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Abstract

This document provides a user manual for the SGOPT software library. SGOPT is a C++ class library for
nonlinear optimization. This library uses an object-oriented design that allows the software to be extended
to new problem domains. Furthermore, this library was designed so that the interface is straightforward
while providing flexibility to allow new algorithms to be easily added to this library. The SGOPT library has
been used by several software projects at Sandia, and it is integrated into the DAKOTA design and analysis
toolkit. This report provides a high-level description of the optimization algorithms provided by SGOPT
and describes the C++ class heirarchy in which they are implemented. Finally, installation instructions are
included.
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1 Introduction

The SGOPT library contains a variety of global optimization algorithms, with an emphasis on stochas-
tic methods. SGOPT currently includes the following global optimization methods: genetic algorithms
(PGAreal,PGAint), evolutionary pattern search algorithms (EPSA), simulated annealing (SAreal), tabu
search (TSreal), multistart local search (MSreal) and stratified Monte Carlo (sMCreal). Additionally,
SGOPT includes several local search algorithms such as Solis-Wets (SWOpt) and pattern search (Pattern-
Search).

SGOPT stands for Stochastic Global OPTimization and for expensive optimization problems its global
optimizers are best suited for identifying promising regions in the global design space. In multimodal design
spaces, the combination of global identification (from SGOPT) with efficient local convergence (from a
gradient-based algorithm) can be highly effective. The SGOPT methods are not gradient-based, which makes
them appropriate for discrete problems as well as problems for which gradient information is unavailable
or is of questionable accuracy due to numerical noise, etc. No SGOPT methods currently support general
linear and nonlinear constraints directly, although penalty function formulations for nonlinear constraints
have been employed with success [21].

This document describes the algorithms that are implemented within SGOPT at a high level. Presently
SGOPT does not include software to provide a standardized interface for initializing the optimizers. Instead,
the optimization library is linked into an executable defined by the user. Many of the optimizers defined by
SGOPT are currently included in the interface to the DAKOTA Iterator Toolkit [8].

Historically, this software evolved as a library of algorithms used for research purposes. Consequently,
there are many places in this library where the software could be further polished, and some of the libraries
are more stable than others. Indications are made at the end of the sections describing each of the optimizers
in SGOPT concerning the stability of each optimizer.

1.1 Generic Optimizers

The majority of optimizers in SGOPT are designed to perform optimization over R"™. However, some
optimizers like genetic algorithms can be readily adapted to perform optimization over a wide variety of
search domains. Two approaches are taken in SGOPT to accomodate the optimization of a generic search
domain.

1.1.0.1 Generic Point Optimization A facility for optimizating a user-defined search domain has been
constructed for Monte Carlo search and genetic algorithms. This facility uses the class GenericPointBase to
define the basic operations that are needed to define these optimizers. The user simply defines a subclass of
GenericPointBase and instantiates one of the generic optimizers to perform optimization. Examples of the
use of this facility are included in the subdirectory examples/generics. This facility is easy to use, but the
user’s ability to customize the optimizer to a particular search domain is limited to the user’s choice of the
methods used to generate new trial points in the search domain. {Note: I expect to templatize much of this
code in the near future, which may remove the needed for this capability. }

1.1.0.2 Object-Oriented Design When possible, an object oriented design has been adopted which
allows a user to easily define a new C++ class to perform optimization over a novel search domain. The
simplest example of this design is the class structure for Monte Carlo search. This algorithm simply generates
random samples from a search domain. The current class heirarchy for Monte Carlo search is

sMCreal sMCgen



The class sMC defines the main loop of a Monte Carlo search algorithm. This loop utilizes a variety of
abstract functions that are defined by the descendents of sSMC. These functions define how randomization
is performed as well as some I0. This type of object oriented design allows for significant code reuse when
designing a Monte Carlo search algorithm for a new search domain. The other example of this type of object
oriented design is the class heirarchy used for genetic algorithms (see Section Evolutionary Algorithms
(p- 3)). Instantiating a new optimizer is considerably more complex than using the generic-point facility, but
this option does allow the user to make algorithmic modifications that tailor the optimizers in SGOPT for
a particular search domain.

1.2 Overview

It will often be convenient to describe the methods and information in optimization classes in five categories:
e General Information: definitions of generic methods and data

e Configuration Controls: definitions of methods and data that are used to parameterize the operation
of an optimizer

e Termination Controls: definitions of methods and data that are used to determine when an optimizer
terminates

e Debugging Controls: definitions of methods and data that are used to print debugging information

e Iteration Controls: defintions of methods and data that are used to define the optimizers main
operations in each iteration



2 Evolutionary Algorithms

2.1 Overview

Evolutionary search is an adaptive random search that maintains a collection of solutions that are ranked by
their performance and uses a competition between these solutions to select solutions for further processing.
Research on evolutionary search algorithms incorporates elements of both biological evolution and global
optimization. These algorithms are inspired by biological evolutionary mechanisms and are often used to
perform global optimization.

The exemplars of evolutionary search algorithms are genetic algorithms, evolutionary strategie and evo-
lutionary programming [3, 10, 12]. The design and motivation for these algorithms are different, but they
incorporate the same basic adaptive components [2, 15]. These methods use a collection of solutions (pop-
ulation of individuals) that are updated iteratively using selection mechanisms and genetic operators. The
general process of each iteration (generation) is described in Figure 1.

Initialize population (with uniformly generated solutions)
Repeat

Evaluate solutions in the population

Perform competitive selection

Apply genetic operators

Perform local search (optional)
Until convergence criteria satisfied

Figure 1: Pseudo-algorithm for a genetic algorithm.

The selection mechanism performs a competition to select a subset of the solutions for further processing.
The genetic operators are used to generate deviates from the selected individuals. Two types of genetic
operators are commonly employed: mutation and recombination. Mutation uses a single individual to
generate a deviate that is located in the local neighborhood of the individual. Recombination uses two
individuals to generate another individual that is typically located in the smallest hypercube that contains
them both. Local search is another genetic operator that is sometimes employed with evolutionary algorithms
to refine solutions in their local neighborhood.

Using these genetic operators, evolutionary search algorithms perform a global search. Global convergence
is not guaranteed for all evolutionary algorithms [22], but experiments with these algorithms indicate that
they often converge to regions of the search space that contain near-optimal solutions.

2.2 Genetic Algorithms

For historical reasons, the development of evolutionary algorithms within SGOPT has focused on Genetic
Algorithms (GAs). The GA was initially described using populations of binary strings in {0, 1}", which are
evaluated by the objective function (fitness function) [16, 12, 18]. When searching spaces other than {0,1}",
the objective function decodes the binary string and performs the function evaluation.

Holland [16] proposed a selection mechanism that stochastically selects individuals with probability
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This selection mechanism is called proportional selection, since the number of copies of an individual will be
in proportion to the its fraction of the population’s total fitness. This method assumes the GA is minimizing
f(z) and that the global minimum is greater than or equal to zero, but it can be easily modified to perform
selection when maximizing a function, or when the global minimum is negative.
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Figure 2: The two dimensional grid used by GSGAs to define population subsets.

The binary GA proposed by Holland uses mutation and crossover operators. With binary strings, the
mutation operator changes a single bit on a string, and it is typically used with low frequency. The crossover
operator picks two points on the the binary representation and generates the new sample by taking all of
the bits between these points from one parent and the remaining bits from the other parent. For example,
if n = 10 and the chosen points are p; = 2 and p, = 6:

Parent(1): 1111111111 Parent(2): 0000000000 Sample: 0011110000

Crossover is typically used with high frequency, so most of the individuals in each generation are generated
using crossover.

The manner in which the parameters of the objective function are encoded on each string does not affect
the mechanisms of the GA, though it can affect the GA’s search dynamics. In particular, much research
has been done examining how crossover composes and disrupts patterns in binary strings, based on their
contribution to the total fitness of the individual [11, 24, 25, 30]. This research has motivated the use of
modified crossover operators that restrict the distribution of crossover points. For example, if the binary
string is decoded into a vector of integers or floating point values, then crossover is often applied only between
the integer or floating point values on the binary string [6].

2.3 Panmictic and Geographically Structured Genetic Algorithms

GAs can be distinguished by the manner in which the selection mechanism and genetic operators are ap-
plied to the population. Panmictic GAs employ selection mechanisms (like proportional selection) that use
global information about the entire population to perform a global selection. In proportional selection the
population’s total fitness is used to perform selection. Panmictic GAs apply the crossover operator to pairs
of individuals randomly taken from individuals selected from the entire population.

Geographically structured genetic algorithms (GSGAs) perform a structured selection in which individuals
compete against a fixed subset of the population, and the genetic operators are applied to individuals
selected from these subsets. The most common way of structuring the selection mechanism uses a toroidal
two dimensional grid like the one in Figure 2 [1, 4, 17, 26]. Every element of the population is assigned to
a location on the grid. The grid locations are not necessarily related to the individuals’ solutions. They
are often arbitrary designations used to perform selection. Thus, there are distinct notions of locality with
respect to the population grid and the search space. When local search is performed with GSGAs, it is
performed in the search space. When local selection is performed, it is performed in the population grid.

Two general methods of local selection have been used to perform selection in GSGAs: (1) fixed size
neighborhoods have been used to define the set of neighboring individuals [5, 13], and (2) random walks have
been used to stochastically sample the locations of neighboring individuals [4, 17]. Figure 2 illustrates the
fixed size neighborhoods that could be used to perform selection. Proportional selection is applied to the
solutions in each of these neighborhoods. Since one individual is assigned to each grid location, the selection



procedure is used to select only as many individuals as are necessary to use the genetic operators. For
example, two individuals will be selected if crossover is used. The new individual generated from a genetic
operator is assigned to the grid location at which selection is performed.

The early motivation for GSGAs came from SIMD designs for GAs. MclInerney [17] describes a SIMD
GSGA and analyzes the effect of different methods of local selection. He shows how local selection encourages
local regions of the 2D grid to form demes of very similar individuals, and argues that inter-deme competition
enables GSGAs to perform search while maintaining diversity in the population. He observes that selection
using random walks gave very good results in his experiments. He notes that this method enabled good
solutions to diffuse through the population, while strongly encouraging the formation of demes.

Gordon and Whitley [13] argue that the algorithmic nature of GSGAs may be of interest, independent
from their implementation on a particular architecture. They experimentally compare GSGAs to panmictic
GAs and observe that the GSGAs provide superior performance. This philosophy is echoed by Davidor,
Yamada and Nakano [5] in their motivation for the ECO framework. The ECO framework provides a serial
design for implementing a geographically structured GA.

Finally, we note that our definition of GSGAs includes GAs which structure the selection at a fine
granularity. A number of GAs have been proposed whose competitive selection is intermediate between
GSGAs and panmictic GAs. Miihlenbein [20] makes a similar distinction and describes a GA which uses a set
of independent subpopulations and structures the inter-population communication with a ladder structure.
These subpopulations are typically small, so they perform a localized search of the function. For example,
Whitely [31] illustrates how a small population can perform a locallized search in the context of neural
network optimization problems. Inter-population communication enables populations to combine disparate
solutions and enables them to perform a global search.



3 Pattern Search Methods

3.1 Overview

Pattern search methods are a class of direct search optimizers that have recently received a lot of attention
because of new convergence proofs that guarantee weak first order stationary point convergence [7, 27, 29, 28].

The GPSOpt class provides a generic framework for defining generalized pattern search algorithms. This
class implements the framework used by Torczon [29] to define generalized pattern search methods. The class
PatternSearch provides a specific implementation of several types of pattern search methods that perform
a rather local search about the best current iterate. This includes randomized variants of these methods,
which randomize the order of the steps taken in the deterministic algorithm; these methods have the same
convergence properties as their deterministic counterparts.

The PatternSearch class defines a variety of pattern search algorithms. Although these algorithms could
have been defined with seperate classes, it has proved easier to maintain these algorithms within a single
class, using a switch to select which algorithm is executed.

For each of these pattern search algorithms, a single expansion and contraction factor is used. The default
expansion factor is 2.0 and the default contraction factor is 0.5. None of these methods explicitly maintains a
pattern matrix, so the UpdateMatrix method is not defined. The variable em_case is used to select amongst
the following pattern search algorithms:

e Standard PS: (em_case=0) This PS method checks for improvement in each dimension iteratively,
examining dimensions from 1 to n in order. If an improvement is detected, this algorithm keeps
that improvement and continues checking the remaining dimensions, using the improved point as the
starting point from which new offsets are examined. The order of the dimensions may be shuffled.
This is the default PS method.

e Best Offset First: (em_case=1) This PS method checks for improvement in each of the 2n possible
offsets iteratively. This algorithm terminates as soon as any improving point is found. In PatternSearch
each dimension from 1 to n is examined in order. The order of the offsets may be shuffied.

e Best Dimension First: (em_case=2) This PS method checks for improvement in each dimension
iteratively, examining dimensions from 1 to n in order. This algorithm terminates as soon as any
improving point is found. The order of the dimensions may be shuffled.

e Asynchronous: (em_case=3) This PS method spans off asynchronous function evaluations that
compute all 2n offsets simultaneously. It then synchronizes the calculation of these offests and keeps
the offset which provides the best improvement.

e Biased Best Dimension First: (em_case=4) This PS method uses a bias to guide the algorithm
in a direction where improving points have previously been found. If improving points are not found
with the bias, the bias is halved and then zeroed. In each of these phases, the algorithm acts like the
Best Dimension First method. The order of the dimensions may be shuffled.

3.2 Current Status

The code in GPSOpt is rather stable. The code defining the various pattern search methods continues to be
refined.



4 Solis-Wets Local Search

4.1 Overview

The class SWOpt provides a framework for implementing the stochastic direct search algorithms described
by Solis and Wets [23]. Figure 3 provides pseudo-code for the main loop of SWOpt. These algorithms
generate a new iterate using coordinate-wise steps. If the new iterate is better than the current iterate
then it is accepted and the algorithm repeats. Otherwise the algorithm considers a step in the opposite
direction. If this new point is also worse that then current iterate then a new iterate is again generated in
the neighborhood of the current iterate. SWOpt also defines mechanisms for expanding and contracting the
step size of the offsets used to generate the new iterate.

best = INFTY
bias =0
n_succ = 0
n_fail = 0

while (rho > rholower_bound)
generate dx
curr = f(x + dx + bias)
if (curr < best)
bias = 0.2 * bias + 0.4 * (dx + bias)
x += dx + bias
n_succ++
n_fail=0
else
curr = f(x - dx - bias)
if (curr < best)
bias = bias - 0.4 * (dx + bias)
x -= dx + bias
n_succ++
n_fail=0
else
bias = bias/2
n_fail4++
n_succ=0
endif
endif

if (n_succ > max_succ)

n_succ=0
rho = ex_factor * rho
endif
if (n_fail > max fail)
n_fail=0
rho = ct_factor * rho
endif
endwhile

Figure 3: Pseudo-code for the Solis-Wets algorithms.

Classes SWOpt1 and SWOpt2 differ in their definition of the private method gen_new_point, which is used
to generate a new iterate. SWOptl generates a iterate using normally distributed deviates with standard



deviation rho. SWOpt2 generates a new iterate using uniformly distributed deviates from the range [— rho
, rho .

4.2 Current Status

These classes are stable.



5 Stratified Monte Carlo

5.1 Overview

The class sMC provides an abstract base class for stratified Monte Carlo sampling (sMC). Stratified Monte
Carlo sampling partitions the search domain into a finite number of disjoint regions, each of which is sampled
independently. In each iteration sMC samples a point from each region (from a fixed distribution), and the
best of these points is reported. sMC reduces to standard Monte Carlo sampling algorithm (MC) in the
case where there is a single region, the entire search domain. Ermakov, Zhigyavskii and Kondratovich [9]
and Hart [14] provide formal descriptions and theoretical analyses of sMC. It is particularly interesting to
note that for a given number of samples from the total search domain, the probability that sMC samples an
e-close point is greater than or equal to the probability that MC samples an e-close point.

Classes sMCreal and sMCint provide a common interface for performing sMC on R™ and Z". The method
set_1sopt in these classes defines a local search optimizer and specifies the frequency with which local search
should be applied to the randomly generated points. When freq = 1.0, this converts sMCreal to stratified
multistart local search (see Morris and Wong [32, 19] and Hart [14]).

5.2 Current Status

sMC and sMCreal are stable. sMCint needs to be re-implemented. The termination rules described in
Hart [14]) need to be incorporated into sMC.



6 Installation

6.1 Downloading

The SGOPT software can be downloaded either as a compressed tar file or directly from the SGOPT
Concurrent Version System (CVS) repository. The latest release of SGOPT is available at

http://www.cs.sandia.gov/~wehart/SGOPT

and earlier versions are available in the same directory.

The CVS repository for SGOPT can be accessed by executing

cvs -d :ext:GEUutili@gaston.cs.sandia.gov:/usr/local/cvs/cvsroot checkout sgopt

The password for this repository is ’anonymous’. The developer’s password for this repository is restricted;
please contact Bill Hart at wehart@sandia.gov to request the password to commit changes to this repository.
If you are accessing this repository throught a firewall (e.g. Sandia’s SRN firewall), or you expect to checkout
updates frequently, then the script cvs-s can be used to encapsulate the access to the CVS repository. The
cvs-s script can be downloaded at

ftp://ftp.cs.sandia.gov/pub/papers/wehart/src/cvs-shells.tar

Note that this script uses the ssh command, version 1.x.

6.2 Installation on Unix
Installation of SGOPT on UNIX systems is performed by the following steps:

1. Unpack the archive, unless you have already done that

gunzip sgopt-$VERSION.tar.gz # uncompress the archive
tar xf sgopt-$VERSION.tar # unpack it

2. Move into the sgopt directory and run the configure script.

./configure

The configure script automates much of the setup activity associated with building large suites of
programs like SGOPT on various hardware platforms. This includes

(a) making symbolic links so that files used for configuration can be accessed from one location

(b) generating Makefiles so that objects, libraries, executables and other ’targets’ can be created for
specific and unique hardware platforms

(c) calling itself recursively so that sub-directories can also be configured
By default, the configure script does not assume that SGOPT relies on any other software libraries.

There are a number of configuration options that can be used to customize the installation. The full
parameter list for the configure script is:



configure hosttype [--target=target] [--srcdir=dir] [--rm]
[--site=site] [--prefix=dir] [--exec-prefix=dir]
[--program-prefix=string] [--tmpdir=dir]
[--with-package[=yes/no]] [--without-package]
[--enable-feature[=yes/no]] [--disable-feature]
[--norecursion] [--nfp] [-s] [-v] [-V | --version]
[--help]

Many of these options are not necessary since system information can be often acquired from your
local machine. Refer to the Cygnus configure documentation for complete information. The following
options are either commonly used or specific to SGOPT (examples of arguments are provided):

[-with-compiler=<gcc,CC>]

Sets up a specific compiler; The native compiler
is the default.

[-target=<solaris>]

Optional flag to specify the target machine that
you are cross-compiling for.

[-site=<snl980>]

Specifies the site-specific locations for MPI, etc.

[-with-debugging]

Turns on the DEBUGGING macro and sets the
OPTIMIZATION macro to <flag> (code is
compiled with -g by default).

[-with-mpi]

Turns on the use of the MPI package.

[-with-mpe]

Turns on the use of the MPE package.

[-with-swig]

Enables the use of swig to wrap SGOPT for use
with the Python scripting language.

[-with-static]

Enables the compilation of statically linked
libraries (the default).

[~with-insure]

Enables the compilation with the insure++
debugging tool.

[-with-shared]

Enables the compilation of dynamically linked
libraries, which can be shared.

[~with-optimization=<level>]

Sets the optimization level used when compiling
the source files. This is overridden by the
—with-debugging flag.

[~with-ansi]

Sets up the compiler to use ANSI standard
constructs for C++. (the default)

[-with-ansiheaders]

Creates flags that force the use of ANSI
standard C++ header conventions. (the dfault)

The configure script creates Makefiles from Makefile. in template files, which outline the basic ‘targets’
that need to get built. Variables that are package, site or hardware dependent are stored in individual
‘fragment’ files. These ‘fragment’ files are added to the custom created Makefiles when users and
code developers (recursively) configure this repository with specific host, target, package and/or site

parameters.



Running configure takes a while, so be patient. Verbose output will always be displayed unless the
user/developer wishes to silence it by specifying the parameter, ‘-silent’. If you wish to configure
only one level/directory, remember to use the option ‘—norecursion’. All generated ”config.status” files
include this parameter as a default for easy makefile re-generation; after editing a Makefile.in file, you
can construct the associate Makefile file by typing config.status.

After the configure command is completed, three files will be generated in each configured directory
(specified by the file, ‘configure.in’).

(a) Makefile-${target}
The suffix, ${target}, will depend on the target specified. Native builds have identical host and
target values.

(b) Makefile
This will be a symbolic link to the file mentioned above. A user or developer will simply type
make and the last generated Makefile-${target} will then be referenced.

(c) config.status

A ‘recording’ of the configuration process (i.e., what commands were executed to generate the
makefile). It can be used by the custom makefile to re-generate itself with a command such as
this

make Makefile.

Fragment files exist so that configure can support multi-platform environments. SGOPT can be
configured for code development and execution on the following platforms :

SPARC-SUN-SOLARIS2.5.1  (Sun ULTRAsparc)

MIPS-SGI-IRIX6.4 (SGI Octane)

HPPA1.1-HP-HPUX9.05 (HP 9000/700 series)
PENTIUM-INTEL-COUGAR (Intel TFLOP supercomputer at SNL)
1686-UNKNOWN-LINUX (Red Hat 7.1)

The fragment files for these platforms and for the packages that SGOPT relies on are located in the
sgopt/config directory. There are five types of files in this directory:

mf-<host>-<target>-<site>
Automatically generated by the configure scripts.

mh-<host>
Fragments that define the utilities provided by the host (e.g. the
definition of MAKE.

mp-<target>-<site>
Fragments that define information for the packages that are used by
SGOPT (e.g. MPI).

ms-<site>

Fragments that define the site-specific general configuration
information. If this does not exist for a given site, then the
default ms-default fragment is used.

mt-<target>
Fragments needed to specfy how to compile code for a target
architecture (e.g. compiler name/location).

3. Compile the program by running make.

make



Note that the makefiles in SGOPT may not be portable to all make commands. However, they do work
with the GNU gmake command. The latest file Makefile-${target} generated by configure will be
referenced by this command. The target directory for the library is created for the particular target
platform as a subdirectory of sgopt/lib.

Prior to making object files header files are linked into the directory sgopt/include.

4. Optional: Generate the html library documentation.
make html
This requires the doxygen utility.
5. Optional: Generate the postscript version of the user manual.
make ps
This requires the doxygen, latex, and dvips.
6. Optional: Generate the PDF version of the user manual.

make pdf

This requires the doxygen, latex, dvips and ghostscript packages.

6.3 Installation on Windows

SGOPT was originally developed under UNIX, but it has been ported to Windows NT using Microsoft’s
Visual C++ (version 6.0). A MSVC++ project is provided in sgopt/src/vepp. This project defines a DLL
that will be compiled for SGOPT, and it can be easily included in a user’s workspace. The project file
relies on the environmental variable ‘SGOPT’, which is defined from the MS Windows Control Panel under
System/Environment. This variable should be set to the path of the sgopt directory. Note: this project file
is out of date.
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