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Plan of Presentation

• Motivation

• What is a Spherical Torus (ST)?

• Scientific Opportunities & Challenges

• Present Status & Future Vision

• Conclusion
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Tokamak Theory in Early 1980’s Showed Maximum
Stable ββββT Increased with Lowered Aspect Ratio (A)

• A. Sykes et al. (1983); F. Troyon et al. (1984) on maximum stable
toroidal beta βT:

ββββTmax   ≈≈≈≈   ββββN Ip / a BT   ≈≈≈≈   5 ββββN κκκκ / A qj

where
ββββN ~ constant (~ 3 %m·T/MA)
κκκκ = b/a = elongation
A = R0/a = aspect ratio
qj ≈≈≈≈ edge safety factor
Ip = toroidal plasma current
BT ≈ applied toroidal field at R0

• Peng & Strickler (1986): What would happen to tokamak as A →→→→    1?
− How would ββββN, κκκκ, qj, change as functions of A?
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Minimizing Tokamak Aspect Ratio Maximizes Field
Line Length in Good Curvature

Tokamak Compact Toroid (CT)

Spherical Torus (ST)

Bad CurvatureGood Curvature

Magnetic Field Line
Magnetic Surface

The outboard field lines are closer to CT.
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• Elongates naturally to κ ~ 2; ITFC < Ip, IPFC < Ip
• Ip/aBT ~ 7 MA/m·T   ����  ββββTmax ~ 20%, if βN ~ 3
• Also, Ip qedge /aBT ~ 20 MA/m·T   ����  strong “shaping”

ST Tokamak

ITFC / Ip
(~aBT / Ip)

IPFC / Ip

κ

Natural Elongation Coil Currents/Ip (qedge~2.5)

R R A

Z

0

A = 2.5
k ≈ 1.4

A = 1.5
k ≈ 2.0

Spherical Torus Plasma Elongates Naturally, Uses
Less Coil Currents, and Increases Ip/aBT & ββββTmax
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All
Tokamak

START
Record

ββββT(%)

Ip/aBT (MA/m·T)

• Ip ~ 250 kA, �β�→ 15%, for ~10 ms
• Low q95 ~ 3, κ ~ 1.8, no nearby wall
• ββββN can be higher than 3

(Courtesy of A. Sykes & START Team, U.K.)

1 m

Record High ββββT (~40%) was Achieved by START
(U.K.) in 1998
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NSTX (U.S.)

2.5 m

Major MA-Level Experiments, MAST and NSTX,
Are Built to Investigate High-ββββ ST Physics

• Nearby Conducting Shell Yes No (beta limits)
• Poloidal Field Coils Ex-vessel In-vessel (plasma shaping flexibility)

.

MAST (U.K.)
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HIST

TS-3
TST-M
HIST

Globus-M

Pegasus

ETE

MAST
NSTX
CDX-U

HIT-II Proto-Sphera   CST

  Rotamak-ST

START  HIT-I

CDX-U

ETE

World ST Program Has Grown Rapidly Since 1990
Proof of Principle (~MA)Concept Exploration (~0.3 MA)Retired

CL

BV

BV

INDUCTION

GAS PUFF TUBE 1 METRE

PULSE TRANSFORMER

TITANIUM
GETTER

Rotamak-ST

NSTX
MAST

Globus-M

Pegasus

HIT-II

TS-3
TS-4

START

TST-2HIT-I
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NSTX Provides Opportunities Study Wall-
Stabilized Beta Limits at q ~ 10 and κκκκ ~ 2

Capabilities
• R0 = 0.85 m
• Ip ~ 1 MA
• Plasma heating

NBI (5 MW)
HHFW (6 MW)
ECW/EBW (<1 MW)

• Plasma shape control

κ = 2.0, βT = 23−40%, C = 4.5−8, qedge ~ 10 

(J. Menard               )

Stability at high q?
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Ihalo

Spherical Torus May See Only Modest Impact of
Disruption-Induced Halo Currents

• CDX-U and START measured
modest Ihalo fraction (F < 5%)
during disruption-like events

• Eddy current simulation
indicates strong
symmetrization at low A

� Reduced forces
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Toroidal Angle

(N. Pomphrey              
  J. Bialek                       )

(Courtesy of M. Ono and CDX-U Team)

Forced
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Turbulence May Be Much Reduced in NSTX

(G. Rewoldt)

• Opportunity: Flow shearing rates
>> microinstability growth rates

• Challenge: Is reduced turbulence
compatible with stable high β?
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Coaxial Helicity Injection (CHI) Draws on CT
Research for Noninductive Current Drive in ST

HIT-II

Benefit: Eliminate the solenoid, simplify design
Opportunity: Scale up test in NSTX at ~0.5 MA

1 meter
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High Harmonic Fast Wave Utilizes High εεεε (~100) in
ST for Efficient Heating & Current Drive

(PICES & RANT codes, F. Jaeger & M. Carter              )

M. Ono (1995): Fast wave decay
(absorption) rate:

k⊥⊥⊥⊥ im  ~  ne / B3  ~  ε ε ε ε / B,
εεεε  =  ωωωωpe

2 / ωωωωce
2  ~  102

&

Contours of HHFW Absorption

Electrons:99%
Ions: <1%

Driven
Current
Density

Driven Current ~0.5 MA

HHFW
Antenna

R (m)0

nφ = 6
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Heat Fluxes Can Be Dispersed Over Large Wall
Areas
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Various Plasma Shapes Have Been Produced in
NSTX, Also Needed for SOL Investigations

100888
t = 135 ms
Ip = 481 kA 
li = 0.83

100912
t = 135 ms
Ip = 507 kA 
li = 0.83

100921
t = 135 ms
Ip = 482 kA
li = 0.85

κκκκ = 1.5
δδδδlower = 0.33
δδδδupper = 0.33

κκκκ = 2.11
δδδδlower = 0.36
δδδδupper = 0.37

κκκκ = 1.76
δδδδlower = 0.26
δδδδupper = 0.36

Wall Limited Double-Null Divertor Single-Null Divertor

(S. Sabbagh                     )Columbia
University
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Recent Stability Calculations Suggest Route to
Self-Sustaining Higher ββββ ST Plasmas

High
Safety
Factors

Hollow Aligned
Bootstrap
Current

Broad
Plasma

Temperature,
Pressure

Challenges
• Vertical stability
• Disruptions
• Resistive Wall

Mode stability &
control

• Neoclassical
tearing mode
stability

• Profile tailoring
• Bootstrap current

alignment

κ = 3.4, βN = 8.2, βT = 56%, �β� = 42%, fBS = 99%, qedge ~ 11

Tall Plasma
Cross

Section

Conducting
Stabilizing
Shell

(J. Menard,              )
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Spherical Torus Plasma Current (MA)
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Enhanced Confinement Projects to High
Performance

ST experiments will improve understanding of plasma transport.
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ST Introduces Additional Possibilities of
Intriguing Plasma Behaviors

• Strong magnetic well (~30%), near-omnigenous orbits
− Guiding-center orbit compression, reduced neoclassical transport?
− Stability of “Fishbone” modes?

• Large Pfirsch-Schlüter current
− Stabilization of neoclassical tearing modes at high β?

• vsound ~ vAlfvén, where local ββββ ~ 1
− “Dynamic” equilibrium with strong plasma flow?
− Influence on stability and turbulence?

• vfast >> vAlfvén for fast ions or fusion αααα particles
− New classes of Toroidal Alfvén Eigenmodes, and effects?

• Larger ρρρρi* (=ρρρρci/a) ~ 0.03 −−−− 0.01
− Thicker pedestal in H-mode plasmas?

• Extreme low A (~1.1)
− Connections to FRC and Spheromak?
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Spherical Torus Introduces Both Exciting Fusion
Science and a Possible Practical Route to Energy

Promise: SCIENCE ↔↔↔↔ ENERGY

High Pressure, Low Field ↔ Low Device Cost
Suppressed Turbulence ↔ Small Unit Size
Dispersed Exhaust ↔ Reliable First Wall
Self-Sustaining Current ↔ Lowered Operating Cost
Startup Without Solenoid ↔ Simplified Compact Configuration

New Challenge: SCIENCE, TECHNOLOGY

Startup Without Solenoid ↔ Noninductive Startup Physics
↔ Single-Turn Center Conductor
↔ Recirculating Power, Lifetime
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Spherical Torus Plasmas Offer Exciting Scientific
Opportunities

• Derived from Tokamak and Compact Toroid research
• Offers exciting scientific opportunities and challenges for fusion

− Order-unity β
− Good confinement
− Self-sustained current
− Dispersed heat fluxes
− Full noninductive startup

• Introduces new physics features to be explored
• May offer affordable steps to advance fusion energy science
• NSTX, Pegasus, HIT-II, CDX-U in the U.S., together with ST

experiments around the world, are ready to address key issues
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Sessions and Papers of Interest to ST Studies

• [DI1.02] Mon PM Y Ono: FRC & ST
• [FP1.73] Tue AM C Sovinec: Electrostatic Current Drive
• [GO2.18] Tue PM K Williams: Turbulence Modeling
• [GM2.04] Tue PM C Williams: ST Fusion Space Propulsion Vehicle
• [JP1.75−−−−107] Wed AM M. Ono et al.: NSTX & [UP2.52] Fri AM Diagnostics
• [KP1.89] Wed PM M Kotschenreuther et al: Novel Reactor
• [RP1.36−−−−41] Thur PM R Fonck et al: Pegasus
• [RP1.42−−−−48] Thur PM R Majeski, R Kaita et al: CDX-U
• [RP1.49] Thur PM M Carter: RF Modeling
• [RP1.50−−−−56] Thur PM T Jarboe et al: HIT-II, HIT-SI
• [RP1.57−60−60−60−60] Thur PM Y Ono et al: TS-3, TS-4
• [RP1.61−−−−62] Thur PM Y Takase et al: TST-2
• [RP1.63 −−−−64] Thur PM M Nagata et al: HIST

Fri Noon - Sun Noon: 6th International ST Workshop + US-Japan Workshops
on ST & Phys. Of Innovative (CT) High-Beta Fusion Plasma Confinement
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NSTX is Racing up in Plasma Current!

November 1998
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Novemb

#100193
2/16/99

#100652
10/6/99

#100874
10/14/99

Time (s)

NSTX Achieved Peak Current at 800 kA
Briefly, and ~500 kA for ~80 ms


