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ABSTRACT

A parametric study of a spur gear system was performed through a numerical analysis

approach. This study used the gear dynamic program DANST, a computer simulator, to determine

the dynamic behavior of a spur gear system. The analytical results have taken the deflection of

shafts and bearings into consideration for static analysis, and the influence of these deflections on

gear dynamics was investigated.

Damping in the gear system usually is an unknown quantity, but it has an important effect

in resonance vibration. Typical values as reported in the literature were used in the present

analysis. The dynamic response due to different damping factors was evaluated and compared.

The effect of the contact ratio on spur gear dynamic load and dynamic stress was

investigated through a parameter study. The contact ratio was varied over the range of 1.26 to 2.46

by adjusting the tooth addendum. Gears with contact ratio near 2.0 were found to have the most

favorable dynamic performance.





CHAPTERI

INTRODUCTION

Power transfer is necessary from source to application in mechanical power systems.

Compared with other transmission members, gears have several advantages considering their

small overall dimensions, constant transmission ratio and operating simplicity. Therefore, they

have the widest application in mechanical engineering for transmission of power. The art and

science of gear transmission systems continue to improve. Today's engineers and researchers

delve into many areas of innovative advancement and seek to establish and modify methods

which can make gear systems meet the ever-widening needs of advancing technology. Their

objectives are improvements of transmission life, operating efficiency, and reliability. They also

seek to increase the power-to-weight ratio and to reduce noise and vibration of gear

transmissions.

Research on gear noise and vibration has revealed that the basic mechanism of noise

generated from gearing is vibration excited by the dynamic load. Dynamic load carrying

behavior of gears is strongly influenced by geometric deviations associated with manufacturing,

assembly and deformation processes. High dynamic load can lead to fatigue failure and affect the

life and reliability of a gear transmission. Minimizing gear dynamic load will decrease gear

noise, increase efficiency, improve pitting fatigue life, and help prevent gear tooth fracture. At

present, concerted gear transmission system studies have been concentrated on two main effects.

These studies have been on: (1) The localized tooth stress effects during gear interactions, and

(2) the overall global dynamic behavior of the systems.

The problem of dynamic loads acting on gear teeth was first studied in the early 1930's by the

ASME Research Committee and tests were conducted by Lewis and Buckingham [1 ]. Their

report indicated a procedure to determine the dynamic load increment due to dynamics of gears



inmeshand the error of the gear teeth. Tuplin [2] was one of the first to publish a more refined

method of determining the dynamic load in gear teeth. He considered gear meshing as an

equivalent spring-mass model with constant stiffness subjected to wedge or sinusoidal

excitations. Cloutier [3], Gregory [4], etc. later modified this model by introducing spring as a

time varying stiffness. In 1977, Cornell and Westervelt [5] developed a time history, closed

form solution of a dynamic model of spur gear system which consisted of a cantilever beam with

a cam moving along it for simulating the engagement and disengagement of the adjacent tooth to

generate the dynamic load for meshing teeth. This dynamic model was based on Richardson's

cam model [6], but treated the teeth as a variable spring. They stated that the nonlinearity of the

tooth pair stiffness during mesh, the tooth error, and the profile modifications had significant

effects upon the dynamic load. The studies on geared rotor dynamics have been rather recent.

Several modeling and solution techniques such as lumped mass models and the use of the

transfer matrix method and finite element method have been applied to rotor dynamics problems.

Hamad and Seireg [7] studied the whirling of geared rotor systems without considering torsional

vibrations and the gear shaft was assumed to be rigid. Iida, et al. [8] considered the same

problem by taking one of the shafts to be rigid and neglecting the compliance of the gear mesh.

He obtained a three degree of freedom model to determine the response of the first three

vibration modes. In 1984, Iwatsubo, Arii and Kawai [9] used the transfer matrix method to

evaluate the forced response due only to the mass unbalance in the rotor system. Later, they [10]

included the effects of periodic variation of mesh stiffness and profile errors of both gears. Since

computer usage has become popular in the 80's and 90's. Tedious computation now can be easily

done through computer modeling by writing appropriate code. Finite element methods are

widely used in engineering analysis. Ozguren and Houser [11,12] used a spatial finite line-

element technique to perform mode shape and frequency analysis in geared rotor systems. Also,



their study included the effect of bearing flexibility which is usually neglected in simple gear

dynamics models.

All of the above literature analyzed the dynamics of a gear transmission system in different

aspects. Their models treated either the shaft and bearing of gear system or the gear teeth as rigid

bodies depending on the purpose of analysis. In reality, none of the above components are rigid

when subjected to a force. To evaluate the gear dynamic behavior more accurately, the

deflections of shafts and bearings, and the deformations of gears, due to transmitted load should

be taken into account in modeling the gear transmission system. The computer code DANST

which was developed for the dynamic analysis of low-contact-ratio gears [13] and high-contact-

ratio gears [ 14] was modified to conduct this study. The dynamic response of a spur gear pair is

depicted by the dynamic load and stress factors. Two different gear-shaft assembly types were

considered in the study. Several gear parameters such as damping and contact ratio are

examined in a wide range of variation to determine their influence on gear dynamics. The

computer simulation results revealed the effect of each individual parameter and can help the

gear designer choose the optimum value of gear parameters when designing a gear train system

for minimum dynamic load and stress.



CHAPTER II

SYSTEM CHARACTERISTICS

II.1 System Configuration

Gears are used to transmit power and/or angular motion between shafts. There exists a wide

variety of types of gears with each serving a range of functions. For our investigation a simple

spur gear system was used and its model is illustrated in Figure II.1, in which several basic

elements such as flexible shaft, rolling element bearing, motor, and load are shown. The static

properties of the components of the system were obtained from the literature of gearing, mechanics

of materials, lubrication, roiling bearing, vibration, and finite element methods. They will be

introduced later into dynamic investigations.

A set of governing equations of motion can be determined from the system properties, such as

stiffnesses, inertias, damping factors, frictions .... etc. The equations are then integrated and solved

by a numerical method through the aid of a computer. Those solutions are based on the following

assumptions: (1) the dynamic process is defined m rotating plane of the gears, (2) the torsional

stiffness of the shafts and gears in engagement, and their masses are also acting in the same plane,

and (3) the axes of rotation are symmetrical, and out-of-plane twisting and rnisalignment effects are

not considered. A parametric study was performed to examine the system dynamic behavior and to

evaluate and determine the best parameter values based upon the result of the simulation.

II.2 Basic Geometry of Spur Gear

II.2.1 Involute Curve

4



MOTOR

! !

I I
¢ I
, i
¢ i

• I

Ii

i

I
i
i
I

_....J.._.

i

t

$ttAI_ 2

i

02

OE_R 2

LOAD

Figure II.1 A simple spur gear system

5



T

C

0

curve

4)(pressure angle)

generating line

0

L

radius vector

angle)

base circle

:FigureH.2 Ge.ome,try of an involut_ curve

6



For a spur gear the teeth lie parallel to the axis of rotation and are of involute form in most

case. The analytical geometry of an involute curve, shown in Figure 11.2, defined as the locus of

any fixed point on a tangent line as this line rolls, without slipping around a circle. This process

may be visualized as unwinding a string from a circular disk. The circle from which the string is

unwound is called the base circle. The length of the generating line "L" as it lies between the

involute curve at point c and point b, at which it is tangent to the base circle, is the same as its

length as it was when wrapped around the base circle from point b to point a. Therefore, the

geometrical relationship of the involute curve can be expressed as follows:

0:00:0oll r 1 (ILl)

- R_ = Rbt3 (II.2)

13 - (II.3)
Rb

where

P_ • radius of base circle

r • radius to any point of involute

13 • angle through which line has been unwound

hence

(II.4)



Thisisthepolarequationoftheinvolutecurve.The tangenttotheinvoluteatany pointis

perpendiculartothegeneratinglineand theshapeoftheinvoluteisdependentonlyon thediameter

ofthebasecircle.

II.2.2 Contacting Involute Curve

Consider the action of two involute gear teeth transmitting angular motion by means of shafts

as shown in Figure I[.3. The line (AB) is called the Line of Action and it is a line tangent to the

two base circles at point A and point B. If point C moves along involute is revolved at a uniform

rate of motion, it changes the length of generating line (AE) uniformly. Meanwhile, the length of

the generating line (BE) on the mating involute changes at the same uniform rate, because the total

length of the common tangent (AB) of the two base circles remains constant. Thus, all contact

between two involutes takes place along the line of action. The relative rate of motion depends only

upon the relative sizes of two base circles while the relative rates of rotation are independent of the

distance between the center of the two base circles.

II.2.3 Rolling and Sliding Velocity

Pure rolling occurs if two friction disks rotate in contact without slipping. However, for the

case of two involute gear teeth meshing with each other, the meshing action is a combination of

rolling and sliding. Figure 11.4 shows two gears with equal size base circles which mesh with each

other. The teeth are in contact at the pitch point P. Radii of curvature of the two involutes are

shown at equal angular intervals on each base circle. The arc XY which describes the tooth profile

on gear I and the arc AB which describes the tooth profile on gear II have different lengths.

Therefore, the two profiles must slide over each other during mesh to make up the

8
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difference in the arc lengths. Under this condition, the sliding velocity at any point is calculated

as"

Vs = Rc2 col Re2 co2 (lI.S)
12

By referring to Figure II.3, the following expressions are obtained:

12V
t01 - 01.6)

Rl, l

co2 - Rp_ _ (11.7)
R1,2

V- 2=Rp1 n _ ID_ to1 (II.8)
12 12

Rcl + Re2 = C sin d_ (11.9)

Re1 = _/ r_ - R_I (11.10)

Rc2 = _] r_ -R_, = C sin - - R_,I (II.11)

where

Rpl , Rp2 - radius of pitch circle of gear, in

R_I, R_2' radius of base circle of gear, in

r_, r2 " any radius of gear-tooth profile, in

P_, R_2 " radius of curvature of gear at r_, r2, in

ll



W1, W2 : angular velocity of gear, rad/min

C : center distance, in

n : speed of driving gear, rpm

V : pitch-line velocity of gears, ft/min

Vs : sliding velocity, ft/min

dp : pressure angle, degree

Using the above parameters, the sliding velocity equation can be rewritten as:

I V(Rvl + Rr_)l(_]r_ R_,- Rp_ sindp ([1.12)
Vs = Rvl RP2/ J"

II.3 Elastic Deflection and Stiffness of Spur Gear Teeth

A pair of teeth in contact due to the load will deflect elastically. According to R.W. Comell's

nonlinear compliance model [5] this deflection is based on a combination of the deflection of the

tooth as a cantilever beam, local contact compression, and fillet and tooth foundation flexibility

effects. All of the above except the local contact compression are linear functions of the load.

The nonlinear term is due to the Hertzian deflection. The total deflection of a gear tooth can be

expressed along a line normal to the tooth profile. Since the gear tooth is stubby, both the

foundation and the shear effects are essential. To calculate tooth deflection, first, it is assumed

that the involute portion of a gear tooth is a non-uniform cantilever beam with an effective length

Io which extends from the tooth tip to the beginning of fillet area as shown in Figure 11.5,

Secondly, by dividing this section into a sequence of segments and using elementary strength of

materials theory, both deflection and compliance of this tooth portion can be calculated. The

formulas for the above-mentioned procedure are depicted in the following sections. More

detailed illustrations and derivations were presented in the previous works [13] and [14].

12
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11.3.1 Bending Deflection

(A) Displacement due to Wj cos Sj

qw)ij - w__ _e_,, +

3 Ee Ii
w__ _j(g L_)

2 E_ Ii

(B) Displacement due to net moments M_j

qM)ij
wj ( Lj cos _j

yjsin [3j)(_)
2 Ee Ii

+ Wj (Lij COS _j-Ysin _j)(Ti Lij)

Ee Ii

where

Ti : thickness of segment i

E_ : "effective Young's module of elasticity"

_j: the distance from j to i

Wj : the transmitted load

Ii : moment of inertia of segment i

Definition of other variables can be found from Figure 11.5.

According to Comell [5], the value of E_ depends on the tooth width:

For width tooth :

FLY>5 : E_=E/(1-v 2)

For narrow tooth •

(II.13)

(II.14)

3.4



F/Y<5 : Ee=E

where Y : the tooth thickness at pitch point

F : tooth face width

n : Poisson's ratio

II.3.2 Shear deformation

The shear deformation is caused by the transverse component of the applied load.

))ij = 1.2 Wj Ti cos _j = 2.4 ( 1 + v ) Wj Ti cos 13j( (11.15)qs
G Ai Ee Ai

where

G : shear modulus of elasticity

At: cross section area ofsegrnent i

II.3.3 Axial Compression

This axial compression due to the component Wj sin Bj is

Wj sin Tt
(qc)ij = (II.16)

E At

The total displacement at the load position j, in the direction of load, due to deformation of

segment i can be expressed as:

( q' )tj _ ( qw ÷ qM ÷ qs )ij cos _j -I- ( qc )ij sin [3j (11.17)

For a wide tooth plane strain theory is used,

15



ql)ij
co# 13j[ _ +

= E---7--L3i .
Lij + Ti L_

JIi

cos 13j sin _j F _ Yj

E= [ 2 Ii

+ c°s2 _3J [ 2"4(1 +v)T_]E_ A_

+ sin2 [3J ITi]E= _ }

(II.18)

For a narrow tooth plane stress theory gives

( qt )ij = Wj
cos: 13_Ti

E¢

(II.19)
{ Ii

2.4(1+v) + tan 2 pj }+
Ai

II.3.4 Flexibility of the Fillet and Foundation

The fillet and foundation deflections depend on the fillet geometry as well as the load position

and direction. Both the fillet length and angle will affect the deflection. According to the study in

Ref. 5, the fillet angle gf should be taken as 75 degrees and 55 degrees for low contact ratio gears

16



(LCRG)andhigh contact ratio gears (HCRG), respectively. As shown in Figure I1.6, the

deflections caused by flexibility of fillet and foundation are"

For a plane strain case, wide tooth,

(qr,,)0 = W j{_
co$2 _j

EC

+ (T_)_ + (Ta,)i (L_)ij2.4(1 + v)(Tfb)

(If,), (A_)i

cos 13j sin 13j

EC

2

+ (T_)i YJ(Lr*)iJ](if0)i

+ sin2 _J [_Tf_)iIE, Ar_)i }

 .2o)

(qfo)ij - Wj cos 2 I_j (1 - v 2 ){ 16.6___77
E_ F rc

tan213 j )+ 1.534 1 + }
2.4(1 +v)

(hflf)i f

aL21)

For a plane stress case, narrow tooth,

17



(qfb) = W j{

2
cos 13j ( Tfb )i

EC

+
( I_ )i

tan _J[(Tcb)i YJ] + Yj(Lcb)ij2

( If, )i

2.4(1+v) + tan: 13j

+ ]}

(II.22)

(qf,)ij --

{ 16.67 [(1,)il 2
]

+ 1.534 [

Wj cos 2 IBj (1 + v:)
E, F

1+ }
2.4(1 + v)

(II.23)

where

qe, : deflection at and in the direction of load due to beam compliance of fillet.

qfc : deflection due to foundation effects.

Based on the superposition principle, the total deflection at and in the direction of load due to

the flexibility of the fillet and foundation can be calculated by adding the above individual

deflections, q_ and qfe. That is,

( qF )ij = ( qfb )ij + ( qre )ij (11.24)

18
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II.3.5 Local Contact Deflection

The local deflection is caused by line-contact and compression deformations. According to

Palmgren's study [15], a semi-empirical formula (equation 1/.25) was developed for contact

compliance of cylinders in rolling bearings. The local contact deflection of meshing teeth can be

computed using the formula without significant error. Since the contact conditions for a pair of

meshing gears are similar to that for a rolling bearing.

1.275 (II.2S)
(qL)ij = E °'912F°sW_f I

2 El E:
E_2 - 01.26)

E1 + E2

where Ea, E2 are Young's modulus of elasticity of gears.

II.3.6 Tooth Stiffness

If meshing portion of the tooth is divided into n segments, then, for each segment, the total

deflection (qr)j can be computed as:

(q.r)j = "_[(qw)ij + (qM)ij + (qr.)ii] (11.27)
i=1

Furthermore, by multiplying the reciprocal of (qr)i with the shared tooth load Wj at j position, the

equivalent tooth meshing stiffiaess for each segment can be expressed as the ratio of transmitted

load to the total deflection. Since there are n segments involved, the total stiffness can be summed

to determine the average tooth meshing stiffness (KG)_ from the following equations:

20



( K_ )i - Wj
( qT )j (II.28)

1 _ (KG)i (II.29)
(KG),,_ - n i=,

where n is the meshing position number.

Because the mass of a rotating gear body is theoretically concentrated at the radius of gyration,

the deflection reference used in this study is assumed to be at this radius. The theoretical deflection

and stiffness of the gear teeth will be affected by changing the mass moment of inertia and the

geometry of the gear body.

II.4 Gear Tooth in Action

Figure II.7 shows a pair of gears with a contact ratio 1.40. A driving pimon tooth is just

coming into contact at point E on the right and the preceding tooth on the left is in contact at point

G. It should be noted that the contact starts at E and ends at H, where the outside diameter of the

gear or the pinion intersect the line of action. When the gears rotate, the contact point of the tooth

pair TG2moves from point E to point F. Likewise, tooth pair TGj moves from point G to point H,

respectively. Thus, two pairs of teeth carry the load during this period. When the contact point of

tooth pair TGt passes point H, this tooth pair loses contact, leaving only one pair of teeth TG2to

carry the load. As the gears continue turning, the tooth pair TG3starts contact at point E. Again,

two pairs of teeth T_ and TG3carry the load until tooth pair T_2 leaves contact at point H. The

position of the contact point of gear teeth along the line of action usually is expressed in term of

roll angles of the driving gear. This expression is also consistent with our

21
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gear tooth deflection and stiffness calculations, since they are also expressed in roll angles of the

driving gear.

II.5 Transmission Error and Load Sharing

The transmission error fiE) is defined as the departure of a meshed gear pair from a constant

angular motion. TE may be defined as the instant deviation of the following gear from an ideal

nominal value. TE is a result of many contributors and the main items are:

(A) Combined deflection of meshing teeth

03) Tooth spacing error

(C) Tooth profile error

(D) Runout error

The total transmission error for a gear pair is the sum of individual errors caused by above-

mentioned sources and is written as:

( E_T)j = E dErk + '_ pErk + [P] E ,E_
r=l j r =1 j r=l j

where

k : the mating tooth pairs in sequence

r : driving and driven gears

P : ifk =1 then P = 0, otherwise P = 1

dE : deflection of gear teeth at contact point

r,E : tooth profile error

sE : tooth spacing error

23
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Since the transmission error is the same for each tooth pair sharing the total transmitting load

(W), it can be expressedas:

(c_)+l
w--E 

= ... gI.31)

(II.32)

where (CR) is the integer part of the contact ratio.

The magnitude of the load shared by each individual tooth pair can be calculated by solving a

set of simultaneous equations (II.30, II.31, and ]I.32). It should be noted that the meshing analysis

equations are only valid under the assumption that there arc n tooth pairs simultaneously in contact

duringmesh.Ifany ofthetoothpairslosecontact,thetermscorrespondingtothetoothpairsthat

losecontactareeliminated.Then,theremainingequationsaresolvedfortheloadand static

transmissionerrorofthetoothpairsthatarestillincontact.

II.6 Torque Due to Friction in the Mesh Gears

There is no general agreement for the friction coefficient. Some semi-empirical formulas have

been developed based on different assumptions. Two of these formulas, Buckingham's [25], and

Anderson and Loewenthal's formulas [26], were used in this study m determine the friction torques

which will be incorporated into the equations of motion for dynamic analysis in a later chapter.

Buckingham's formula:

f = _ 0.0______5+ 0.002 _ (II.33)
e0.125 V,

4f
f, - (II.34)

3

24



fr

where

2f

3

f : average coefficient of friction

f_ : average coefficient of friction of approach

f_ : average coefficient of friction of recess

Vs : sliding velocity, fl/min

Anderson and Loewenthal's formula:

(11.35)

45.4 W
f = 0.0127 log (11.36)

F Uo Vs V_

VR = 0"2094nRpl[sin_b'( S (mg2R_l" 1)]1 (II.37)

where

f : average coefficient of friction

W : actual applied load, lb

F : tooth face width, in

V_ : sliding velocity, in/see

Vx : rolling velocity, or sum velocity, in/see

uo : lubricant absolute viscosity, lbf-sec/in:

S : absolute distance, in, from pitch point to contact point along the line of action

n : rotating speed, rpm

nas : gear ratio

25



Based on these two formulas, the friction coefficient can be estimated. By taking into account

the shared tooth load, the frictional torque Tf on each individual gear shaft can be found. This

torque varies along the path of contact and changes direction at the pitch point.

II.7 Flexible Shaft and Rolling Element Bearing

Shafts and bearings are major components of the gear system. The most elementary rolling

element bearing-shaft assembly is shown in Figure 11.8. Figure 11.9 shows a similar assembly with

a overhung load. The concentrated load P is transmitted between gears along the contact-line

direction. Figure 11.10 shows the free body diagrams of the force acting on two mating gears. The

system is statically determinate, thus, the force Fr_ exerted on the driven gear causes a reaction

force P as well as a torque T. The force P produces a shaft deflection and the torque T keeps the

gear rotating. To obtain shaft deflection, a shaft can be considered as either a simply supported

beam or a cantilever beam model, it depends on gear mounting position. From mechanics-of-

materials, the sha__ deflection can be calculated as:

P ab (a 2 + b2 + 12 ) (II.38)
qo- 6EI1

for a gear mounted between two bearings.

P a 2

qG - 3 E I ( 1 + a ) (II.39)

for a gear mounted outside two bearings.

26
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Usually,when a rotor system is analyzed for deflections, bearings are assumed to be rigid. In

fact the bearings deflect when subjected to a load, which adds to the shaft deflection. For a rolling

bearing in service, the rolling element presses against its race-way either at a point or along a line,

depending on the type of bearing. Under an external force, the rolling element deforms and the

associated contact area is dependent upon the load magnitude as well as the curvature of the rolling

element. On the basis of Hertz's "Contact of Elastic Solids" theory, Garguilo [16] derived a series

of formulas to calculate deflection for different types of bearings. These formulas are expressed as

follows:

For a deep-groove or angular-contact radial ball bearing:

I F2 (II.40)6r = 46.2x 106 D Z2 cossCz

For a Self-aligning ball bearing:

_ (II.41)5r = 74.0 x 10 "6 D Z2 cos 5

For a spherical roller bearing:

3_ _ (II.42)5r = 14.5x10 .6 L 2 Z 3 cos 7cx

For a straight roller or tapered roller bearing:

6_ = 3.71 x 10 -6 F°9 (II.43)
LO.S Z0.9 cosa-9 _

3O



where

cl,: bearing deflection, in

D : rolling element diameter, in

Z : number of rolling elements

a : Contact angle, tad

L : roller effect length

Fr : radial external force, lb

When a gear pair is in operation, shaft and beating deflections cause the center of gear rotation

to shi_ along the direction of the line of action (Figure II. 11) fi'om its original location. The shift

increases the center distance and pressure angle of the meshing gears, which in turn reduces the

contact ratio. Since shaft and bearing deflections are usually small, their influence is often

neglected.

To evaluate system dynamics, the shall and connected masses should be taken into

consideration. These parameters, polar mass moment of inertia, stiffness of shaft, and stiffness of

connected masses, are incorporated into the equations of motion in the dynamic analysis. As

suggested in [17], the polar mass moment of inertia J and the torsional stiffness K can be

calculated by:

j _ _lp (Do 4 _ D4) (II.44)
32

K = I x G - =G (D4 _ D4) (II.45)
32
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where

r :massdensity,lb/in 3

Do : outside diameter of shaft, in

Di : inside diameter of shaft, in

1 : length of shaft, in

I : torsional constant, in4

G : shear modules, lb/in _

32
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CHAPTERIII

SYSTEM DYNAMIC ANALYSIS

III.1 Equations of Motion

To precisely model the dynandc loading is a difficult task, even in idealized geometry

conditions. The vibration of a gear tooth is affected by the tooth force which fluctuates in

amplitude, direction, and position during the meshing process. Load fluctuations are influenced by

the damping effect of the lubricant and the operating speed. In general, a gear train is very

complicated and composed of various sub-systems, such as motor, bearing, shaft, ..., etc. and each

sub-system is a complete dynamic system. The gear transmission is generally simplified to a

relatively small number of lumped masses connected elastically. Under this modeling, a simple

spur gear system shown in Figure IN. 1 can be represented by a mathematical model shown in

Figure 1]/.2. This model has four degrees of freedom and consists of gears, input device, output

device, and two flexible shafts. The dynamic behavior of meshing gears could be considered as a

periodic forced motion. To develop the governing equations, some assumptions are applied in

addition to those made at the beginning of chapter II. These assumptions are:

(A) Damping (due to material in gears and shafting and from lubrication) is expressed as a

constant damping coefficient.

(B) The differential equations of motion are expressed along the theoretical line of action.

(C) The reference point for tooth deflection is assumed to be located along the tooth eenterline at

the radius of gyration of the gear body.
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Using basic gear geometry and elementary vibration principles, the governing equations

can be expressed as follows:

JM OM+ Csl(OM--Ol ) + Ks,(O M -0_) = T M

J1 6, + Cs, (0,--0M)+ C_(t)[Rbl(Rb, 0,- Rb2 02)]

+Ks, (0,- 0M) + Kc(t)[Rb, (Rb, 0,- Rb2 02)] = Tt_, (t)

J202 + Cs2(02-0,)+ Co(t)IRb_(Rb_02- Rb,0,)1

+ Ks2(02 - 0,)+ Kc(t)[Rb2(Rb202- Rb,0,)]=TF2 (t)

fHI.1)

flII.2)

(1113)

JLOL 4- Cs2 (0L--02)+ Ks2 (0L -- 02 )= --TL fro.4)

where

JM, JI, J2, JL : mass moments of inertia for motor, gear I, gear II, and load, respectively

KSl , Ks2 , KG(t ) : stiffnesses of shaft I, shaft II, and gear teeth, respectively

Csb Cs2, CG(t) : damping coefficients of shaft I, shaft II, and gears

Trl(t), TF2(t) : friction torque of driving gear and driven gear

TM, T L : input and output torque

The time varying friction torque of the gears and periodic variation of the mesh stiffness act

as excitation terms to the equation of motion. The stiffness of gear teeth (represented by springs)
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isdeterminedbythemethoddevelopedinChapterII. Thesystemdynamiccharacteristics can

then be found by solving the above simultaneous differential equations.

II]I,2 Numerical Solution Approach

Due to nonlinearity in the equation of motion, it is necessary to apply a numerical approach to

find the solution. Two steps are used in solving the equations. First, a static analysis is

introduced to obtain the required parameters. Second, a dynamic analysis is incorporated to

obtain the final result.

The static analysis includes the following: the geometry of meshing gears is determined from

basic gear dimensions, the center distance of meshing gears affected by shaft and bearing

deflections is calculated by using equations mentioned in Chapter II, the transmission error, load

sharing, and tooth stiffness obtained by those procedures referred in Chapter II.

The dynamic analysis is conducted as follows. The fluctuating output torque, damping in

gears, frictional torque, and time-varying mesh stiffness under constant input torque are taken

into consideration. Initial values of angular displacement and angular velocity are needed in the

analysis. Starting values are obtained through preloading the input shaft with the output shaft

fixed. The preload torque is the static design torque carried by the system.

The equations of motion are linearized by dividing the mesh period into many equal

intervals. Those equations are solved by an iteration technique incorporating the nominal initial

values. At each step Xn and Vn need to be compared respectively with the initial value X0 and

V0 to confirm the iteration convergence. To determine whether the convergence is satisfied, the

following criterions are used:

I X, X01 --- 0.05 X0 ,
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and

I Vn - V01 -< 0.05V0 ,

Thesamestepsarerepeatedbyaveragingtheinitial and calculated values of angular

displacement Xn, and angular velocity Vn, as the new initial values of next period, respectively.

Three situations may occur when gears are in mesh. Each one of these three situations (A, B, or

C) will produce a specific dynamic condition. Assume gear 1 is the driving gear,

Case(A) Rbl 01 - Rb2 02 > 0

This is normal operation case. The dynamic tooth load on gear 1 is then:

Wd,=KG(t)(Rb, O,'Rb202)+CG(t)(RD, O' Rb2 02 ]

which is the same as the dynamic tooth load on gear 2,

(III.5)

Wd2 = Wdl O-11.6)

Case(B) RD, 0,- Rb2 02 < 0 and [Rbl01 -Rb2021 <B h

In this case, the gears will separate and lose contact, therefore,

Wd = 0 011.7)
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Case(C) Rbl 01 - Rb2 02 < 0 and [ Rbl0 _ - Rb202[ > B h

In this case, gear 2 will collide with gear 1 on the backside. The dynamic tooth load on gear 1
is

and
011.8)

Wa2 = Wd_ 0/1.9)

The term ( Rbl el - Rb2 02 ) is the relative dynamic displacement between gear 1 and

gear 2, and Bh is the backlash of gears.

In general, damping is present in an oscillatory system. The mathematical description of

damping effect is so complicated that it needs to be simplified in the vibration analysis. A

simplified damping model is introduced in this study to determine the effective damping factor

Csl and Cs2,

I(Csl = 2 _sl 1 1

_+- J1

(m.lo)

(m.ll)
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The_representsthedamping ratio of shafts ( expressed as a fraction of critical

damping). Based on experimental results [18], the damping in the shafts due to material damping

was found to be between 0.005 and 0.007. In this study, it is taken as 0.005.

For damping between the gear teeth, similar formulas are used:

li Kol) oii12,Col = 2_ R___L+ R____L

Jl J:

r

Co2 = 2 _ I/ Ko2 n (lII.13)

J1 J:

[19] and [20] indicated that the value of the damping ratio { for these formulas is between 0.03 to

0.17. An average value of 0.10 is used in our study. The flow chart for the above numerical

approach is shown in Figure M.3.

III.2.1 Undamped Natural Frequency

The undamped equations of motion for the gear pair in mesh can be obtained by neglecting the

damping and excitation terms from Equations M.1 through M.4. The undamped equations of

motion were solved by a Jacobian iteration technique to find the natural frequencies of the system.

In equation M.14 the average gear mesh stiffness (Ko)_z is introduced to facilitate the solution

for eigenvalues. (Ko)_z is determined by summing up the discrete stiffness values over one tooth

mesh cycle and dividing by the number of mesh positions in the cycle.
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111.2.2 Fast Fourier Transform of Transmission Error

According to Mark [21], gear noise and gear dynamic load are often characterized by strong

components at the tooth mesh frequency. Kubo [22] stated that the magnitude of gear transmission

error at the harmonics of the tooth mesh frequency corresponds somewhat proportionately to the

magnitude of maximum dynamic tooth fillet stress. Both of these phenomena are caused by

vibrational excitations due to time-varying stiffiaesses of meshing gears. Therefore, the dynamic

response also corresponds proportionately to tooth mesh frequency. In this study, frequency

analysis of static transmission error is performed by taking the fast Fourier transform (FFT) of its

time wave• In general, the amplitudes of higher harmonics are usually small, thus their contribution

to the excitation be neglected. Therefore, only the first twelve harmonic values are calculated. A

typical plot of the static transmission error spectrum is shown in Figure 111.4.

111.2.3 Speed Survey of Dynamic Stress and Load Factor

Comell [23] modified a formula developed by Heywood [24] for the calculation of root fillet

bending stress of a gear tooth. This formula is readily adapted to the geometry of involute gear

teeth and can be expressed as
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_j
Wj cos

F 13J 1+ 0.26

hL tan 13j)

6Is - 2 ( 0.72 30"5+ (m.15){

) tan j1 - h--kvtan 13j --}
hs h_

where

v : approximately 1/4 according to Heywood [24]

13j: the load angle, degree

F : face width of gear tooth, in

r : fillet radius, in

and the rest of nomenclature is defined in Figure 1II.5. Note that 3% which defines the position of

maximum fillet stress, is 30 degrees for LCRG, and 20 degrees for HCRG, as suggested by

Conell [23].

The main source of gear vibration is the time-varying tooth stiffness due to alternating

tooth load, and changing tooth contact position. To investigate the dynamic performance of a

gear system under realistic operating conditions, the rotating speeds were varied over a wide

range. Figure Ill.6 shows the variation of gear load and tooth root stress as a function of

operating speed for a typical high-contact-ratio gear pair. The load and stress are shown in

nondimensional form as the dynamic load factor, which is the ratio of maximum dynamic load to

total applied load, and the dynamic stress factor, which is the ratio of maximum dynamic stress
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to maximum static stress. The total applied load is the input torque divided by the base radius of

the driving gear. It is found that the major peak for both dynamic stress and dynamic load

factors occurs near 9300 rpm, which is the system natural frequency.

The analysis described above has been incorporated into the NASA gear dynamics program

DANST. The program calculates the properties of system components and substitutes them into

bending stresses and other parameters. DANST was used for the parameter study which

follows.

48



CHAPTERIV

PARAMETER STUDY

IV.1 Effect of Damping

The Damping ratio _g governing the dynamic load variation depends on the viscous friction and

the material properties of the meshing gears. It is usually an unknown quantity. To explore the

effect of damping, the analysis was performed using a sequence of damping ratio values between

0.07 and 0.14. The analysis covered a range of rotating speeds at constant design load 2000 lb/in

for both high-contact-ratio gears (HCRG) and low-contact-ratio gears (LCRG). The range of

speed studied was 2000 to 12,000 rpm. The number of teeth 32, the diametral pitch 8, and the face

width 1 inch were chosen for the basic dimensions of these gears. The results are shown in Figures

IV.I and IV.2 and Figures IV.3 and IV.4, for dynamic load factor and dynamic stress factor,

respectively. As illustrated in these figures, damping has a major influence on both dynamic load

and stress factors when the operating speed is close to the critical speed, or one-half or one-third of

critical speed. Damping has little influence at other speeds. A large damping coefficient will

reduce the dynamic motion at peak resonance speeds. This can be observed in Figures IV. 1

through IV.4 for both low and high contact ratio gears.

The dynamic factor plots show that dynamic load factors of LCRG are much more speed

sensitive than those ofHCRG - especially if the damping is low. Also, the dynamic stress factors

of HCRG are generally much greater than the dynamic load factors. These phenomena are

influenced by the magnitude of the maximum dynamic load and its position. A small dynamic load

near the tooth tip may produce a higher dynamic stress than that produced by a larger dynamic
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loadnearthetoothroot. Furthermore,aHCRGhasa long, thin tooth which can produce a high

stress at the fillet region.

Figures IV.5(a) and IV.5(b), which are static and dynamic load distribution plots for LCRG

and HCRG, respectively, demonstrate the effect of different damping coefficients at resonance

speed. The points of the curves where the dynamic load drops to zero indicate where the teeth lose

contact during mesh, and the second peak of dynamic load oeeurs at the teeth re-engagement

position. Figure IV.6(a) shows that the teeth separate when LCRG operate at resonance speed for

all damping cases. There is no load exerted on the tooth and the value of tooth deflection is zero

during the separation period. The average tooth stiffness for the entire tooth engagement period in

this case is smaller than it would be if the teeth did not separate. This effect decreases the

calculated value of the resonance speed.

Figure IV.6 shows the dynamic load and stress factors versus gear mesh damping coefficient for

both HCRG and LCRG at resonance and sub-resonance speeds. For HCRG, the value of dynamic

factors decreases smoothly as the gear mesh damping coefficient increases. This is also true for

LCRG at sub-resonance speeds, but not for LCRG at resonance speed. For low contact ratio

gears, resonance speed represents an unstable operating condition. In Fig IV.6 (a), there is a large

change in the dynamic load factor at the damping coefficient value of 0.113. To understand this

phenomenon, it is useful to look at the tooth static and dynamic load distribution plot (Figure IV.6)

again. It can be observed that the teeth are out of contact longer for lower values of the damping

coefficient. Since the gear meshing stiffness becomes zero when teeth lose contact, the average

meshing stiffness becomes small and the resonance location shifts to a lower rotating speed. Since

the damping coefficient cannot be directly controlled by a gear designer, we can reduce the risk of

gear failure by avoiding the resonance region.
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In most of the curves in Figure IV.6(a), tooth re-engagement occurs at around the tooth pitch point

(roll angle = 20.854 degree) where the friction force reverses its direction. This causes the

frictional torque around the tooth pitch point to change very sharply, producing unstable dynamic

effects. For _ g= 0.113 and 0.114, the re-engagement points are located on either side of the point

A (roll angle = 18.984) which is the transition point of double and single teeth contact area. In Fig

IV.6(b) for HCRG, all the peak dynamic loads occur at the same position and there is no complete

tooth separation for any damping case. The value of the maximum dynamic load is less influenced

by _ s than with LCRG.

IV.2 Effect of Flexible Shaft and Bearing

Many gear dynamic models are based on the assumptions of rigid shaRs and rigid rolling

bearings. Rotor dynamics studies examine effects of the flexibility of the shaft and the mass

unbalance of a gear body. The dynamic behavior of the gear system is affected not only by the

tooth mesh stiffiaess but also by the elasticity of shafts and the rolling element bearings. The

deflection of these supporting elements result in the deviation of the center of rotation from its

original location. Hence, in order to obtain a more accurate prediction of the dynamic behavior of

the overall gear system, the flexibility effects of shafts and bearings should be considered. These

effects can be added to assembly misalignment. For the purpose of static analysis, it is sufficient

to consider only relative radial motion of the center of gear rotation. The axial motion due to the

shaft bending moment is negligible. A change of the center distance of a pair of gears will affect

the pressure angle and the contact ratio. A detailed discussion of contact ratio effects will be

illustrated in a later section.

Two typical rolling bearing-shaR systems are considered in this study. One has a gear

mounted on a shaR between two bearings as in a simply supported beam, and the other has a gear
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mounted on a shaR outside two supported bearings as in a cantilever beam. It is assumed that the

materialsofthegearsand theshaftsarehomogeneous steeland thereareno geometricerrorsin

any ofthecomponents,thereforeno eccentricityisconsidered.The flexuraldisplacementofa

rollingbearingdue tothetransmittedloadcan be dividedintoaxialand radialdirection

components.Onlythedisplacementintheradialdirectionaffectsthegearcontactratio.The

outsidediameter1.5inchesand modulus ofelasticity30,000,000psiwere chosenforbothshaRs.

The computed resultsofthedeflectiondue toanormalgeartoothloadbetween500 Ibs

and 2000 Ibsareshown inFigureIV.7,and FigureIV.8(a)and (b)forsimplysupportedbeam and

cantileverbeam, respectively.Four typesofthebearingswere considered,type-I:deep-groove

bearing, type-2: self-aligning bearing, type-3: spherical roller bearing, and type-4: tapered roller

bearing. All of these have the same number (21) of rolling elements and 0.25 inch radius elements.

The effective length 0.25 inch is chosen for the roller dement and zero contact angle is selected for

all the bearings. Since rolling elements in a ball bearing make point contact with the race way, the

Hertzian contact deformation of a ball bearing is higher than in a roller bearing which has line

contact. Thus, the deformation of the ball bearing is greater than that of the roller bearing. This

can be seen in Figures IV.7 and IV.8, the deformations of both type-1 and type-2 bearings are

larger than the deformations of type-3 and type-4, and they have a higher slope. The type-2, self-

aligning bearing, is designed for moderate thrust force and can only resist a light radial load, thus

has the maximum deformation. In the two eases shown, the shaRs are relatively long, hence, the

shaR deflections are much higher than the bearing deformations, especially with heavy loads. The

change of a gear pair's center distance is governed by the shaft deflection. But, in the cantilever

shaR case shown in Figure IV.8(b), the load exerted on bearing-2 is equal to the transmitted load

plus the magnitude of the reacting load on bearing-1. This load produces the deformation of type-1

and type-2 bearings at the bearing-2 position as great as

58



60 I

/ I 5.o_ IH 5.0- I _

_- 30 b_g

SphcFical roller

°_ b_dng
_ 2o

/......../..../......./.....................................
10 "'"

o I 1 I I I

500 750 1000 1250 1500 1750 2000

Load ( Ib )

Figure IV.7 Deflections of shaft and bearings under various loads for a simple two-bear-shaft

system measured at gear position

59



3O

o

I

--4

V

¢1
o

q.P

o

C=I

25

2O

15

10

o I I

500 750

SHAFT

I I l

1000 1250 1500

Load ( lb )

1750 2000

Figure IV.8(a) Deflections of shaft and bearings (at bearing-I) under various

loads for a simple two-bear-shaft system, overhung load

30 -[ 12-5". 10.0" --'----'---

- Y 'l Sdf-_ning... baU__ballbeating _- .........
25 , ......._ ...__-

L I ................. Decl>-groove

...........•..

5

0 t i t -!

500 750 I000 1250 1500 1750 2000

Load ( lb )

Figure IV.8(b) Deflections of shaft and bearings (at bearing-2) under various
loads for a simple two-bear-shaft system, overhung load

6O



the shaft deflection or even higher. In order to prevent failure a roller bearing or duplex ball

bearings may be needed in the bearing-2 position.

Figures IV.9 and IV.10 show the resulting change in contact ratio due to combined

deflection at various gear mounting positions. In the simply supported shaft case, Figure IV.9, the

maximum deflection occurs when both gears are mounted at the center of the shafts. This causes

the minimum contact ratio. In the cantilever shaft case, Figure IV. 10, increasing the overhang of

the gears reduces the contact ratio. Gear shaft deflection, especially for overhung gears, also

creates misalignment which can lead to edge contact of the gear teeth.

The contact ratio is influenced by the center distance: increasing the center distance

reduces the contact ratio. This is illustrated in Fig IV. 11 which compares the effect for gear sets of

two different sizes and both standard addendum. For the two larger gear sets ( diametral pitch 8

and 32 teeth ) the curves for contact ratio vs. increase in center distance have the same slope. For

the smaller gear sets ( diametral pitch 12 and 32 teeth ) the slopes of the curves are equal to each

other but steeper than the curves for the larger 8 pitch gears. This demonstrates (1) the sensitivity

of contact ratio to center distance is not affected bythe tooth addendum and (2) smaller gears with

smaller teeth are more sensitive to center distance variation.

IV.3 Effect of Contact Ratio

The contact ratio is defined as average number of tooth pair(s) in contact. It may also be

defined as the ratio of the length of contact for one tooth pair to the base pitch. The contact ratio is

a key parameter for dynamic behavior of gears.

The contact length is measured on the line of action between the initial contact point and

the end contact point. In general, the higher the contact ratio, the longer the overlap where more

than one pair of teeth are in contact, and the more smoothly the gears will run. It is possible to

increase the contact ratio to greater than two by carefully manipulating the gear design
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parameters. Figures IV. 12(a) and Co) illustrate how an increase in the normalized tooth addendum

A from 1.0 to 1.4 raises the contact ratio from 1.26 to 2.46.

Although it is beneficial to distribute the load among more pairs of teeth, the load capacity

of a gear set may suffer due to longer moment arm as a result of going to a higher contact ratio.

Therefore, gear design represents a compromise between various design requirements.

Furthermore, in order to operate HCRG effectively, the gears have to be manufactured to a higher

degree of precision so that the load can be properly shared by the three or more pairs of teeth in

contact.

High contact ratio gears can be designed in several ways: (1) by selecting a greater value

of diametral pitch (smaller teeth), (2) by increasing the length of tooth addendum, and (3) by

choosing a smaller pressure angle. Those parameters can be changed individually or in

combination to achieve the desired contact ratio. Raising diametral pitch increases the number of

teeth and diminishes the tooth thickness, which will reduce the tooth strength. Augmenting the

length of the addendum causes the tooth to become longer which increases the bending stress at the

fillet region. A lower pressure angle increases the tangential force component acting on the tooth.

This makes a higher bending moment. Moreover, it raises the chances of interference, and reduces

the tooth thickness at the root. Generally speaking, high-contact-ratio gears tend to have weaker

teeth. They also have a greater tooth sliding velocity which may produce higher surface

temperatures and greater tendency for surface-distress-related failures. Increasing the tooth

addendum is usually the preferred method to obtain high-contact-ratio gears because this can be

done by adjusting the cutting depth during the manufacturing process.

This study investigates the effect of varying the contact ratio for a typical set of spur

gears. Design parameters for the gears are shown in Table IV. 1. The contact ratio is varied over

the range 1.26 to 2.46 by increasing the normalized tooth addendum from 0.7 to 1.54. The results
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areshown intheform ofthedynamic loadfactorplottedasa functionofrotatingspeedinFigure

IV.13forLCRG and FigureIV.14forHCRG.

In Figure IV. 13, for LCRG, the dynamic load factor generally decreases as the gear

contact ratio increases. This phenomenon is most prominent at the main resonant speed, near 9000

rpm, and at one-half of this resonant speed. The gears with the highest contact ratio (CR = 1.868)

have lower dynamic load at all speeds. We believe that this effect is due to the very narrow band

of single-tooth contact being passed so quickly during gear rotation that the system could not

respond until after the excitation has passed. The high speed behavior of LCRG with contact ratio

close to 2.0 is similar to that of high-contact-ratio gears shown in the following figures.

In Figure IV. 14, for HCRG, there is much less dynamic action; none of the dynamic load

factors of HCRG exceed 0.9 even at resonant speed. Contrary to LCRG, the higher the contact

ratio of HCRG the higher the dynamic factor in the resonance zone. The gears with the lowest

contact ratio (CR = 2.226) have the highest dynamic load at lower speeds, but the trend reverses at

the resonant speed where the gears with the highest contact ratio experienced the highest load. This

phenomenon may be due to excitation from the transition between double- and triple-tooth contact.

For gears with contact ratio equal to 2.226 the triple-tooth-contact region is shorter than that of

the other two cases with high contact ratios. The excitation due to the change in number of teeth in

contact( which changes the meshing stiffness ) acts like a short-duration impulse, which is more

effective at lower speeds than at higher speeds.

Figure IV. 15 compares the dynamics of "transition" gears from LCRG to HCRG (CR =

1.952, 2.000, and 2.145). The dynamic curves for CR = 1.952 shows a trend similar to that for

CR = 1.868 in Figure IV. 13. For gears with a contact ratio of exactly 2.0, there is almost no

variation of the meshing stiffness during tooth contact. As a result the dynamic response is very
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Table IV.1 Sample Gear Parameters

Pressure Angle (degree)

Diametral Pitch (DP)

Number of Teeth

Addendum, (normalized by 1/DP in.)

Backlash (in.)

Pitch Diameter (in.)

20.0

8

32

0.7 _ 1.45

0.001

4.0

Outside Diameter (in.) 4.175 - 4.385

Root Diameter (in.) 3.775 - 3.565

Face Width (in.) 1.0

Design Torque (Ib-in.) 3760

Static Tooth Load (lb/in.) 2000

Tooth profile involute

Damping ratio 0.10
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gentle, even at resonant speeds. At CR = 2.145 excitation due to the meshing stiffness variation

between double- and triple-tooth contact produced some dynamic effect at lower speeds (below

5000 rpm). As speed increased beyond 5000 rpm, the effect of stiffness variation diminished, as

shown in the figure.

The effect of varying contact ratio (CR) on the dynamic load factor and dynamic stress

factor at the critical speed (co ,) and certain submultiples of this speed are shown in Figures

IV. 16 and IV. 17. 9300 rpm is the first critical speed for tooth mesh excitation, and 4650 rpm is

one-half of this speed. The data in Figure IV.16 may be grouped into three zones: In zone I,

where contact ratio is less than 1.7, the dynamic load factor at critical speed is nearly constant at

approximately 1.9. For the submultiples of the critical speed, the dynamic load factor oscillates

around a level about 25 percent less than that of the critical speed. In zone 2, a transition zone

where the contact ratio changes from approximately 1.70 to 2.0, the dynamic load factor drops

rapidly as the contact ratio increases, reaching a minimum of 0.64 at CR = 2.0. The dynamic

load for the critical speed falls off first, and then the smaller submultiples fell off at a higher

contact ratio value. Finally, in zone 3, where the contact ratio is greater than 2.0, the dynamic

load factor oscillates between 0.64 and approximately 0.8. As a general trend, dynamic loads for

high contact ratio gears are smaller than for LCRG.

The dynamic tooth bending stress depends on the dynamic load and also the location on

the tooth where this load occurs. A high load acting near the tooth tip causes higher bending

stress than a similar load applied lower on the tooth. Figure IV.I 7 shows the variation of the

dynamic stress factor with contact ratio at the critical speed (co n) and submultiples of co ,. As in

the previous discussion for dynamic load factor, in zone 1, (where the contact ratio is greater

than 1.7), the dynamic stress factor at co o declines slightly from about 2.0 to 1.7 as the contact
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ratio increases slightly with contact ratio. In zone 2 (transition from low to high contact ratio),

the dynamic stress factor declines significantly to a minimum value of 0.65 at CR=2.0. In zone

3, where the contact ratio is greater than 2.0, the dynamic stress oscillates between approxi-

mately 1.03 and 1.35. At the critical speed, the dynamic stress is much higher for LCRG than for

HCRG, however, at submultiples of the critical speed, the dynamic stress factors for HCRG and

LCRG are nearly equal. At all speeds, the dynamic stress factor is lowest for gears with CR=2.0.

Figures IV. 16 and IV. 17 show that increasing the contact ratio does not always reduce

the dynamic load or dynamic stress. For gears that operate over a wide range of speeds a contact

ratio close to 2.0 is the best choice. Although a high contact ratio gear (CR>2.0) may have a

relatively low dynamic load factor, the dynamic stress may not be low because of the taller teeth.

A three dimensional representation of the effect of the speed and contact ratio on the

dynamic load and dynamic stress factors are shown in Figures IV. 18 and IV. 19, respectively.

The dynamic load and dynamic stress show similar trends when the contact ratio is smaller than

2.0. However, the dynamic stress factors are much higher than the dynamic load factors when

the contact ratio is greater than 2.0. The corresponding contour diagrams in Figures IV. 18(b)

and IV. 19(b) show that although the dynamic load is generally low throughout the entire HCRG

region, the dynamic stress remains high. These contour diagrams are good tools for pinpointing

the exact position of the dynamic peaks and valleys for a gear design. Gears with minimum

dynamic load and stress will be located in the valleys of these diagrams. In Figures IV. 18 and

IV. 19, dynamic load and dynamic stress factors are minimum near CR = 2.0.

For some applications it may not be feasible to design a gear system with a contact ratio

of 2.0. Moreover, the contact ratio of a gear pair may be altered by shaft deflection. Figure

IV. 18 and IV. 19 show the effects of such changes for the gear system analyzed in this report. An

analysis code such as DANST can be used to generate similar data required for designing other

gear systems.
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CHAPTER V

CONCLUSIONS

The flexibility effects of shafts and bearings have been added to previous work [13, 14]

to improve the simulation of gear dynamics. Parametric studies of gear dynamic behavior were

performed using the computer program DANST. A wide range of the gear mesh damping

coefficient values, from 0.07 to 0.14, were examined to study the influence of the damping on

gear dynamics. The effect of contact ratio on gear dynamics was investigated. Contact ratios

ranging from 1.20 to 2.40 can be obtained by varying the length of the tooth addendum for a

sample pair of spur gears used for the analysis. Other parameters which also affect the value of

contact ratio were held constant in this study.

Based on the results from the analytical investigations, the following conclusions were

obtained.

(1) Generally speaking, dynamic tooth bending stress in high-contact-ratio gears is

higher than that in low-contact-ratio gears. When the contact ratio approaches 2.0 significantly

lower dynamic stresses were found throughout the speed range.

(2) Damping has a major influence on dynamic response only when the operating speed

is close to a resonant speed, and a much less influence when operating speed is near sub-multiple

of the resonant speed.

(3) The contact ratio of a gear pair is influenced by the operating center distance. In

order to determine actual contact ratio of gears in operation, gear designers should take the

deflections of shafts and bearings into design consideration.
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(4)Dynamiceffectissignificantlyhigherfor low-contact-ratiogearsthanfor high-

contact-ratiogears.Thereisabenefitof usinghigh-contact-ratiogearsforminimizinggear

dynamicload.

(5) In general,for low-contact-ratio-gears,increasingthecontactratioreducesdynamic

load.The most significant effect occurs as the contact ratio approaches 2.0. Dynamic effects are

minimized at contact ratios near two. For high-contact-ratio gears, the optimum contact ratio

value depends on the operating speed. Increasing contact ratio does not always reduce dynamic

load.

(6) At very high speeds ( above the critical speed ), the dynamic response of a gear

system is much less influenced by the contact ratio or by small speed changes.
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