 1984-1986 were combined to create the 1921-1986
time-series analyzed here.

15. The factor quantity growth equations are specified as before.
The factor price growth equations include growth in the price of
that factor in other industries, growth in the price of that
factor in the industry lagged one and two periods, and growth in
real GNP. The labor price growth equation also includes
population growth, the capital price equation includes the
savings rate, and the intermediate goods price equation includes
growth of energy price. This system satisfies both the rank and
order conditions for identification.  

16. The separation of college from noncollege labor by 2 digit
manufacturing industry is nontrivial, because industry data
distinguish only white and blue collar workers. To obtain
estimates of college and noncollege workers by industry it is
first necessary to derive college and noncollege proportions of
white and blue collar workers by industry. The only source for
this between Census years is the CPS, but the CPS sample is thin
when it is divided up by industry. Thus the estimates of the
college proportions exhibit large sampling variability from year
to year. To combat this problem we take 3 year moving averages of
the college proportions. The smoothed proportions are multiplied
by white and blue collar employees. We note that data on white
and blue collar employment are relaible since they are drawn from
the comprehensive 790 survey of manufacturing employers. Adding
together the estimated college numbers derived from college
proportions in each of white and blue collar employment, we
obtain total college employment by industry. This exhibits
movements due to the business cycle, and some remaining sampling
variability. The latter biases our results for the college
trained downward. Noncollege trained are a residual after
subtraction of college employment from total employment.

17. The attenuation bias for our data is as follows. Let y = "+t

$q , where q  is the true technology intensity. However, thet t
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divisor of the intensity is erroneous so we have not q  butt

z =q +e , and the bias as usual is -$F /(F +F )<0. See Greenet t t e e z
2 2 2

(1990) among others. 

18. The system is the same as in the Jorgenson data, except that
there are 5 input quantity growth equations and 5 input price
growth equations.


