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Abstract: Discontinuous Galerkin (DG) methods based on quadrilateral spectral element discritiza-
tions are applied to the eletromagnetic wave time-domain simulations in free space. The 2D Maxwell’s
equations in transverse-magnetic mode are described in conservation form. Numerical flux is used for
the communication at the interface between elements and boundary condition. Computational results
on the field distribution are demonstrated, including h- and p-convergence in maximum norm with this
method. This work is our first step toward two- and three-diemensional nanophotonic simulations using
this higher order method.
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1. Formulation

Consider the two-dimensional Maxwell’s equations in transverse-magnetic (TM) mode, which expresses
the electromagnetic field vectors by decomposing each component as follows:

H = (H,,H,,0), and E = (0,0, E,). (1)

Then the governing equations are
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where the field vector is ¢ = [H,, Hy, E,]T and the coefficient matrices are

0 0 0 00
A=10 0 —L | B=|0 0 0 (3)
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Writing the equation (2) in conservation form [2], [3], we have

0q B
QY 4V F(g) =0, (@)

where @) represents the materials, ¢ the field vector, and F(q) the flux, defined by

u 00 H, o - 1"
Q=0 pu O0|,g=|Hy |,Flg=| E, 0 : (5)



In the general case of materials with finite conductivity, no surface charges and currents can exist, and
simplified conditions take the form that, along the interface of any two dielectric bodies, endowed with
an outward pointing normal vector, 7, the tangential field components remain contiuous, that is,

n x ||E| =0, 2 x ||H| =0, (6)
where
Jul| = u™ —u” (7)

represents the jump in field value across the interface, with u™ representing the neighboring field value
and u~ the local field value.

2. Weak Formulation

Assume that our computational domain is 2. In each element, we seek the local solution gy in an
admissible space, to be defined later, satisfying

(% +9 Flaw)4) =0 (®)
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where ¢ is a local discontinuous test function. Integrating by parts of (8), we obtain

(Q%,4) ~ (i Plaw), ¥+ f)ge = — (i Flaw), $)one- )
.

However, neighboring elements will share some part of the local element boundary, 0Q2¢. Thus, at this
point we will have two solutions, and we must choose one, or a combination of the two, that is correct.
To this end we define a numerical flux F* and replace the right-hand side of (9), F' by F'x,

n-F*=n-F(q ,q"), (10)

where ¢~ refers to the local solution and g™ the solution in the neighboring elements. With the numerical
flux F* to connect the elements, we integrate by parts once more for equation (9) and get the final form

(Qag—;v +V - F(qy), ¢) = (- [Flay) - F*(ay- 48] ¢) (11)
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There are several possible of choices for this flux function. Here we choose the upwinding flux [2], [3],

[5]:

f-F*(q,q") = (12)
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2| Z7'ax (ZH|H| -ax|E])
where ||E|| = ET—E~ and |H|| = HT — H , and the local impedence Z —, conductance Y~ (neighboring
the material properties Z*, conductance Y ), and their average values are given by

_ _ + -
,Z:72 and Yziy +Y.
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For simplicity, we solve the problem for the case with 4 = € = 1 everywhere in the domain. In the case,
we have Z+ =Y+ = Z =Y =1, so that the penalizing boundary term is the following:

X - L] ax (=B —2ax]|HI)
i F*(q™,qT) = = N 14
(a1 =5 { X (IH] -7 x || E]) (14)
Applying 7 X (7 X E) = a(n (7 - n)E to (14), we get the detailed expression for the flux:

—ny| B, || N (|| Ha || +ny || Hy|[) + [| Hy |
A (F = F)( N || Bz || = ny(na| He || +ny|[Hyl)) + | Hyl| (15)
N[ Hy || = ny|| Hel| + || B2l

3. Numerical Scheme
We seek the local solution
N N
1) =Y gi(t)(zf) =) G5 (t) (), (16)
3=0 j=0

where [;(z¢) is the local Lagrangian basis in Pz, ®,(z¢) € P% is the orthonormal Legendre basis, and T
are predefined N local grid-points. Define the multidimensional Vandemonde matrix, V', by

Vij = ®;(x5), (17)
where P; is the multivariate Legendre polynomial of degree j. Since
Do (z€) Do(z§) -+ Dolafy) lo(2°)
: = : : : . (18)
() On(xf) -+ @n(zy) 1 L In(z?)
one can represent the Lagrange polynomials evaluated at z¢ as
(%) = (V)71 ®(z). (19)
Then the semidiscrete scheme of equation (11) with an identity matrix @ is
d
M= 45 - Flgn) = F (iv- [Fy — Fx)), (20)
where
Mij = (li,1j)q, Sij = (li; Vij)a, Fij = (i, 1) a- (21)
The final form of the semidiscrete scheme (20) is
AHo)N _ p1=1g () = M=LF (—ny |, | — H H H 22
o y(Ez)N (=nyl| Bzl — na(na|| Hal + nyl| Hyll) + || Hz||) (22)
dHy)n | gy 'S:(E.)n = M F (ng||E,|| — H H H 23
pra (E.)n (al| Bz || — ny(nellHzll + nyl[Hyll) + || Hyl]) (23)
d(E, _
BN | M (Sa(H) — S, (o)) = M'F (ngl|Hy | — my || + |2l (24)

For the time integration, we use the forth-order Runge-Kutta scheme.
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Figure 1: Field distribution of E, after 3 periods in time: The number of nodes in one subdomain =
8 x 8; in 9 elements, At = 0.016.
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Figure 2: (b) p—convergence and h—convergence: E is the number of elements, N is the number of grids
on a face, and dt(=At) is the time step size.



4. Computational Results

The computational results for the 2D Maxwell’s equations in TM mode with periodic boundary condition
are demonstrated. For a domain [—, ]2, the analytic solutions are

H, = cos(z)sin(y)sin(vV2t)/V2, (25)
H, = - sin(z)cos(y)sin(v2t)/V2, (26)
E, = cos(z)cos(y) cos(V2t). (27)

Figure 1 shows the field distribution of F, after 3 periods time with a time step size At = 0.016. The
domain is equally subdivided into 9 elements with the number of the nodes on the face, N = 8. In the
case, the maximum error shows 4 digits accuracy. Figure 2 shows the maximum errors depending on the
mesh refinement and the degree of polynomials for the approximation with a fixed time step size At. The
errors show high-order convergence. Note that, in the case of N = 16 with 9 elements, time error from
fourth-order Runge-Kutta method dominates when At = 0.005. However, reducing the time step size by
At = 0.00005, one can observe that spatial error dominates again to confirm high order convergence.

5. Conclusions

We have discussed the formulation of a discontinuous Galerkin scheme based on quadrilateral mesh
and shown some primary results on the convergence of the method for 2D Maxwell’s equations. The
computational results show that the scheme is high-order accurate and efficient. The discontinuous
formulations with this method will render similar performace for the problems involving nonsmoothness.
We remain the implementation of this method to a nanophotonic problem [4] as future work.
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