Space Weather Highlights 28 September - 05 October 2008

SWPC PRF 1727 07 October 2008

Solar activity was very low. No flares were detected. The visible solar disk remained spotless through most of the period, however, Region 1003 (S23, L=222, class/area Axx/010 on 04 Oct) was numbered on 04 October. This region quickly decayed to spotless plage on 05 October.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at high levels 03 - 05 October.

The geomagnetic field was at quiet levels 29 September through the end of the day on 30 September with solar wind speed values measured at the ACE spacecraft around 350 km/s. Activity levels increased to quiet to unsettled conditions through 01 October. This increase was due to a Co-rotating Interaction Region (CIR) with solar wind velocities near 500 km/s and the Interplanetary Magnetic Field (IMF) Bz component ranging between +/- 7 nT. Geomagnetic field activity increased to quiet to active conditions on 02 October as a coronal hole high speed stream rotated into a geoeffective position. Quiet to active conditions were observed through early 04 October when the geomagnetic activity increased to unsettled to minor storm levels. Solar wind speed values during this period also increased to around 750 km/s with the IMF Bz ranging between +/- 8 nT. Soon after the peak of the geomagnetic activity, levels slowly declined to quiet to unsettled for the remainder of 04 October, then mostly quiet conditions on 05 October. Wind velocities also began gradually decreasing, and ended the period below 500 km/s.

Space Weather Outlook 08 October - 03 November 2008

Solar activity is expected to be very low.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels during 08 - 11 October, 13 - 15 October, and 30 October - 03 November.

The geomagnetic field is expected to be at quiet levels on 08 - 10 October. A coronal hole high speed stream is expected to become geoeffective on 11 - 13 October increasing activity to quiet to unsettled levels with active conditions possible on 12 October. For 14 - 27 October activity levels are expected to decrease to quiet conditions. Another coronal hole high speed stream is expected to become geoeffective on 28 - 31 October increasing activity to quiet to unsettled levels with active conditions expected on 28 - 29 October. Quiet conditions are expected 01 - 03 November as the coronal hole rotates out of a geoeffective position.

Daily Solar Data

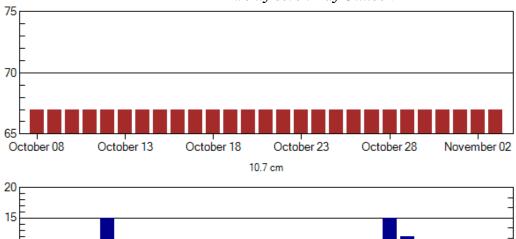
	Radio	Sun	Sunspot	X-ray	_			Flares				
	Flux	spot	Area	Background	X	-ray F	lux		O	otical		
Date	10.7 cm	No.	(10 ⁻⁶ hemi.))	С	M	X	S	1	2	3	4
29 Septembe	r 67	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
30 Septembe	r 66	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
01 October	66	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
02 October	66	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
03 October	67	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
04 October	67	12	10	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
05 October	67	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

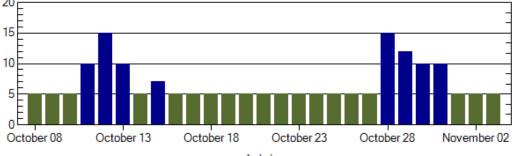
Daily Particle Data

	Pr	oton Fluence		Electron Fluence
	(prote	ons/cm ² -day-sı	·)	(electrons/cm ² -day-sr)
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV
29 September	3.5E+5	1.9E+4	4.4E+3	1.7E+6
30 September	7.8E + 5	1.9E+4	4.0E+3	1.9E+6
01 October	6.0E + 5	1.8E+4	3.9E+3	1.2E+6
02 October	2.5E+6	1.8E+4	3.9E+3	2.5E+6
03 October	4.2E+6	1.8E+4	3.5E+3	1.6E+8
04 October	1.4E+6	1.8E + 4	3.6E + 3	2.5E+8
05 October	1.1E+6	1.8E+4	3.9E+3	3.0E+8

Daily Geomagnetic Data

•	M	Iiddle Latitude]	High Latitude	I	Estimated
	F	redericksburg		College]	Planetary
_Date	Α	K-indices	Α	K-indices	Α	K-indices
29 September	2	0-1-1-1-1-0-0-0	3	0-0-2-3-1-0-0-0	2	0-0-2-1-1-0-0-1
30 September	3	0-0-0-0-2-1-2-2	1	0-0-0-0-1-1-1	4	0-0-0-1-2-1-3
01 October	7	2-1-2-2-2-2-2	8	2-1-3-1-3-2-2-1	6	1-1-2-1-2-2-2
02 October	11	2-2-3-3-2-3-3	26	2-2-2-6-6-3-2-2	12	2-2-2-4-4-2-3-2
03 October	10	3-2-2-3-2-2-3	32	3-2-5-6-6-3-2-2	13	3-3-3-3-2-2-3
04 October	8	2-4-2-2-1-1-1	17	3-4-2-5-4-1-1-2	11	3-5-2-2-2-1-2
05 October	3	0-1-2-0-1-2-1-1	4	1-1-2-1-2-0-1-1	4	1-2-2-1-1-1-0-1




Alerts and Warnings Issued

Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UTC
01 Oct 1529	WARNING: Geomagnetic K = 4	01 Oct 1530 - 2359
01 Oct 1949	WATCH: Geomagnetic A=20	02 Oct
01 Oct 2309	EXTENDED WARNING: Geomagnetic $K = 4$	01 Oct 1530 - 02/1600
02 Oct 1055	ALERT: Geomagnetic K = 4	02 Oct 1054
02 Oct 1538	EXTENDED WARNING: Geomagnetic $K = 4$	01 Oct 1530 - 02/2359
03 Oct 0824	WARNING: Geomagnetic $K = 4$	03 Oct 0825 - 1600
03 Oct 0825	ALERT: Geomagnetic K = 4	03 Oct 0825
03 Oct 1120	ALERT: Electron 2MeV Integral Flux ≥1000pf	u 03 Oct 1100
03 Oct 2137	WARNING: Geomagnetic $K = 4$	03 Oct 2145 - 04/1600
04 Oct 0404	ALERT: Geomagnetic K = 4	03 Oct 0403
04 Oct 0409	WARNING: Geomagnetic $K = 5$	04 Oct 0408 - 1600
04 Oct 0410	ALERT: Geomagnetic $K = 5$	04 Oct 0410
04 Oct 0441	SUMMARY: Geomagnetic Sudden Impulse	04 Oct 0440
04 Oct 0848	ALERT: Electron 2MeV Integral Flux ≥1000pf	u 04 Oct 0815
05 Oct 0502	ALERT: Electron 2MeV Integral Flux ≥1000pf	u 05 Oct

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
08 Oct	67	5	2	22 Oct	67	5	2
09	67	5	2	23	67	5	2
10	67	5	2	24	67	5	2
11	67	10	3	25	67	5	2
12	67	15	4	26	67	5	2
13	67	10	3	27	67	5	2
14	67	5	2	28	67	15	4
15	67	7	2	29	67	12	4
16	67	5	2	30	67	10	3
17	67	5	2	31	67	10	3
18	67	5	2	01 Nov	67	5	2
19	67	5	2	02	67	5	2
20	67	5	2	03	67	5	2
21	67	5	2				

Energetic Events

	Time		X-ray	Optical Information			Peak	Sweep Freq		
Date	1/2		½ Integ		Location	Rgn	Radio Flux	Intensity		
	Begin Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	ĪĪ ĪV		
N	o Events Observed									

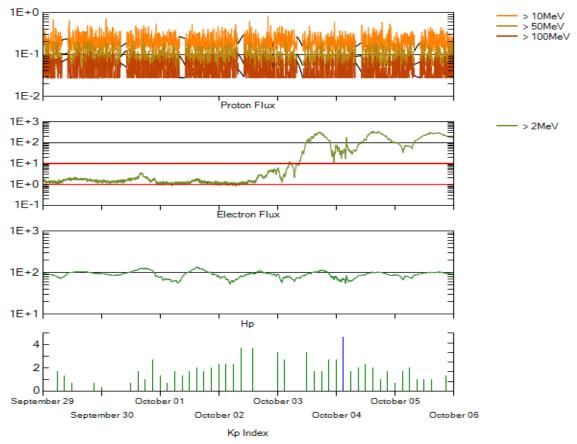
Flare List

				Optical	
	Time	X-ray	Imp/	Location	Rgn
Date	Begin Max End	Class.	Brtns	Lat CMD	
29 Sep	No Flares Observed				
30 Sep	No Flares Observed				
01 Oct	No Flares Observed				
02 Oct	No Flares Observed				
03 Oct	No Flares Observed				
04 Oct	No Flares Observed				
05 Oct	No Flares Observed				

Region Summary

Location	Location Sunspot C			Characteristics					Flares						
	Helio	Area	Extent	Spot	Spot	Mag		X-ray		Optical					
Date (° Lat ° CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4	
Re	egion 10	003													
04 Oct S23E28	222	0010	01	Axx	002	A									
05 Oct S23E15	222														
							0	0	0	0	0	0	0	0	
Still on Disk.															

Absolute heliographic longitude: 222


Recent Solar Indices (preliminary)
Of the observed monthly mean values

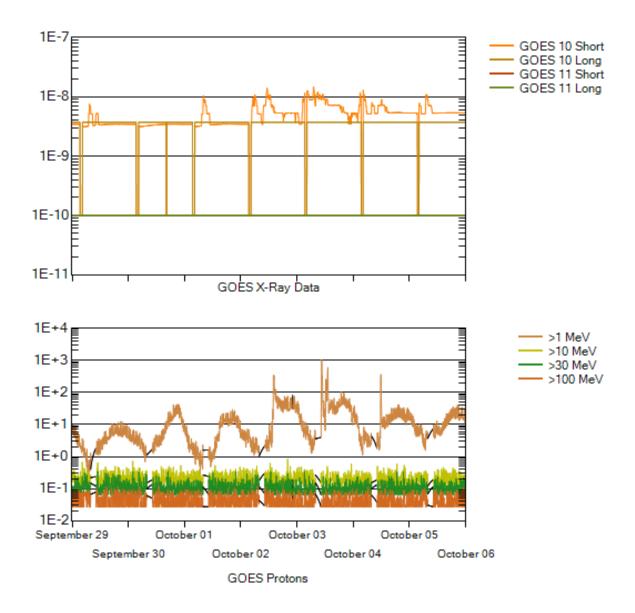
		Sunsp	ot Number			Radio	Flux	Geoma	gnetic
	Observed	_		Smooth	values	*Penticton		Planetary	_
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value
					2006				
October	15.7	10.4	0.66	25.2	14.2	74.3	79.4	8	8.6
November	31.5	21.5	0.68	22.3	12.7	86.4	78.5	9	8.5
December	22.2	13.6	0.61	20.7	12.1	84.3	77.9	15	8.5
					2007				
January	26.6	16.9	0.64	19.7	12.0	83.5	77.5	6	8.4
February	17.2	10.6	0.62	18.9	11.6	77.8	76.9	6	8.4
March	9.7	4.8	0.49	17.5	10.8	72.3	76.0	8	8.4
April	6.9	3.7	0.54	16.0	9.9	72.4	75.2	9	8.5
May	19.4	11.7	0.60	14.2	8.7	74.5	74.2	9	8.4
June	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8
July	15.6	10.0	0.64	11.6	7.0	71.6	72.5	8	7.4
August	9.9	6.2	0.63	10.2	6.1	69.2	71.8	7	7. 4 7.6
September		2.4	0.50	9.9	5.9	67.1	71.5	9	7.8
Берилост	1.0	2.1	0.50	7.7	5.7	07.1	71.5		7.0
October	1.3	0.9	0.70	10.0	6.1	65.5	71.5	9	7.9
November	2.5	1.7	0.68	9.4	5.7	69.7	71.1	5	7.8
December	16.2	10.1	0.62	8.1	5.0	78.6	70.5	4	7.8
					2008				
January	5.1	3.4	0.67	6.9	4.2	72.1	70.0	6	7.7
February	3.8	2.1	0.55	5.9	3.6	71.2	69.6	9	7.6
March	15.9	9.3	0.58	5.3	3.3	72.9	69.5	10	7.4
Ai1	4.0	2.0	0.59			70.3		9	
April Mov	4.9 5.7	2.9 2.9	0.59					6	
May	4.2	3.1	0.31			68.4 65.9		7	
June	4.4	3.1	0.74			03.9		,	
July	1.0	0.5	0.50			65.8		6	
August	0.0	0.5	**			66.4		5	
September		1.1	0.73			67.1		5	

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

^{**}SEC sunspot number was less than RI value, so a ratio could not be done.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 29 September 2008

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-12 (W075).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SEC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.


Weekly GOES Satellite X-ray and Proton Plots

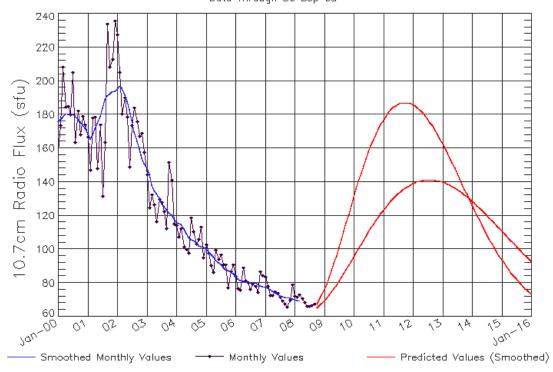
X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

ISES Solar Cycle Sunspot Number Progression Data Through 30 Sep 08

Updated 2008 Oct 6

NOAA/SWPC Boulder,CO USA

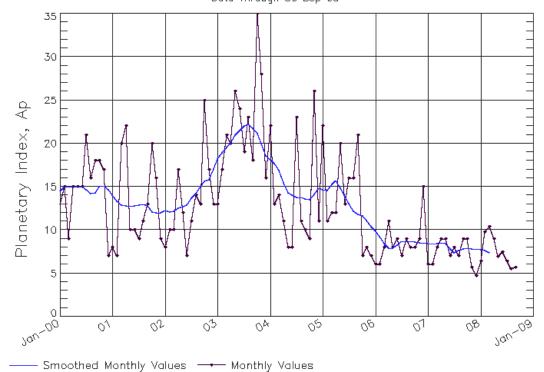

SEC Prediction of Smoothed Sunspot Number

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Hi/Lo											
2006	21	19	17	17	17	16	15	16	16	14	13	12
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2007	12	12	11	10	9	8	7	6	6	6	6	5
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2008	4	4	3	4/3	4/4	5/4	6/5	7/5	9/6	11/7	13/8	16/10
	(***)	(***)	(***)	(1)	(3)	(5)	(7)	(8)	(9)	(10)	(11)	(12)
2009	20/11	24/14	28/16	31/17	36/20	41/22	46/24	52/27	57/29	62/32	68/35	73/37
	(13)	(14)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2010	79/40	84/43	89/45	94/48	99/51	103/53	108/56	112/59	116/61	119/63	123/66	126/68
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2011	129/70	131/72	133/74	135/76	137/78	138/79	139/81	140/82	140/84	140/85	140/86	139/87
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2012	139/88	138/88	136/89	135/89	133/90	131/90	129/90	127/90	125/90	122/90	119/89	116/89
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2013	114/89	110/88	107/87	104/86	101/86	97/85	94/84	91/83	87/81	84/80	80/79	77/78
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2014	74/76	70/75	67/73	64/72	61/70	58/69	55/67	52/65	49/64	46/62	44/60	41/59
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2015	38/57	36/55	34/54	32/52	30/50	28/49	26/47	24/45	22/44	21/42	19/40	18/39
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)

Note: Hi is for the larger solar cycle prediction, Lo is for the smaller solar cycle prediction

ISES Solar Cycle F10.7cm Radio Flux Progression
Data Through 30 Sep 08

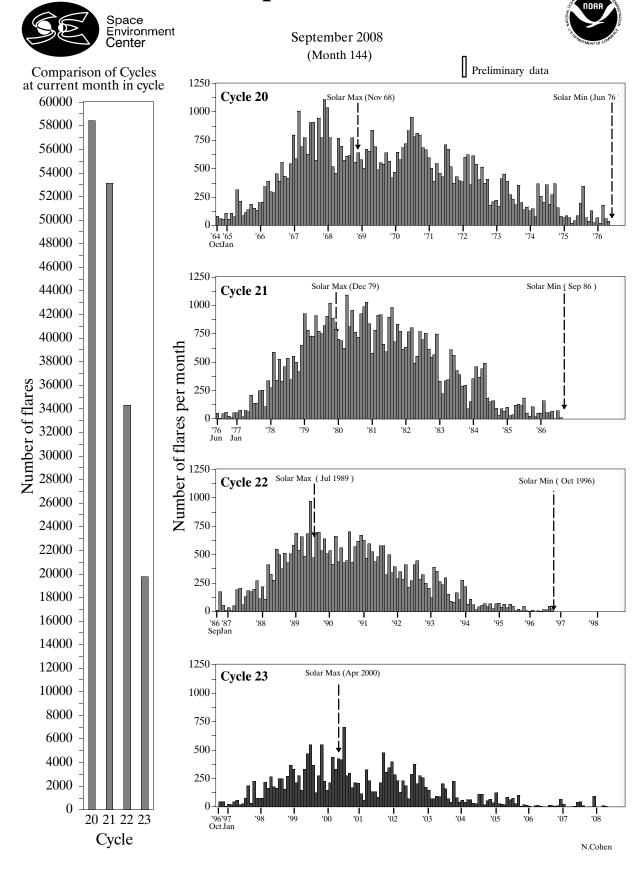
Updated 2008 Oct 6


NOAA/SWPC Boulder,CO USA

SEC Prediction of Smoothed F10.7cm Radio Flux

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Hi/Lo											
2006	84	83	82	81	81	81	80	80	80	79	79	78
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2007	78	77	76	75	74	73	73	72	72	72	71	71
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2008	70	70	70	70/64	70/64	69/63	69/63	70/62	71/62	72/63	73/63	76/64
	(***)	(***)	(***)	(1)	(3)	(5)	(7)	(9)	(11)	(13)	(15)	(17)
2009	78/65	82/67	85/71	87/75	92/77	96/79	101/81	106/83	111/86	116/88	121/90	126/93
	(19)	(21)	(22)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2010	131/95	136/98	140/100	145/103	149/105	154/108	158/110	161/112	165/115	168/117	171/119	174/121
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2011	177/123	179/125	181/127	183/128	184/130	185/132	186/133	187/134	187/135	187/136	187/137	187/138
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2012	186/139	185/140	184/140	183/141	181/141	179/141	177/141	175/141	173/141	171/141	168/141	166/140
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2013	163/140	160/139	157/139	154/138	151/137	148/136	145/136	142/135	139/134	136/132	133/131	129/130
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2014	126/129	123/127	120/126	117/125	115/123	112/122	109/120	106/119	104/117	101/116	99/114	96/113
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2015	94/111	92/110	90/108	88/106	86/105	84/103	82/102	81/100	79/99	78/97	76/96	75/94
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)

ISES Solar Cycle Ap Progression Data Through 30 Sep 08



NOAA/SWPC Boulder,CO USA

Optical Flares

