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Plan of Presentation
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e Motivation

What is a Spherical Torus (ST)?
e Scientific Opportunities & Challenges
* Present Status & Future Vision

e Conclusion

Phvys of ST DPP APS 99



Tokamak Theory in Early 1980’s Showed Maximum
Stable B; Increased with Lowered Aspect Ratio (A)

—_

 A. Sykes et al. (1983); F. Troyon et al. (1984) on maximum stable
toroidal beta f3;:

BTmax = BNIp/aBT = SBNKlqu

where 7 Plasma
By ~ constant (~ 3 %m-T/MA) \ Cross
: . Secti
K = b/a = elongation i * ................ / eeon
_ _ : i b
A = R,/a = aspect ratio X  |a|al .
q; = edge safety factor :_ R _>|
! 0 '
|, = toroidal plasma current I
N
B, = applied toroidal field at R, i

e Peng & Strickler (1986): What would happen to tokamak as A - 1?7

— How would By, K, g;, change as functions of A?
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Minimizing Tokamak Aspect Ratio Maximizes Field
Line Length in Good Curvature

Good Curvature Bad Curvature

Magnetic Surface

Magnetic Field Line

N

Tokamak Compact Toroid (CT)

The outboard field lines are closer to CT.
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Spherical Torus Plasma Elongates Naturally, Uses
Less Coil Currents, and Increases | ,/aB; & By,

Natural Elongation Coil Currents/l, (Qegqe~2.5)

| 5t~

] |
A=15 A=25
3_k:2_0<::jtlk:1_4 i

i UJ = o —
e [ vermicac| [~ w -

FIELD
coiL 2

R R ST A Tokamak

* Elongates naturally to K ~ 2; lipc < 1, Ippe < 1
|/aBy ~ 7 MAIm-T = B, ~20%, if B, ~3
* Also, |,0e4qe /@By ~ 20 MA/M-T = strong “shaping”
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Record High B, (~40%) was Achieved by START
(U.K.) in 1998
QD START ——

o 1997 START
Record

(Courtesy of A. Sykes & START Team, U.K.) 50

# 35533
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e Low gy ~ 3, K ~ 1.8, no nearby wall 0 £ . o

. 0 2 4 6 8
* [, can be higher than 3 |,/aB; (MA/M-T)
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Major MA-Level Experiments, MAST and NSTX,
Are Built to Investigate High-B ST Physics
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* Nearby Conducting Shell Yes\ No/ (beta limits)
* Poloidal Field Coils Ex-vessel In-vessel (plasma shaping flexibility)
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World ST Program Has Grown Rapidly Since 1990

(D 0] Concept Exploration (~0.3 MA) (0] Proof of Principle (~MA)
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NSTX Provides Opportunities Study Wall-
Stabilized Beta Limitsatg ~10and K ~ 2

K = 2.0, By = 23-40%, C = 4.5-8, Qpyqe ~ 10

55 i | | | | -11 g, =
- q+=1.95 : Capabilities
T Wall present q*/q(0)=0.69 _:10 * R,=0.85m
| B=40%, f,=71% l,/aB=5.0 e | ~1MA
45_— 49 P
ol /\o ° * Plasma heating
@ A0 [ —4 8= NBI (5 MW)
— i o O
e | =3 HHFW (6 MW)
ST . 173 ECW/EBW (<1 MW)
= - 2
30 _ 16 * Plasma shape control
: Same profiles, no wall ]
ord Bi=23%, fe=41% 1° Stability at high q?
20 [ | | | l ] 4
1 2 3 4 oo

Toroidal Mode Number (J. Menard ’l"““')
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Spherical Torus May See Only Modest Impact of
Disruption-Induced Halo Currents

« CDX-U and START measured
modest |, fraction (F < 5%)
during disruption-like events

(Courtesy of M. Ono and CDX-U Team)
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« Eddy current simulation

indicates strong

symmetrization at low A

— Reduced forces

Vert. Current Distribution
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Turbulence May Be Much Reduced in NSTX

=_

Instability Growth Rate (10° s™1)

(G.
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* Opportunity: Flow shearing rates
>> microinstability growth rates

* Challenge: Is reduced turbulence
compatible with stable high 3?
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Coaxial Helicity Injection (CHI) Draws on CT
Research for Noninductive Current Drive in ST
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(Courtesy of T. Jarboe, UW)
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Benefit: Eliminate the solenoid, simplify design
Opportunity: Scale up test in NSTX at ~0.5 MA
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Phvys of ST

High Harmonic Fast Wave Utilizes High € (~100) in
ST for Efficient Heating & Current Drive

_

Contours of HHFW Absorption M. Ono (1995): Fast wave decay
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Heat Fluxes Can Be Dispersed Over Large Wall

Areas
NSTX ——
Scrape-Off Layer Geometry o
of Inboard Limited ST Plasma IS AlB Larger Geometric
- 0 Expansion
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Various Plasma Shapes Have Been Produced in
NSTX, Also Needed for SOL Investigations

FPoloidal flux at gridpoints Foloidal flux at gridpoints Foloidal flux at gridpoints
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Recent Stability Calculations Suggest Route to

Self-Sustaining Higher B ST Plasmas
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Enhanced Confinement Projects to High

Performance
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Spherical Torus Plasma Current (MA)

ST experiments will improve understanding of plasma transport.
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ST Introduces Additional Possibilities of
Intriguing Plasma Behaviors

Strong magnetic well (~30%), near-omnigenous orbits
— Guiding-center orbit compression, reduced neoclassical transport?
— Stability of “Fishbone” modes?

 Large Pfirsch-Schlluter current
— Stabilization of neoclassical tearing modes at high 3?

® Veound ~ Vaiven Where local B~1

— “Dynamic” equilibrium with strong plasma flow?
— Influence on stability and turbulence?

® Vi >> Ve fOr fast ions or fusion a particles
— New classes of Toroidal Alfvén Eigenmodes, and effects?

* Larger p* (=p./a) ~ 0.03 - 0.01
— Thicker pedestal in H-mode plasmas?

e Extremelow A (~1.1)
— Connections to FRC and Spheromak?
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Spherical Torus Introduces Both Exciting Fusion
Science and a Possible Practical Route to Energy

_

Promise: SCIENCE o ENERGY

High Pressure, Low Field ~ Low Device Cost

Suppressed Turbulence - Small Unit Size

Dispersed Exhaust - Reliable First Wall
Self-Sustaining Current - Lowered Operating Cost

Startup Without Solenoid o  Simplified Compact Configuration

New Challenge: SCIENCE, TECHNOLOGY

Startup Without Solenoid « Noninductive Startup Physics
~ Single-Turn Center Conductor
- Recirculating Power, Lifetime
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ST Development Path to Fusion Energy Science &
Technology May Be More Affordable
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Spherical Torus Plasmas Offer Exciting Scientific

Opportunities
E—

e Derived from Tokamak and Compact Toroid research
» Offers exciting scientific opportunities and challenges for fusion

— Order-unity 3

— Good confinement

— Self-sustained current

— Dispersed heat fluxes

— Full noninductive startup

* Introduces new physics features to be explored
* May offer affordable steps to advance fusion energy science

* NSTX, Pegasus, HIT-1l, CDX-U in the U.S., together with ST
experiments around the world, are ready to address key issues
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Sessions and Papers of Interest to ST Studies

Phvys of ST

¢ [DI1.02]
 [FP1.73]
¢ [GO2.18]
¢ [GM2.04]
e [JP1.75-107]
¢ [KP1.89]
« [RP1.36-41]
 [RP1.42-48]
¢ [RP1.49]
 [RP1.50-56]
 [RP1.57-60]
 [RP1.61-62]
 [RP1.63 -64]

Mon PM
Tue AM
Tue PM
Tue PM
Wed AM
Wed PM
Thur PM
Thur PM
Thur PM
Thur PM
Thur PM
Thur PM
Thur PM

=

Y Ono: FRC & ST

C Sovinec: Electrostatic Current Drive

K Williams: Turbulence Modeling

C Williams: ST Fusion Space Propulsion Vehicle
M. Ono et al.: NSTX & [UP2.52] Fri AM Diagnostics
M Kotschenreuther et al: Novel Reactor

R Fonck et al: Pegasus

R Majeski, R Kaita et al: CDX-U

M Carter: RF Modeling

T Jarboe et al: HIT-II, HIT-SI

Y Ono et al: TS-3, TS-4

Y Takase et al: TST-2

M Nagata et al: HIST

Fri Noon - Sun Noon: 6th International ST Workshop + US-Japan Workshops
on ST & Phys. Of Innovative (CT) High-Beta Fusion Plasma Confinement
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NSTX is Racing up in Plasma Current!

NSTX ——
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NSTX Achieved Peak Current at 800 kA
Briefly, and ~500 kA for ~80 ms
NSTX ——
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