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Abstract— Objective: Orlov has derived the sufficient con-
ditions for adequate two-dimensional projection sampling of
a three-dimensional density function in order to reconstruct
that density function. This condition may be represented
as a curve of vantage angles on a unit sphere of directions.
Orlov’s condition states that the density function can be
unambiguously reconstructed if the curve of vantage angles
intersects all great circles on the sphere. The set of points
for which Orlov’s condition is met may be termed the Orlov
volume. Although this volume can be intuitively determined
for simple sampling orbits, there is no known algorithm in
the literature for determining the volume for the generalized
case. Further, the Orlov volume principle may be applied to
converging and diverging collimators, in addition to parallel-
hole collimators. Methods: We consider a voxelized repre-
sentation of the volume inside an orbit of a given collimator
type. We then construct a digitized version of the vantage
points of the voxel for a given camera orbit. We then de-
termine if any great circles can exist on the Orlov sphere
without intersecting the vantage curve. Results: We have
implemented this algorithm in C++4 using Object-Oriented
programming techniques. The algorithm considers generic
collimator types, of which we have currently implemented
slant-hole, parallel-hole and pinhole collimators. Other col-
limator types can be added without modification to the al-
gorithm. Multiple orbits can be simultaneously considered.
Multiple collimator types can also be simultaneously consid-
ered. The output is the voxelized volume that meets Orlov’s
condition. Conclusions: The algorithm has successfully de-
termined the Orlov volume in cases that are easily verified
intuitively. It has been used to study the more complex
scenarios of pinhole collimators following spiral orbits and
simultaneous acquisition of parallel-hole and slant-hole colli-
mators. This technique may be useful for studying sufficient
orbits and understanding sampling artifacts.
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I. INTRODUCTION

In his work with electron microscopy, Orlov derived the
sufficient-sampling condition for three-dimensional recon-
struction from projection data [1]. He stated his condition
geometrically: the curve of vantage angles on a unit sphere
of directions must “have points in common with any arc
of a great circle [1].” If this condition is met, the sampled
density function can be unambiguously reconstructed.

Two Orlov spheres are shown in Figures 1 and 2. Fig-
ure 1 shows the vantage curve for a slant-hole or tilted
parallel-hole collimator following an orbit that coincides
with the vantage curve. It is possible to draw great cir-
cles on the Orlov sphere that do not intersect the vantage
curve. The projection data derived from this orbit would
be insufficient to unambiguously reconstruct the source. In
Figure 2, the vantage curve for a parallel-hole collimator is
shown. The collimator is not tilted. The vantage curve
intersects all great circles on the sphere.

Tuy and Smith realized that Orlov’s condition is met
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Fig. 1. Orlov Sphere and Vantage Curve for Slant-hole Collimator.
The figure depicts the vantage curve for a slant-hole collimator as
it observes a source point at the center of the sphere. The camera
follows a circular orbit that coincides with the vantage curve. It is
possible to draw great circles on this sphere that do not intersect the
vantage curve. This vantage curve is the same as the vantage curve
of a tilted parallel-hole collimator following the same orbit.

by a limited set of points that will be referred to in this
paper as the Orlov volume [2,3]. It has been observed that
reconstruction artifacts occur in regions outside the Orlov
volume [4].

The Orlov volume can be determined intuitively in the
cases of simple collimator types, such as parallel-hole, fol-
lowing simple circular orbits. The symmetry of the sam-
pling makes the Orlov volume cylindrical in this case. How-
ever, there is no known algorithm in the literature for de-
termining the algorithm for the generalized case of non-
parallel-hole collimators and non-circular orbits.

A method has been developed to computationally deter-
mine the Orlov volume for any set of collimators following
any set of orbits. Herein this method will be described.

II. ALGORITHM

A voxelized representation of the volume to evaluate is
created. Then a set of collimator models is constructed to
simulate the positions, orientations and spatial extents of
the collimators. For example, a single parallel-hole colli-
mator following an orbit that includes m projection views
would be represented by m collimator models. Two colli-
mators with m and n projection views, respectively, would
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Fig. 2. Orlov Sphere and Vantage Curve for Parallel-hole Collimator.
The figure depicts the vantage curve for the parallel-hole collimator
as it observes a source point at the center of the sphere. The camera
follows a circular orbit that coincides with the the equator of the
sphere. The vantage curve coincides with the equator. All great
circles on this sphere intersect the vantage curve.

be represented by m +n collimator models. For each voxel,
a digitized version of the vantage points of the voxel are de-
termined from the set of collimator models. The digitized
vantage curve is then evaluated to determine if any great
circles can exist on the Orlov sphere without intersecting
the vantage curve.

This algorithm has been implemented in C++ using
Object-Oriented programming techniques. When started,
the program allocates and initializes a boolean matrix rep-
resenting the voxelized volume to consider. It then reads
one or several orbit files and constructs a set of collimator
representations. All detector representations obey an ab-
stract interface that determines if a given voxel is within
the field-of-view of the collimator and the vantage angles
for that voxel.

The use of an abstract interface makes it possible to
model multiple collimator types simultaneously and extend
the program to consider new collimator types without any
change to the algorithm. The new collimator simply needs
to implement this interface. Multiple collimators can be
used because each projection view in the orbit file or files
results in the construction of a new collimator represen-
tation. All the representations are stored and considered
together when evaluating whether a voxel meets Orlov’s
criteria.

Each voxel is fully evaluated by considering the vantage
curve generated by all the projection views before the next
voxel is considered. This reduces the required memory con-
siderably. For each projection view, it is determined if the
voxel in question is seen by the detector at that view. If it

is seen, the vantage angles are recorded to make a vantage
curve.

After all the projection views have been considered for
a voxel, the vantage curve is evaluated to determine if any
great circles can exist on the sphere without intersecting
the vantage curve. The parameterization of a generic great
circle (Fig. 3) can be found by considering that the points
with the minimum and maximum z values are

Ponax = (sin @ cos ¢, sin 0 sin @, cos )

1
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A normal to the circle can be parameterized as
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The normal can be used to dgtermine the basis vector
orthogonal to 7max, ?min, and N.
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Any point on the great circle can be parameterized as
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Fig. 3. Generic Great Circle on an Orlov Sphere. The point
(sin 8 cos ¢, sin @ sin ¢, cos #) has the maximum value of z on this curve.
The point (— sin 0 cos ¢, — sin 8 sin ¢, — cos 6) has the minimal value of
z on this curve. The normal to the plane of this great circle is N.



T = QThmax + Bb. (4)

Since | 7| = 1, | Pmax| = 1, |b| = 1, and Thnax and b are
orthogonal,
o+ 52 =1 (5)

Letting a = sin~y and 8 = cos~y,

7 = (sinysinf cos ¢ — cos~sin ¢, (©)

sin -y sin 6 sin ¢ + cosy cos ¢, sin «y cos 6),

where 0 and ¢ are the coordinates of the point of maximum
z on the curve and 7y parameterizes the curve. Equation 6 is
used to evaluate if any great circles can exist on the sphere
without intersecting the vantage curve.

III. RESULTS

The program has been tested using parallel-hole collima-
tors, slant-hole collimators, pinhole collimators and com-
binations of the above. Example volumes are described
below.

A. Parallel-hole Collimators with Circular Orbits

Parallel-hole collimators with circular orbits have been
evaluated and give cylindrical Orlov volumes (Fig. 4), as
expected. The radius of the cylindrical Orlov volume in
this case is larger than the collimator’s radius of rotation
(ROR). Clinically, there generally would not be activity
outside the ROR since the gamma camera passes through
that region, but, as the program indicates, that region is
sufficiently sampled. This is because the Orlov volume of a
parallel-hole collimator following a circular orbit depends
only on the detector dimensions and not the orbit dimen-
sions. That volume is cylindrical with extent given by
nw?d/4, where w is the width of the detector in the plane
of the orbit and d is the depth of the detector normal to
the plane of the orbit.

B. Pinhole Collimators

The algorithm can also be used to determine sufficiently
sampled volumes for converging-beam and diverging-beam
collimators. The pinhole collimator has been tested with
a circular orbit, giving a circular slice as the Orlov vol-
ume. This was expected, because all voxels that are off-
axis have insufficient data. The pinhole-collimator has also
been tested with a spiral orbit (Fig. 5) and gives a nearly
cylindrical volume. The defects in the cylinder are at the
ends, as expected because of the strong dependence on the
initial orientation of the camera.

C. Combined Parallel-Hole and Tilted Parallel-Hole

Combined parallel-hole and tilted parallel-hole have
been used to understand Orlov volumes in conjunction
with breast-imaging research using vertical-axis-of-rotation
(VAOR) orbits [4]. A digital phantom with a single pen-
dulous breast was used to study the utility of parallel-hole
acquisition around the torso using a standard horizontal-
axis-of-rotation (HAOR) orbit versus tilted parallel-hole
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Fig. 4. Orlov Volume for Parallel-hole Collimator with a Circular
Orbit. The voxelized volume meeting the Orlov condition for a cir-
cular orbit of an untilted parallel-hole collimator is shown in white.
The collimator’s orbit is shown by the superimposed circle.

acquisition around the breast using a VAOR orbit. The
VAOR orbit allows the camera to be positioned nearer the
breast to improve spatial resolution, but the HAOR or-
bit gives better Orlov sampling. Fig. 6 shows the Orlov
volume for a tilted parallel-hole acquisition with two addi-
tional arcs. Notice that the VAOR orbit does not yield a
volume that includes the entire breast. Fig. 7 shows the
Orlov volume for the tilted parallel-hole acquisition com-
bined with a parallel-hole orbit extending around the pos-
terior side of the patient. The VAOR orbit gives a much
larger Orlov volume.

IV. DISCUSSION

Orlov’s condition assumes continuous angular sampling
and infinitesimal sampling bins. Both of these conditions

Fig. 5. Orlov Volume for Helical Pinhole-Collimator Orbit. A slice
of the voxelized volume meeting the Orlov condition for a helical
orbit of a pinhole collimator is shown in white. The volume is nearly
cylindrical, except for defects at the ends (not shown) where the valid
volume depends on the initial angle of acquisition.



Fig. 6. Orlov Volume for Vertical-Axis-of-Rotation Tilted Parallel-
Hole Collimator Orbit. A parallel-hole collimator was used to sample
regions in and near the breast. The tilted acquisition was combined
with additional arcs near the sternum and lateral side of the breast.
A slice of the volume meeting the Orlov condition is shown as white.
The outline of the digital phantom is also shown.

are invalid in realistic acquisitions. By Nyquist’s theorem,
there are limitations in reconstruction resolution due to dis-
crete sampling. The discrete nature of the sampling merges
the concepts of Nyquist frequency and the Orlov volume.
This work represents an important future development.
The current algorithm has successfully determined the
Orlov volume in cases that are easily verified intuitively.
It has been used to study the more complex scenarios of
pinhole collimators following spiral orbits and simultane-
ous acquisition of parallel-hole and slant-hole collimators.
Further, it has improved understanding of artifacts found
in VAOR acquisitions of the breast. This technique may
be useful for studying sufficient orbits and understanding
sampling artifacts for complex projection acquisitions.

h

Fig. 7. Orlov Volume for Combined HAOR-VAOR Orbits. The same
orbit described for Fig. 6 was supplemented with a standard HAOR
orbit around the patient. The additional orbit greatly increases the
size of the sufficiently sampled volume. The outline of the digital
phantom is also shown.
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