

DRRC Technical Advisory Committee Webcast

A Framework for Demand Response Valuation

Initial Findings + Research Agenda

October 19, 2007

Grayson Heffner

When you measure what you are speaking about and express it in numbers, you know something about it, but when you cannot (or do not) measure it, when you cannot (or do not) express it in numbers, then your knowledge is of a meager and unsatisfactory kind.

- Sir William Thompson, Lord Kelvin (1824-1907)

DR Valuation Frameworks Study – Project Scope

Review the DR valuation literature

Prepare a framework for identifying DR benefits & matching them to beneficiaries

Develop Research Agenda for future DRRC work

Explore applications to DR policy & regulation

Definition of Value Varies by Discipline

- **#** The Accountant looks for Asset Value, either:
 - Absolute, based on performance, net present value or book value
 - Relative to other assets in risk or financial benefits
- The Trader looks for Fair Market Value: The price at which an asset changes hands
- The Engineer looks for a Value Function that can relate the Cost of Reliability to its Value to Customers
- The Economist looks for Consumer or Producer Surplus -Willingness-to-pay less market price

Range of Valuation Methods in Use

Avoided Cost Methods

- Approach: PV of avoided capacity, energy costs and T&D costs
- Utility Straw Proposal in R.07-01-041
- **#** Resource Planning Methods
 - Approach: NPV of Δ System Costs with & w/o DR
 - Example: NPCC 5th Power Plan
- **H** Welfare Analysis Methods
 - Approach: Impact of DR on wholesale prices and customer costs
 - Example: Brattle Study of DR Benefits for PJM
- ➡ Value of System Reliability
 - Approach: Δ Expected Unserved Energy * Δ LOLP
 - Example: NYISO
- Transmission Planning Approaches
 - Approach: Δ Congestion Costs in Load Pockets w/ & w/o DR
 - Examples: ISO-NE 2002 & 2003 Regional Transmission Plans
- Capacity Markets
 - PJM's Forward Capacity Auction

Range of DR Benefits

Direct Financial Benefits
Collateral or Indirect Financial Benefits

- All consumers
- Constitute scarcity rent transfers from producers
- **#** Reliability Benefits
 - Resource Adequacy Planning Value
 - Value of Lost Load
- **#** System and Network Benefits
- **#** Societal Benefits

Direct vs. Collateral Financial Benefits of Demand Response¹

¹taken from: *Quantifying Demand Response Benefits in PJM, The Brattle Group*, January 2007

No Single Valuation Method Captures all DR's Benefits

	Avoided	Resource	Welfare	Value of	Transmission	Forward
ベーズカンムイ	Cost	Planning	Analysis	System	Planning	Capacity
	Methods	Methods	Methods	Reliability	Approaches	Auctions
Direct Financial Benefits	V		\checkmark			
Collateral or Indirect Financial Benefits		V				
Reliability Benefits		1		1	N	1
System and Network Benefits						
Societal Benefits	\sim	《外区》是			法规法	

Some Methods May be Better Suited to Valuing Certain Types of DR

	Avoided Cost Methods	Resource Planning Methods	Welfare Analysis Methods	Value of System Reliability	Transmission Planning Approaches
Demand Curtailment/ Bidding		\checkmark	√		\checkmark
Dynamic Pricing			\checkmark		\checkmark
Emergency Demand Response	\checkmark	\checkmark		√	
Load Following Auto-DR					

Value, like Beauty, is in the Eye of the Beholder

<u>Test Perspectives in SPM</u> **#** Participant **#** Ratepayer **#** Administrator **#** Society **#** TRC

Emerging Test Perspectives
CAISO
Generators
ISEs
Srd Party Providers
Direct Access Customers

First Cut at a Valuation Framework

	とに行うにしていていた。	BENEFICIARIES				
		Participating	All	Load Serving	Society (including	
	ミルク・リーン ニショー・ハルシ	Consumers	Consumers	Entities	Generators)	
DIRECT	Bill Savings	\checkmark	$M \propto$			
BENEFITS	Incentive Payments				ることという	
オンパエジードレ	Avoided risk hedge premium	\checkmark	1.5-1.			
RELIABILITY	Improved Reliability		\checkmark			
BENEFITS	Alleviating Network Overloads	\sim		-√		
NETWORK	Reducing Nodal Prices	\checkmark			$\sqrt{-1}$	
BENEFITS	Deferring Network Additions				たの正式にする	
に力学学学学	Reducing Transmission Congestion					
COLLATERAL	Short-term Market Benefits ¹	√	\checkmark	1		
BENEFITS	Long-term Market Benefits ²		\checkmark	\checkmark		
	Retail Consumer Choice	\sim		\checkmark		
	Market Power Mitigation		\checkmark		マスナンテア	
SOCIETAL	Improved Resource Allocation					
BENEFITS	Local & Global Emissions Reduction	\checkmark		V		

¹ Includes event-driven energy price reductions & lower power procurement contract costs ² Includes lower capacity procurement costs & lower RA requirements

DR Valuation Approaches & Results

Integrated Resource Planning approaches

- Long term
- Focused on minimizing system costs & maintaining reliability levels
- Market Performance Evaluations
 - ex post
 - short term
- **H** Market simulation studies
- **H** Capacity Market Results

Resource Planning Studies	Program Evaluations	Market Benefits Studies	Capacity Auctions	
IEA DR Case Study, Summit Blue 2006	NYISO 2002 DR, Neenan 2003	ISO-NE Retail RTP Study, Neenan 2005	Forward Capacity Auction, PJM 2007	
Fifth NW Resource Plan, NW Power Council 2005)	ISO-NE 2004 DR, RLW & Neenan 2004	Quantifying DR Benefits in PJM, Brattle Group 2007		
Demand Response Research Center	13		Berkeley Lae	

Demand Response Resource Valuation and Market Analysis (Summit Blue Consulting, January 2006)

- ➡ Value of DRR depends on:
 - Dimensioning uncertainty
 - A long view, to capture hedging value of DR
 - Portfolio approach to DR
- RTP for large customers is most cost effective DR, as program costs are minimal and priceresponsive load always reduces system costs
- Benefits of active DR, especially in "stress" cases, offset by the program cost, even when not used.

The Fifth Northwest Electric Power and Conservation Plan (Northwest Power and Conservation Council, January 2005)

Demand Response Research Center

- 2,000 megawatts of DR was considered
- Withholding DR from the portfolio analysis increased expected cost by \$300 - \$500 million
- Demand response found extensive use (up to 870 hours per year) in about 5 percent of all simulated years.
- Based on this analysis the Fifth Power Plan calls for 500 MW of DR

15

A Study of NYISO and NYSERDA 2002 PRL Program Performance, Neenan Associates, Jan. 2003)

Demand Response Research Center

Market Benefits:

- EDRP load curtailments reduced realtime LMPs from 5 % to over 25%
- Reliability and hedging benefits were much higher in 2001, when the program was operated more frequently and price levels were generally higher

Reliability Benefits:

- A VOLL of \$5,000/MWh and assuming 5 percent of NYISO load was at risk during the reserve shortfall, reliability benefit estimates ranged from \$2 to \$17 million
- Variability due to the assumed level of reduction in LOLP due to assumptions regarding the slope of the LOLP curve

rrrrrr

BERKELEY

An Evaluation of the Performance of the Demand Response Programs Implemented by ISO-NE in 2004, RLW Analytics and Neenan Associates, December 2004)

内変化学が高齢が見たる。このではないない、自然のないないない、自然などのないのである。							
++	ISO-NE Price Response Program Impacts						
#		Hedge	Total	Program	Market Impact		
Season	Bill Savings	Savings	Savings	Payments	Ratio		
Fall/Spring	\$7,313	\$900,375	\$907,687	\$196,336	462%		
Winter	\$212,674	\$3,405,415	\$3,618,089	\$801,269	452%		
Summer	\$2,759	\$347,814	\$350,573	\$42,601	823%		
Total	\$222,745	\$4,653,603	\$4,876,349	\$1,040,206	469%		

- Price-responsive curtailments took place all year; however, lower price flexibility in summer resulted in small LMP changes:
 - \$0.12 \$0.06/MWh (Summer and Fall)
- Most of the bill and hedge savings occurred during the wintertime when natural gas shortages created price volatility during cold snaps
 - \$1.00/MWh (about 1 percent) during winter curtailments
- Overall market impacts were almost five times program payments

CCCCCC

Improving Linkages Between Wholesale and Retail Markets Through Dynamic Retail Pricing, Neenan Associates, December 2005)

	Status Quo Year		Normal Year		Extreme Year	
t i		Responsive		Responsive		Responsive
-	All	Önly	All	Önly	All	Ōnly
Aggregate DR	353 MW	307 MW	378 MW	328 MW	410 MW	357 MW
Customer Bill Savings	\$73.1M	\$24.4M	\$106.2M	\$37.0M	\$134.2M	\$48.0M
Electricity Market Transfer Savings	\$1.3M	\$1.1M	\$15.6M	\$13.5M	\$38.2M	\$33.1M
Social Welfare Improvements*	\$0.1M	\$0.1M	\$0.9M	\$0.7M	\$2.1M	\$1.6M
ICAP Market LSE Savings	\$0M	\$0M	\$15.4M	\$13.4M	\$75.8M	\$65.9M
ICAP Market Transfer Savings	\$0M	\$0M	\$0.9M	\$0.8M	\$6.1M	\$5.3M

* Represents gross social welfare improvements, not net improvements that have the cost to achieve them imbedded

- Only about 1/3 of the largest customers (over 1 MW) had sufficiently high price elasticities to benefit from DADS
- Total market benefits over 5 years estimated at \$340 million, about half of which accrued to all consumers via lower market prices
- Market benefits almost doubled in "extreme years"
- ➡ Hypothetical costs to implement DADS for the 5200 customer greater than 1 MW was \$5 million per year – yielding a B/C ratio of 14:1

Quantifying Demand Response Benefits in PJM (The Brattle Group, January 2007)

Demand Response Research Center

- Study of how demand curtailment would impact PJM wholesale prices
- Dayzer market model simulated a 3% load curtailment on LMPs on the 20 highest-priced days
- Scenarios captured 1-in-20-year demand conditions
- Reduced zonal prices of \$85 to \$234 per megawatt-hour for the highestcost hours, yielding \$57-182 million in bill savings
- Reduced capacity due to a modified load shape that excludes the zonal "super-peaks", estimated at \$73 million per year

PJM Forward Capacity Auction, 2007

- Phase-in of PJM's new capacity market includes quarterly auctions for capacity deliveries in 2008-2011
- First-ever forward capacity auction (April 2007) revealed large zonal differences in the value of capacity
- Second auction for 2009 capacity attracted 1,300 MW of new resources, half of which were DR
- The California Forward Capacity Market Advocates (CFCMA) advocate a similar capacity auction to create transparent capacity markets in California

Comparison of DR Benefit Estimates

- DR benefit estimates vary widely according to analysis method and scope of benefits included
- **#** "Stress cases" and zonal constraints can skyrocket the value of DR
- Need to take considerable care to consider what constitutes a distinct benefit and what may constitute double-counting

2 Prepare a framework for identifying DR benefits & matching them to beneficiaries

Elements of a Valuation Framework

Should accommodate all potential benefit streams

- Reliability benefits
- Direct financial benefits
- Collateral/market benefits
- System and network benefits
- Societal benefits
- **#** Should resolve any wholesale-retail seams issues
- Should accommodate emerging stakeholder perspectives
- Should allocate value according to DR attributes
- **#** Should accommodate improvements in estimation methods
- Should be practical and transparent

Valuation Framework should mend the Wholesale-Retail Seams Issue

	Retail	Wholesale
System-Wide	RA benefits Global environmental benefits EE and DR Complementarity Consumer Choice	Collateral/market benefits Reliablity services provision Emergency operating flexibility Mitigating generator market power
Location-Specific	Alleviating network overloads Deferring network investment Local environmental benefits	Alleviating transmission congestion Reducing line losses Reducing nodal prices
Participant-Specific	Bill Savings Incentive Payments Avoided hedge premiums	

CAISO View of DR Value

DR has value if it reduces the load forecast

- In the day-ahead market
- In the resource plan

DR has value if it provides reliability services

- Spinning and non-spinning reserves
- Balancing Services

2

DR has value if it provides operational flexibility during emergencies

Valuation Framework should be able to Calculate the Comparable Worth of non-equivalent Resources

	Resource Attribute	Direct Control	Price Response
1	Advance Notice		\bigcirc
2	Availability	\bigcirc	\bigcirc
3	Ramp Rate		
4	Load Factor	\bigcirc	\bigcirc
5	5 Persistence		0
nter	 Full Source Equivalency Variable but predictable Variable and unpredictab 	& measurable le	

CCCC.

Demand Response Res

How do we get there with a DR Research Program?

Research Priorities

- 1 Market Benefits of DR
- ² Capacity Procurement Benefits of DR
- 3 Reliability Services Benefits of DR
- 4 Allocating Value according to Resource Attributes
- 5 Quantifying System and Network Benefits
 - Customer cost to participate & value of service
- 7 Improving the SPM

Demand Response Research Center

Market Benefits of DR

Description

 Price responsive loads bid into forward and realtime markets lower the clearing price, providing short and long-term market benefits to all consumers

Demand Response Research Center

Research Needs

- No estimate of market benefits has been made since the E3 estimate using old PX data
- Estimating market benefits requires an economic supply model of the wholesale power market
- Develop a model to simulate the impacts of priceresponsive and other DR in the MRTU

Capacity Procurement Benefits of DR

TO THE REPORT OF ADDR. NAMES TO ADDR. ADDR
 Evaluate the relationship between DR bid into the DAN and RUC requirements Examine potential of retail dynamic pricing to reduce reserve margin and operating reserve requirements Evaluate the capability of MRTU Release 1 to accommodate DR in the DAN

Reliability Services Benefits of DR

Description

- Spinning & Non-Spinning Reserves, Upward and Downward Regulation
- CAISO operates day-ahead and hour-ahead RS markets
- LSEs must procure Reliability Services on a zonal basis, with CAISO procuring any imbalance
- Most parties benefit from reducing reliability service costs

Research Agenda

- Identify benefits of load participation, drawing from experience elsewhere
- Scale-up pilots of DR providing reliability services
- Determine any barriers to load participation, such as reliability rues
- Potential for DR to reduce:
 - •Over & under-scheduling
 - •Energy imbalance volumes

rrrrr

•RS bid-insufficient hours

Allocating Value according to Resource Attributes

Description	Research Agenda
 Attributes include: Advance Notice Availability (Frequency & Duration) Ramp Rate (Load Following) Load Factor Persistence Spatial Granularity 	 Review capacity value allocation methods in use in other markets, notably the NEM and Nordic Power Market, Further develop option valuation and Monte Carlo methods for allocating value, per the utility straw proposal Develop new methods to allocate value of reducing congestion

Quantifying System & Network Benefits

Description	Research Agenda
Operating Flexibility	System Benefits:
Environmental Benefits	•Operating reserves as a public good
Alleviating transmission congestion	 Review Reliability benefits calculation approaches Insurance value of DR
Reducing nodal prices	Network Benefits:
Network asset protection	•Utilizing ACLM to reduce overloads
Network investment deferral	• Utilizing DR to prevent FLT
Reducing line losses	failure Utilizing DR to relieve
	transmission congestion
emand Response Research Center	

BERKELEY

Customer Cost to Participate & Value of Service

Description	Research Agenda
 Filings in R.07-01-041 underscore a general lack of understanding of customer costs to participate Customer costs include two aspects – compliance/shutdown costs, and foregone value of service Earlier studies done on a class level were unable to discern value of service to the end use level 	 Update work on VOS and outage costs to better quantify the "strike price" for customers to forego consumption under given conditions Develop better research on coping strategies including enabling technologies that allow customers to accommodate foregone or reduced levels of service Differentiate between DR program types in terms of compliance costs and reduced levels of service

Improving the SPM

Description

- Current SPM is dated
- Does not reflect new market structures or participants.
- Calculation procedures cannot accommodate economic surplus not reflected in utility costs or bill reductions

Research Agenda

• Explore other economic evaluation methods that can explicitly incorporate consumer surplus, value of reliability, market impacts and distributional effects, and customer costs into the evaluation

Alternative Methods of Capacity Valuation

Description

Lack of transparent capacity markets in California makes it difficult to determine the fair market value of capacity. Proxy methods such as the adjusted cost of a new CT are an imperfect and always controversial substitute for a market price.

Research Agenda

• Consider whether a forward capacity auction would accelerate market-based DR for California

• Consider IRP approaches (NPV of system costs or levelized RR of a least-cost plan) as an alternative to proxy methods

Some Preliminary Conclusions

- Valuation based only on capacity benefits will undercount the market and system/network benefits of DR
- A market simulation of the effects of dynamic pricing for price-responsive customers in California would help understand the potential market benefits of DR
- A collaborative effort with CAISO would help identify the potential magnitude of DR's system and network benefits
- The SPM need to be rethought in order to reflect new market participants and enhance the capability of evaluating changes in economic surplus due to DR
- California should seriously consider ways to introduce more transparency into capacity procurement

Contact Information

Demand Response Research Center (DRRC)

Grayson Heffner DR Valuation Frameworks Project Phone: 301-330-0947 email: <u>gcheffner@lbl.gov</u>

Global Energy Associates, Inc. 15525 Ambiance Drive N. Potomac, MD 20878

Annex – Supplemental Slides

Summary of DR Benefits Studies

Resource Planning		Studies	Program Performance Studies		DR Comprehensive Benefits Studies	
Study Title	IEA DR	Fifth NW	NYISO 2002	ISO-NE 2004	Default Retail RTP	DR Benefits for
	Case Study	Resource Plan	DR Evaluation	Evaluation	in ISO-NE	MADRI
Market Structure	Integrated	Integrated	Organized	Organized	Organized	Organized
DR Mechanism	Interruptible, DLC, RTP	Demand Curtailment	Day-of demand curtailment	Day-ahead demand bidding	Retail day-ahead RTP for large customers	Day-ahead demand curtailment
Delivered DR as				Ī		
percentage of Peak	15 percent	8 percent	2.5 percent	0.5 percent	1.3 percent	3 percent
Time Horizon	20 years	20 years	Actual year	Actual year	Reference Year + Extreme Scenarios	Reference Year + High/Low Demand Scenarios
DR Benefits Considered	System Cost Savings	System Cost Savings	Direct & collateral benefits + reliability	, Direct & collateral benefits	Direct & collateral benefits + RA benefits + improved social welfare	Direct & collateral benefits + RA benefits + improved social welfare

40

BERKELE

Carl Silsbee Regulatory Economist, SCE	Capacity Valuation In Today'sQuasi-Regulated Electricity Market From: 20th Annual Western Conference Rutgers Center for Research in Regulated Industries (June 2007)
Bernie Neenan, et al (Neenan Assoc. And Utilipoint)	 Improving Linkages Between Wholesale and Retail Markets Through Dynamic Retail Pricing. Prepared for Prepared for: ISO New England Inc., December 5, 2005 Social Welfare Implications of Demand Response Programs in Competitive Electricity Markets. Prepared for C. Goldman, LBNL-52530, August 2003 NYISO 2004 Demand Response Program Evaluation, Presented at PRLWG, January 4, 2005, Neenan Associates.
Ken Corum, Tom Foley & Quantec, NW Power Planning Council	 How to Measure Cost-Effectiveness of Demand Response A Piece to Elicit Discussion (May 2 2007) Final Report - Demand Response Proxy Supply Curves. Prepared for:PacifiCorp, September 8, 2006

BERKELEY

Ren Orans, C.K. Woo et al	Phase 1 Results: Establish the Value of Demand Response, Prepared for DRRC, April 2006Option Value of a load- based call option, C.K Woo, July 2007
Dan Violette (Summit Blue)	 New Jersey CAC Program Assessment, Final Report (June 2007) Development of a Comprehensive DR Value Framework. Prepared for DRRC, March 2006"Demand Response Resources (DRR) Valuation and Market Analysis: Assessing DRR Benefits and Costs", Daniel M. Violette, Ph.D., Summit Blue Consulting Development of a Comprehensive / Integrated DR Value Framework LBNL Report No. 60130 March 2006
Sam Newell, Ahmad Faruqui and Brattle Group	 Toward a New Paradigm for Valuing Demand Response, The Electricity Journal, v. 19 n. 4 (May 2006) The State of Demand Response in California, CEC Report EC-200-2007-003-D, April 2007 Quantifying Demand Response Benefits In PJM. Prepared by The Brattle Group for PJM Interconnection, LLC and the Mid-Atlantic Distributed Resources Initiative (MADRI), January 29, 2007
Demand Response Research Center	

BERKELEY LA

U.S. DOE	Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them: Report to the U.S. Congress pursuant to EPAct 2005, Feb. 2006	
FERC	Assessment of Demand Response and Advanced Metering – Staff Report, Docket No. AD 06-2-000	
Vernon Smith. Lynn Kiesling	A Market-Based Model for ISO-Sponsored Demand Response Programs. <u>http://www.defgllc.com/Assets/downloads/051018_defg_dr</u> wp02.pdf	
Michael Crew	Appliance Cycling Evaluation Draft Report – For Discussion Purposes Only, October 15, 2004. Prepared by the Center for Energy, Economic and Environmental Policy, and Rutgers University	
Demand Response Research Center		
	43 BERKELEY L	

Schmuel Oren, Hung Po Chao, Robert Wilson	1. Priority Service: Pricing, Investment, and Market Organization, Hung-Po Chao; Robert Wilson
又专为公在这些人专为公会	The American Economic Review, Vol. 77, No. 5. (Dec., 1987), pp. 899-916.
	2. Restructured Electricity Markets: A Risk Management Approach, July 21 2005
	http://www.ieor.berkeley.edu/~oren/pubs/A%20Risk%20M anagement%20Approach%20070105%20(29).pdf
Lance Hoch, CRA International	Assessing the Value of Demand Response in the NEM, prepared by CRA Australia for the IEA Task XIII Team, December 2006
Osman Sezgen, Charles Goldman, P. Krishnarao	Option Value of Electricity Demand Response. LBNL- 56170, October 2005

