Space Weather Highlights 15 September - 21 September 2008

SEC PRF 1725 23 September 2008

Solar activity was very low. No flares were detected. The visible disk was spotless.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit reached high levels during 16 - 17 September.

Geomagnetic field activity ranged from quiet to active levels during 15 - 16 September with minor to major storm periods observed at high latitudes. Activity decreased to quiet to unsettled levels during 17 - 18 September, though active to major storm periods were observed at high latitudes on 18 September. Activity decreased to mostly quiet levels during 19 - 21 September. ACE solar wind data indicated a co-rotating interaction region (CIR) was in progress at the start of the period. The CIR, which preceded a recurrent coronal hole high-speed stream (HSS), commenced on 14 September and continued into 15 September. The HSS began on 15 September and reached a peak velocity of 620 km/sec at 15/1200 UTC. Velocities gradually decreased during the remainder of the period with a minimum of 295 km/sec observed at 21/2221 UTC. The proton density increase associated with the CIR reached a peak of 17 p/cc at 15/0426 UTC. Interplanetary magnetic field (IMF) activity associated with the CIR included increased Bt (peak 14 nT at 15/0627 UTC) and intermittent periods of southward Bz (minimum -10 nT at 15/0938 UTC). Bz settled into a range of + 5 to -5 nT following the CIR. Bt varied from 01 - 07 nT following the CIR.

Space Weather Outlook 24 September - 20 October 2008

Solar activity is expected to be very low.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels during 01 - 14 October.

Quiet geomagnetic conditions are expected during 24 - 29 September. Activity is expected to increase to unsettled levels on 30 September. A further increase to active to minor storm levels is expected during 01 October with a chance for major storm levels due to a recurrent coronal hole high-speed stream (HSS). Activity is expected to decrease to unsettled levels during 02 - 05 October as the HSS subsides. Quiet conditions are expected during 06 - 11 October. Activity is expected to increase to active levels on 12 October due to a recurrent coronal hole HSS. Activity is expected to decrease to quiet levels during the remainder of the period as the HSS subsides.

Daily Solar Data

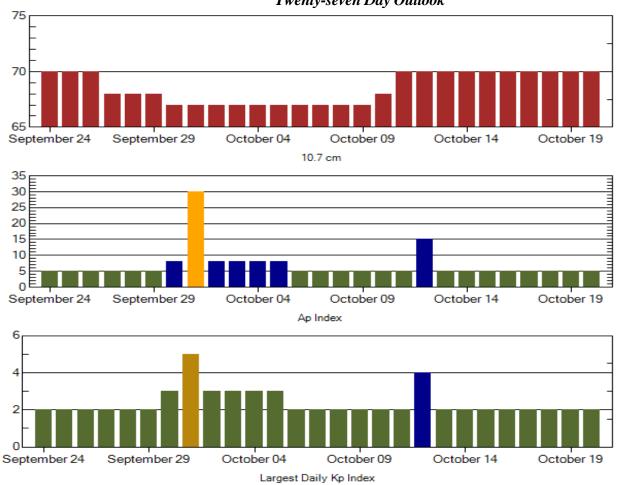
				Daily 50	w D	uu						
	Radio	Sun	Sunspot	X-ray	_			Flares				
	Flux	spot	Area	Background	X	-ray F	lux		O	otical		
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	С	M	X	S	1	2	3	4
15 Septembe	er 68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
16 Septembe	er 69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
17 Septembe	er 67	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
18 Septembe	er 67	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
19 Septembe	er 68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
20 Septembe	er 68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
21 Septembe	er 68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

Daily Particle Data

		oton Fluence ons/cm ² -day-sr	.)	Electron Fluence (electrons/cm²-day-sr)
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV
15 September	1.3E+6	1.9E+4	4.2E+3	3.0E+6
16 September	1.3E+6	1.9E+4	4.2E+3	7.3E+7
17 September	1.2E+6	1.7E+4	4.0E+3	2.4E+8
18 September	7.8E + 5	1.8E + 4	4.1E+3	2.6E+7
19 September	7.4E + 5	1.9E+4	4.5E+3	1.4E+7
20 September	6.2E + 5	1.8E+4	4.1E+3	1.0E+7
21 September	8.8E+5	1.7E+4	4.2E+3	1.4E+7

Daily Geomagnetic Data

				zeomugnene z um		
•	N	Iiddle Latitude		High Latitude	I	Estimated
	F	Fredericksburg		College]	Planetary
Date	A	K-indices	A	K-indices	A	K-indices
15 September	11	2-2-3-4-2-2-2	29	3-3-6-5-5-3-2-1	15	2-3-3-4-4-3-3-2
16 September	7	0-3-3-2-1-1-2-1	15	1-2-5-5-2-1-1-1	9	1-4-3-2-1-1-1-2
17 September	3	2-3-0-0-0-0-0-1	1	1-1-0-0-0-0-0-0	3	2-3-0-0-0-0-0-1
18 September	5	2-2-2-2-1-0-0	21	1-2-6-5-4-1-0-0	9	1-2-3-3-3-1-0-1
19 September	3	0-2-2-2-0-1-1-0	8	0-1-3-4-3-1-1-0	5	0-1-2-2-1-1-2
20 September	1	2-1-0-0-0-0-0	1	1-1-0-0-0-0-0-0	3	2-2-0-0-0-1-0-0
21 September	1	0-0-0-0-1-0-0-1	1	0-0-0-0-1-1-0	2	1-0-0-0-1-1-0-2



Alerts and Warnings Issued

Type of Alert or Warning	Date & Time of Event UTO				
XTENDED WARNING: Geomagnetic K=4	14 Sep 2215 -2359				
ALERT: Geomagnetic K=4	16 Sep 0522				
ERT: Electron 2MeV Integral Flux > 1000pfu	16 Sep 1315				
ERT: Electron 2MeV Integral Flux > 1000pfu	17 Sep 0510				
ALERT: Geomagnetic K=4	18 Sep 1134				
	ERT: Electron 2MeV Integral Flux > 1000pfu ERT: Electron 2MeV Integral Flux > 1000pfu				

Twenty-seven Day Outlook

	Radio Flux		Largest		Radio Flux		
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
24 Sep	70	5	2	08 Oct	67	5	2
25	70	5	2	09	67	5	2
26	70	5	2	10	68	5	2
27	68	5	2	11	70	5	2
28	68	5	2	12	70	15	4
29	68	5	2	13	70	5	2
30	67	8	3	14	70	5	2
01 Oct	67	30	5	15	70	5	2
02	67	8	3	16	70	5	2
03	67	8	3	17	70	5	2
04	67	8	3	18	70	5	2
05	67	8	3	19	70	5	2
06	67	5	2	20	70	5	2
07	67	5	2				

Energetic Events

					Littigu	iic Liveriis			
Time			X-ray	Op	tical Informatior	Peak	Sweep Freq		
Date			1/2	Integ	Imp/	Location	Rgn	Radio Flux	Intensity
	Begin	Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV
No.	Events Obs	served							

Flare List

		1 tale Dist			
				Optical	
	Time	X-ray	Imp/	Location	Rgn
Date	Begin Max End	d Class.	Brtns	Lat CMD	
15 Sep	No Flares Observed				
16 Sep	No Flares Observed				
17 Sep	No Flares Observed				
18 Sep	No Flares Observed				
19 Sep	No Flares Observed				
20 Sep	No Flares Observed				
21 Sep	No Flares Observed				

Region Summary

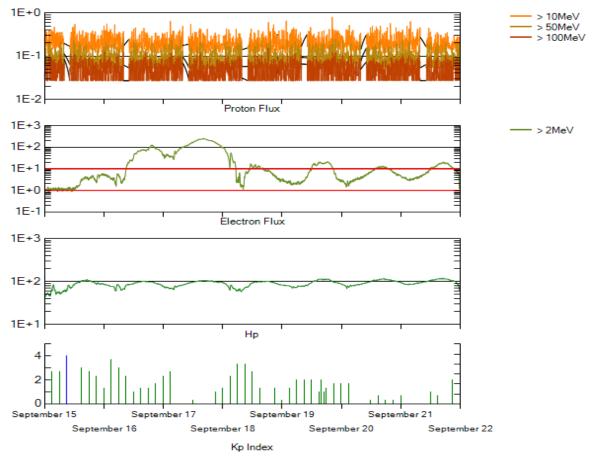
	Location		Sunspot	Characte	ristics	Flares				
	Helio	Area	Extent	Spot	Spot	Mag	X-ray Optical			
Date (° Lat ° CMD) Lon	(10^{-6} hemi)	(helio)	Class	Count	Class	C M X S 1 2 3 4			

Region 1001

				_										
11 Sep N06E	14 179	0020	03	Bxo	002	В								
12 Sep N06E	01 179													
13 Sep N06W	12 179													
14 Sep N06W	⁷ 25 179													
15 Sep N06W	38 179													
16 Sep N06W	751 179													
17 Sep N06W	764 179													
18 Sep N06W	777 179													
19 Sep N06W	790 179													
							0	0	0	0	0	0	0	0

Crossed West Limb.

Absolute heliographic longitude: 179


Recent Solar Indices (preliminary)
Of the observed monthly mean values

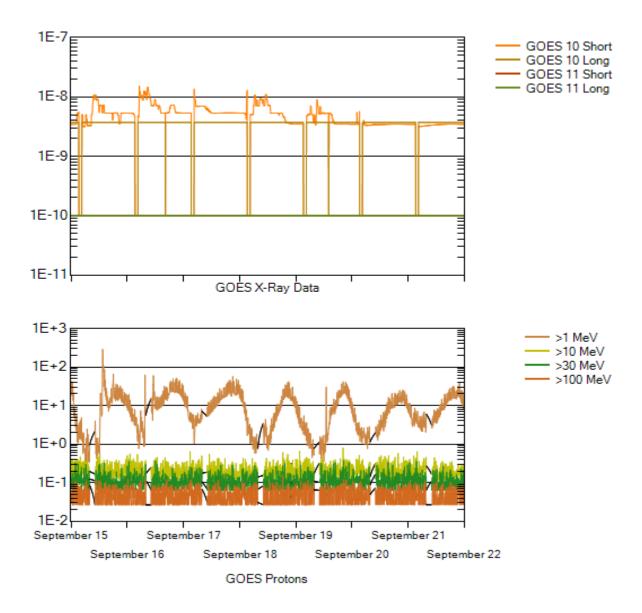
	Sunspot Numbers Radio Flux Geomagnetic													
	01				1				-					
3.6 .1	Observed			Smooth		*Penticton		Planetary						
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value					
		10.1	0		2006		- 0.4		0 -					
October	15.7	10.4	0.66	25.2	14.2	74.3	79.4	8	8.6					
November		21.5	0.68	22.3	12.7	86.4	78.5	9	8.5					
December	22.2	13.6	0.61	20.7	12.1	84.3	77.9	15	8.5					
	2007													
January	26.6	16.9	0.64	19.7	12.0	83.5	77.5	6	8.4					
February	17.2	10.6	0.62	18.9	11.6	77.8	76.9	6	8.4					
March	9.7	4.8	0.49	17.5	10.8	72.3	76.0	8	8.4					
April	6.9	3.7	0.54	16.0	9.9	72.4	75.2	9	8.5					
May	19.4	11.7	0.60	14.2	8.7	74.5	74.2	9	8.4					
June	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8					
July	15.6	10.0	0.64	11.6	7.0	71.6	72.5	8	7.4					
August	9.9	6.2	0.63	10.2	6.1	69.2	71.8	7	7.6					
September		2.4	0.50	9.9	5.9	67.1	71.5	9	7.8					
October	1.3	0.9	0.70	10.0	6.1	65.5	71.5	9	7.9					
November		1.7	0.68	9.4	5.7	69.7	71.1	5	7.8					
December		10.1	0.62	8.1	5.0	78.6	70.5	4	7.8					
2000111001	10.2	1011	0.02	0.1	2.0	, 6.6	, 0.0	·	,					
					2008									
January	5.1	3.4	0.67	6.9	4.2	72.1	70.0	6	7.7					
February	3.8	2.1	0.55	5.9	3.6	71.2	69.6	9	7.6					
March	15.9	9.3	0.58	0.5	2.0	72.9	07.0	10	7.0					
17141011	13.7	7.3	0.50			72.9		10						
April	4.9	2.9	0.59			70.3		9						
May	5.7	2.9	0.51			68.4		6						
June	4.2	3.1	0.74			65.9		7						
June	⊣. ∠	3.1	0.77			03.7		,						
July	1.0	0.5	0.50			65.8		6						
August	0.0	0.5	**			66.4		5						
August	0.0	0.5				00. 4		3						

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

^{**}SEC sunspot number was less than RI value, so a ratio could not be done.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 15 September 2008

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-12 (W075).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SEC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

