# Space Weather Highlights 10 - 16 November 2008

SWO PRF 1733 18 November 2008

Solar activity was very low through the period. New-cycle polarity Region 1008 (N33, L=121, class/area Dso/080 on 11 November) produced isolated low-level B-class flares on 10 and 12 November.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit increased to high levels during 10 - 15 November.

Geomagnetic field activity was at quiet levels during 10 - 15 November. Activity increased to active levels during 16/0000 - 0600 UTC, then decreased to quiet levels for the rest of the period. ACE solar wind measurements indicated the 16 November active levels were associated with a coronal hole high-speed stream (CH HSS). The HSS began late on 15 November, reached a peak velocity of 528 km/sec at 16/1216 UTC, then gradually decreased during the rest of the period. Interplanetary magnetic field changes associated with the CH HSS included an increase in Bt (peak 14 nT at 15/2021 UTC) and intermittent periods of southward Bz (minimum -13 nT at 15/2225 UTC).

#### Space Weather Outlook 19 November - 15 December 2008

Solar activity is expected to be at very low levels.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels during 26 November - 03 December and 06 - 12 December.

Geomagnetic field activity is expected to be at quiet levels during 19 - 24 November. Activity is expected to increase to mostly unsettled levels during 25 - 26 November due to a recurrent CH HSS. Quiet levels are expected during 27 November - 03 December followed by an increase to unsettled to active levels during 04 - 06 December due to another recurrent CH HSS. Activity is expected to decrease to quiet levels during 07 - 15 December.



Daily Solar Data

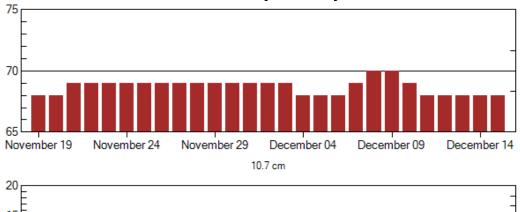
|             |         |      |                               | Dully 50                                                                                              | m D | ııı    |     |        |         |        |   |   |
|-------------|---------|------|-------------------------------|-------------------------------------------------------------------------------------------------------|-----|--------|-----|--------|---------|--------|---|---|
|             | Radio   | Sun  | Sunspot                       | X-ray                                                                                                 | _   |        |     | Flares |         |        |   |   |
|             | Flux    | spot | Area                          | Background                                                                                            | X   | -ray F | lux |        | $O_{j}$ | ptical |   |   |
| Date        | 10.7 cm | No.  | <u>(10<sup>-6</sup> hemi.</u> | )                                                                                                     | С   | M      | X   | S      | 1       | 2      | 3 | 4 |
| 10 November | : 69    | 16   | 40                            | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0   | 0      | 0   | 0      | 0       | 0      | 0 | 0 |
| 11 November | 71      | 18   | 80                            | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0   | 0      | 0   | 0      | 0       | 0      | 0 | 0 |
| 12 November | 71      | 21   | 80                            | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0   | 0      | 0   | 0      | 0       | 0      | 0 | 0 |
| 13 November | : 69    | 16   | 70                            | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0   | 0      | 0   | 0      | 0       | 0      | 0 | 0 |
| 14 November | : 68    | 12   | 30                            | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0   | 0      | 0   | 0      | 0       | 0      | 0 | 0 |
| 15 November | : 68    | 11   | 50                            | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0   | 0      | 0   | 0      | 0       | 0      | 0 | 0 |
| 16 November | 68      | 11   | 40                            | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0   | 0      | 0   | 0      | 0       | 0      | 0 | 0 |
|             |         |      |                               |                                                                                                       |     |        |     |        |         |        |   |   |

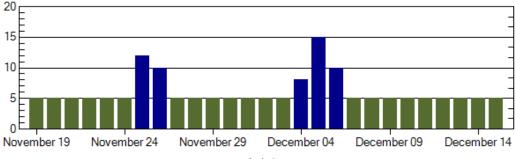
# Daily Particle Data

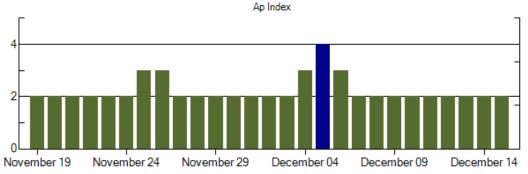
|                         |          | Electron Fluence<br>(electrons/cm <sup>2</sup> -day-sr)                                                                                                            |                                                                                                                                                                                                                                                                              |  |  |  |  |
|-------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| >1 MeV >10 MeV >100 MeV |          |                                                                                                                                                                    | >.6 MeV >2MeV >4 MeV                                                                                                                                                                                                                                                         |  |  |  |  |
| 5.9E+5                  | 1.8E+4   | 4.1E+3                                                                                                                                                             | 1.2E+8                                                                                                                                                                                                                                                                       |  |  |  |  |
| 6.5E + 5                | 1.9E+4   | 4.6E + 3                                                                                                                                                           | 1.5E+8                                                                                                                                                                                                                                                                       |  |  |  |  |
| 7.0E + 5                | 1.9E + 4 | 4.3E+3                                                                                                                                                             | 1.4E+8                                                                                                                                                                                                                                                                       |  |  |  |  |
| 8.0E + 5                | 1.9E + 4 | 4.5E+3                                                                                                                                                             | 1.0E+8                                                                                                                                                                                                                                                                       |  |  |  |  |
| 1.3E+6                  | 1.9E+4   | 4.4E+3                                                                                                                                                             | 1.1E+8                                                                                                                                                                                                                                                                       |  |  |  |  |
| 1.7E+6                  | 1.9E+4   | 4.3E+3                                                                                                                                                             | 6.8E+7                                                                                                                                                                                                                                                                       |  |  |  |  |
| 5.7E+5                  | 1.9E+4   | 4.3E+3                                                                                                                                                             | 1.5E+6                                                                                                                                                                                                                                                                       |  |  |  |  |
|                         | (prot    | >1 MeV     >10 MeV       5.9E+5     1.8E+4       6.5E+5     1.9E+4       7.0E+5     1.9E+4       8.0E+5     1.9E+4       1.3E+6     1.9E+4       1.7E+6     1.9E+4 | (protons/cm²-day-sr)       >1 MeV     >10 MeV     >100 MeV       5.9E+5     1.8E+4     4.1E+3       6.5E+5     1.9E+4     4.6E+3       7.0E+5     1.9E+4     4.3E+3       8.0E+5     1.9E+4     4.5E+3       1.3E+6     1.9E+4     4.4E+3       1.7E+6     1.9E+4     4.3E+3 |  |  |  |  |

Daily Geomagnetic Data

|             | Middle Latitude |                 |    | High Latitude   |   | Estimated       |
|-------------|-----------------|-----------------|----|-----------------|---|-----------------|
|             | Fredericksburg  |                 |    | College         | ] | Planetary       |
| _Date       | Α               | K-indices       | A  | K-indices       | Α | K-indices       |
| 10 November | 3               | 1-2-1-1-1-0-1   | 4  | 0-1-3-1-2-1-0-0 | 3 | 1-2-1-1-1-1-0-0 |
| 11 November | 1               | 0-1-0-1-1-0-0-0 | 0  | 0-0-0-1-0-0-0   | 1 | 0-1-0-1-0-0-0   |
| 12 November | 4               | 0-0-1-1-1-0-3-1 | 2  | 0-0-2-1-1-0-1-0 | 2 | 0-0-1-1-1-0-0-1 |
| 13 November | 2               | 0-1-0-0-1-2-0-0 | 0  | 0-0-0-1-0-0-0   | 1 | 1-0-0-0-0-0-0   |
| 14 November | 1               | 0-0-0-0-0-2-0-1 | 0  | 0-0-0-0-0-0-0   | 1 | 0-0-0-0-0-0-1   |
| 15 November | 3               | 1-1-0-0-0-0-2-2 | 1  | 0-1-0-0-0-0-1-1 | 6 | 2-2-0-1-2-2-2   |
| 16 November | 7               | 3-4-1-1-1-0-1-1 | 11 | 3-4-2-2-4-1-1-0 | 8 | 4-4-1-0-1-0-0-1 |





## Alerts and Warnings Issued


| Date & Time of Issue | Type of Alert or Warning                     | Date & Time of Event UTC |  |  |
|----------------------|----------------------------------------------|--------------------------|--|--|
| 10 Nov 1007          | ALERT: Electron 2MeV Integral Flux > 1000pfu | 10 Nov 0940              |  |  |
| 11 Nov 0712          | ALERT: Electron 2MeV Integral Flux > 1000pfu | 11 Nov 0635              |  |  |
| 12 Nov 0500          | ALERT: Electron 2MeV Integral Flux > 1000pfu | 12 Nov 050               |  |  |
| 13 Nov 0951          | ALERT: Electron 2MeV Integral Flux > 1000pfu | 13 Nov0935               |  |  |
| 14 Nov 0858          | ALERT: Electron 2MeV Integral Flux > 1000pfu | 14 Nov 0840              |  |  |
| 15 Nov 1336          | ALERT: Electron 2MeV Integral Flux > 1000pfu | 15 Nov 1320              |  |  |
| 16 Nov 0159          | WARNING: Geomagnetic K = 4                   | 16 Nov 0215 - 0600       |  |  |
| 16 Nov 0220          | ALERT: Geomagnetic $K = 4$                   | 16 Nov 0219              |  |  |



### Twenty-seven Day Outlook







Largest Daily Kp Index

|        | Radio Flux | Planetary | Largest  |        | Radio Flux | Planetary | Largest  |
|--------|------------|-----------|----------|--------|------------|-----------|----------|
| Date   | 10.7 cm    | A Index   | Kp Index | Date   | 10.7 cm    | A Index   | Kp Index |
| 19 Nov | 68         | 5         | 2        | 03 Dec | 69         | 5         | 2        |
| 20     | 68         | 5         | 2        | 04     | 68         | 8         | 3        |
| 21     | 69         | 5         | 2        | 05     | 68         | 15        | 4        |
| 22     | 69         | 5         | 2        | 06     | 68         | 10        | 3        |
| 23     | 69         | 5         | 2        | 07     | 69         | 5         | 2        |
| 24     | 69         | 5         | 2        | 08     | 70         | 5         | 2        |
| 25     | 69         | 12        | 3        | 09     | 70         | 5         | 2        |
| 26     | 69         | 10        | 3        | 10     | 69         | 5         | 2        |
| 27     | 69         | 5         | 2        | 11     | 68         | 5         | 2        |
| 28     | 69         | 5         | 2        | 12     | 68         | 5         | 2        |
| 29     | 69         | 5         | 2        | 13     | 68         | 5         | 2        |
| 30     | 69         | 5         | 2        | 14     | 68         | 5         | 2        |
| 01 Dec | 69         | 5         | 2        | 15     | 68         | 5         | 2        |
| 02     | 69         | 5         | 2        |        |            |           |          |



Energetic Events

|      | Time      |     | X-ray      | Opti              | cal Information | 1   | Peak       | Sweep Freq |
|------|-----------|-----|------------|-------------------|-----------------|-----|------------|------------|
| Date | Date ½    |     | Integ      | Imp/ Location Rgn |                 | Rgn | Radio Flux | Intensity  |
|      | Begin Max | Max | Class Flux | Brtns             | Lat CMD         | #   | 245 2695   | II IV      |

### **No Events Observed**

### Flare List

|             |          |                    |      |        | Optical |          |     |  |  |  |
|-------------|----------|--------------------|------|--------|---------|----------|-----|--|--|--|
|             |          | Time               |      | X-ray  | Imp /   | Location | Rgn |  |  |  |
| Date        | Begin    | Max                | End  | Class. | Brtns   | Lat CMD  |     |  |  |  |
| 10 November | 2018     | 2031               | 2038 | B3.0   | 1008    |          |     |  |  |  |
| 11 November | No Flar  | No Flares Observed |      |        |         |          |     |  |  |  |
| 12 November | 0002     | 0009               | 0025 | B1.4   | 1008    |          |     |  |  |  |
| 13 November | No Flar  | es Obsei           | ved  |        |         |          |     |  |  |  |
| 14 November | No Flare | es Obsei           | ved  |        |         |          |     |  |  |  |
| 15 November | No Flare | No Flares Observed |      |        |         |          |     |  |  |  |
| 16 November | No Flare | es Obsei           | ved  |        |         |          |     |  |  |  |

Region Summary

|      | Location       |                         | Sunspot Characteristics |       |       |       | Flares             |           |  |  |
|------|----------------|-------------------------|-------------------------|-------|-------|-------|--------------------|-----------|--|--|
|      | Helio          | Area                    | Extent                  | Spot  | Spot  | Mag   | X-ray              | Optical   |  |  |
| Date | (°Lat°CMD) Lon | (10 <sup>-6</sup> hemi) | (helio)                 | Class | Count | Class | $\overline{C}$ M X | S 1 2 3 4 |  |  |

# Region 1008

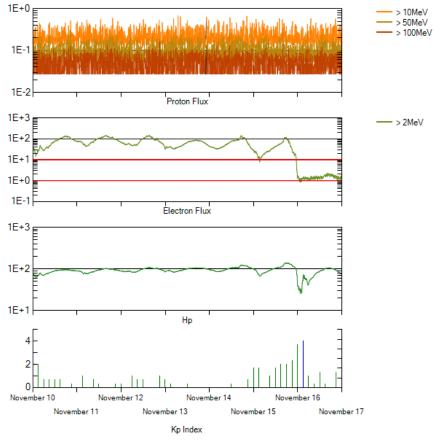
| 10 Nov N33E01 | 121 | 0040 | 03 | Dso | 006 | В |  |
|---------------|-----|------|----|-----|-----|---|--|
| 11 Nov N33W09 | 118 | 0080 | 06 | Dso | 800 | В |  |
| 12 Nov N33W24 | 119 | 0080 | 08 | Dso | 011 | В |  |
| 13 Nov N33W38 | 120 | 0070 | 08 | Cao | 006 | В |  |
| 14 Nov N33W53 | 121 | 0030 | 01 | Cro | 002 | В |  |
| 15 Nov N32W65 | 120 | 0050 | 02 | Hsx | 001 | A |  |
| 16 Nov N33W78 | 120 | 0040 | 02 | Hsx | 001 | Α |  |

 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ 

Still on Disk.

Absolute heliographic longitude: 121




Recent Solar Indices (preliminary)
Of the observed monthly mean values

|                     |          | C           |          |                                       | пониц | Dedie      | Diam  | <u> </u>  |       |
|---------------------|----------|-------------|----------|---------------------------------------|-------|------------|-------|-----------|-------|
|                     | 01 1     | -           | ot Numbe |                                       |       | Radio      |       | Geoma     | _     |
|                     | Observed |             |          | Smooth                                |       | *Penticton |       | Planetary |       |
| Month               | SEC      | RI          | RI/SEC   | SEC                                   | RI    | 10.7 cm    | Value | Ap        | Value |
|                     |          |             |          |                                       | 2006  |            |       |           |       |
| November            |          | 21.5        | 0.68     | 22.3                                  | 12.7  | 86.4       | 78.5  | 9         | 8.5   |
| December            | 22.2     | 13.6        | 0.61     | 20.7                                  | 12.1  | 84.3       | 77.9  | 15        | 8.5   |
|                     |          |             |          |                                       |       |            |       |           |       |
|                     |          |             |          |                                       | 2007  |            |       |           |       |
| January             | 26.6     | 16.9        | 0.64     | 19.7                                  | 12.0  | 83.5       | 77.5  | 6         | 8.4   |
| February            | 17.2     | 10.6        | 0.62     | 18.9                                  | 11.6  | 77.8       | 76.9  | 6         | 8.4   |
| March               | 9.7      | 4.8         | 0.49     | 17.5                                  | 10.8  | 72.3       | 76.0  | 8         | 8.4   |
|                     |          |             |          |                                       |       |            |       |           |       |
| April               | 6.9      | 3.7         | 0.54     | 16.0                                  | 9.9   | 72.4       | 75.2  | 9         | 8.5   |
| May                 | 19.4     | 11.7        | 0.60     | 14.2                                  | 8.7   | 74.5       | 74.2  | 9         | 8.4   |
| June                | 20.0     | 12.0        | 0.60     | 12.8                                  | 7.7   | 73.7       | 73.2  | 7         | 7.8   |
|                     |          |             |          |                                       |       |            |       |           |       |
| July                | 15.6     | 10.0        | 0.64     | 11.6                                  | 7.0   | 71.6       | 72.5  | 8         | 7.4   |
| August              | 9.9      | 6.2         | 0.63     | 10.2                                  | 6.1   | 69.2       | 71.8  | 7         | 7.6   |
| September           |          | 2.4         | 0.50     | 9.9                                   | 5.9   | 67.1       | 71.5  | 9         | 7.8   |
| z ep terme er       |          |             | 0.00     | , , , , , , , , , , , , , , , , , , , | 0.5   | 3771       | , 110 |           | 7.10  |
| October             | 1.3      | 0.9         | 0.70     | 10.0                                  | 6.1   | 65.5       | 71.5  | 9         | 7.9   |
| November            |          | 1.7         | 0.68     | 9.4                                   | 5.7   | 69.7       | 71.1  | 5         | 7.8   |
| December            |          | 10.1        | 0.62     | 8.1                                   | 5.0   | 78.6       | 70.5  | 4         | 7.8   |
| 200111001           | 10.2     | 1011        | 0.02     | 0.1                                   | 2.0   | , 6.6      | , 0.0 | ·         | , 10  |
|                     |          |             |          |                                       | 2008  |            |       |           |       |
| January             | 5.1      | 3.4         | 0.67     | 6.9                                   | 4.2   | 72.1       | 70.0  | 6         | 7.7   |
| February            | 3.8      | 2.1         | 0.55     | 5.9                                   | 3.6   | 71.2       | 69.6  | 9         | 7.6   |
| March               | 15.9     | 9.3         | 0.58     | 5.3                                   | 3.3   | 72.9       | 69.5  | 10        | 7.4   |
| 1/101               | 10.7     | <b>7.</b> 6 | 0.00     | 0.0                                   | 2.2   | , 2.,      | 07.6  | 10        | ,     |
| April               | 4.9      | 2.9         | 0.59     | 5.3                                   | 3.3   | 70.3       | 69.6  | 9         | 7.1   |
| May                 | 5.7      | 2.9         | 0.51     | 3.3                                   | 5.5   | 68.4       | 07.0  | 6         | 7.1   |
| June                | 4.2      | 3.1         | 0.74     |                                       |       | 65.9       |       | 7         |       |
| June                | 7,2      | 3.1         | 0.74     |                                       |       | 03.7       |       | ,         |       |
| July                | 1.0      | 0.5         | 0.50     |                                       |       | 65.8       |       | 6         |       |
| August              | 0.0      | 0.5         | **       |                                       |       | 66.4       |       | 5         |       |
| September September |          | 1.1         | 0.73     |                                       |       | 67.1       |       | 5         |       |
| September           | 1.3      | 1.1         | 0.73     |                                       |       | 07.1       |       | 5         |       |
| October             | 5.2      | 2.9         | 0.56     |                                       |       | 68.3       |       | 6         |       |
| OCIODEI             | J.Z      | 2.9         | 0.50     |                                       |       | 00.5       |       | U         |       |

**NOTE:** All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. \*After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

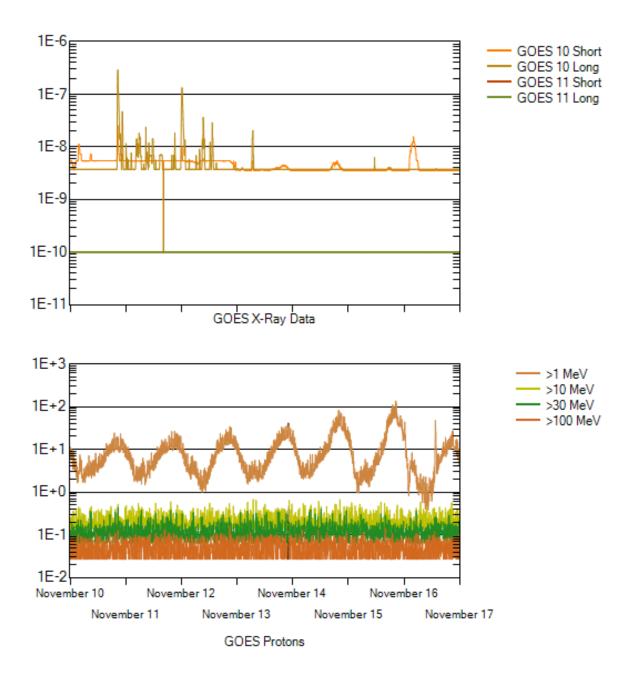


<sup>\*\*</sup>SEC sunspot number was less than RI value, so a ratio could not be done.



Weekly Geosynchronous Satellite Environment Summary Week Beginning 10 November 2008

Protons plot contains the five-minute averaged integral proton flux (protons/cm<sup>2</sup>-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm<sup>2</sup>-sec -sr) with energies greater than 2 MeV at GOES-12 (W075).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SEC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.





#### Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ $m^2$ ) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm<sup>2</sup> –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm<sup>2</sup>-sec-sr) at greater than 10 MeV.

