

Ground-Water Resources Program National Research Program

Ground-Water Recharge in the Arid and Semiarid Southwestern United States

Professional Paper 1703

U.S. Department of the Interior U.S. Geological Survey

Ground-Water Recharge in the Arid and Semiarid Southwestern United States

Edited by David A. Stonestrom, Jim Constantz, Ty P.A. Ferré¹, and Stanley A. Leake

With contributions by Jared D. Abraham, Kelsey S. Adams, Brian J. Andraski, Matthew A. Bailey, Andrew M. Binley², Kyle W. Blasch, James B. Callegary, Alissa L. Coes, Jim Constantz, Steven M. Crawford, Ty P.A. Ferré, James B. Fink³, Alan L. Flint, Lorraine E. Flint, Philip M. Gardner, Patrick A. Glancy, James R. Harrill, Victor M. Heilweil, John P. Hoffmann, John A. Izbicki, Russell U. Johnson, Justin Kulongoski, Marc T. Levitt³, Randell J. Laczniak, Stephanie J. Moore, Richard G. Niswonger, Donald R. Pool, Steven Predmore, David E. Prudic, Bridget R. Scanlon⁴, D. Kip Solomon⁵, Amy E. Stewart-Deaker, David A. Stonestrom, Michelle A. Walvoord, and James L. Wood

¹University of Arizona; ²Lancaster University; ³Hydrogeophysics, Inc.; ⁴University of Texas at Austin; ⁵University of Utah

Volume comprises chapters A, B, C, D, E, F, G, H, I, J, K, and appendicies 1 and 2

Professional Paper 1703

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

DIRK KEMPTHORNE, Secretary

U.S. Geological Survey

Mark D. Myers, Director

U.S. Geological Survey, Reston, Virginia: 2007

This report and any updates to it are available online at: http://pubs.usgs.gov/pp/pp1703/

For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS (1-888-275-8747)

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS (1-888-275-8747)

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.

Suggested citation: Stonestrom, D.A., Constantz, J., Ferré, T.P.A., and Leake, S.A., eds., 2007, Ground-water recharge in the arid and semiarid southwestern United States: U.S. Geological Survey Professional Paper 1703, 414 p.

Cataloging-in-publication data are on file with the Library of Congress (http://www.loc.gov/).

Produced in the Western Region, Menlo Park, California Manuscript approved for publication, July 24, 2007 Text edited by Tracey L. Suzuki Layout by Judy Weathers

FRONT COVER. Digital elevation map of the southwestern United States showing the boundary of the regional-analysis area (large yellow outline) and site-specific study areas (small yellow outlines and white squares). Base map, extracted from the USGS National Atlas product "Shaded Relief of North America," shows elevations from below sea level (gray) to greater than 3,000 meters (white). The caption of figure 1 in chapter C provides additional details.

Foreword

The population of the arid and semiarid southwestern United States is growing at a rate roughly three times that of the Nation as a whole. With limited rainfall and surface-water resources, the area relies heavily on ground water for beneficial uses. The sustainability of ground-water resources, including the life-supporting springs, wetlands, and streams that are fed by natural ground-water discharge, depends on the often sensitive balance of replenishment and depletion.

Recharge is the input to ground-water systems, yet determining recharge has long remained one of the most difficult challenges in hydrologic science. Ground-water systems are seldom at steady state, particularly in dry regions where precipitation and temperature are highly variable. Water-resources planning in such regions relies not only on identifying the timing, locations, and amounts of recharge but also on understanding the interacting processes that modulate recharge. An improved understanding of recharge dynamics can enhance our ability to assess and potentially mitigate the susceptibility of ground-water resources to natural and anthropogenic climatic and vegetational shifts.

As part of the U.S. Geological Survey mission to provide reliable information for resource management, this volume represents a systematic attempt to improve understanding of ground-water recharge in the arid and semiarid southwestern United States. The studies contained herein represent a major step toward characterizing recharge processes and rates throughout this part of the Nation and toward advancing methods for conducting recharge assessments and related scientific research in similar regions around the world.

Robert M. Hirsch Associate Director for Water

Acknowledgments

The U.S. Geological Survey's (USGS) Office of Ground Water provided guidance and funding for the studies summarized herein. Support was also provided by the USGS National Research Program, National Water Quality Assessment Program, and Toxic Substances Hydrology Program. Additional support came from the Arizona Department of Water Resources (Rillito Creek study); the Mojave Water Agency, Victor Valley Water District, Joshua Basin Water District, and United States Marine Corps (Mojave Desert study); the Upper San Pedro Partnership and U.S. Bureau of Land Management (San Pedro tributaries study); and the Nevada Department of Conservation and Natural Resources (Trout Creek study).

Professor Andrew M. Binley's borehole geophysics study (reported in Appendix 2) was funded by the United Kingdom's Natural Environment Research Council under grant GR3/11500.

Many employees helped in the execution of studies and with report preparation and review. In accordance with USGS practice, these employees are not acknowledged by name. Nevertheless, their efforts were essential to the field, modeling, and laboratory aspects of this research and resulted in an improved final document. In addition to the efforts of the internal reviewers, Professor Ty P.A. Ferré (University of Arizona), James R. Harrill (USGS-retired), and Professor Kamini Singha (Pennsylvania State University) provided helpful suggestions and comments on individual sections of the document.

Volume Contents

Foreword	iii
Acknowledgments	iv

Chapters:

A.	Ground-Water Recharge in the Arid and Semiarid Southwestern United States — Climatic and Geologic Framework
D	Pagianal Analysis of Ground Water Pasharaa
D.	Regional Analysis of Ground-Water Recitarye
c	Dy Lorraine E. Finit and Alan E. Finit
υ.	By Jim Constantz, Kelsey S. Adams, and David A. Stonestrom
D.	Streamflow, Infiltration, and Ground-Water Recharge at Abo Arroyo, New Mexico
E.	Focused Ground-Water Recharge in the Amargosa Desert Basin
F.	Streamflow, Infiltration, and Recharge in Arroyo Hondo, New Mexico 137 By Stephanie J. Moore
G.	Ground-Water Recharge From Small Intermittent Streams in the Western Mojave Desert, California
	By John A. Izbicki, Russell U. Johnson, Justin Kulongoski, and Steven Predmore
H.	Focused Infiltration, Percolation, and Recharge at the Rillito Creek Investigation Site, Southeastern Arizona
	By John P. Hoffmann, Kyle W. Blasch, Donald R. Pool, Matthew A. Bailey, and James B. Callegary
I.	Infiltration and Recharge at Sand Hollow, an Upland Bedrock Basin in Southwestern Utah
J.	Ephemeral-Stream Channel and Basin-Floor Infiltration and Recharge in the Sierra Vista Subwatershed of the Upper San Pedro Basin, Southeastern Arizona
K.	Streambed Infiltration and Ground-Water Recharge From the Trout Creek Drainage, an Intermittent Tributary to the Humboldt River, North-Central Nevada

Appendicies:

1.	Thermal Methods for Investigating Ground-Water Recharge	353
	By Kyle W. Blasch, Jim Constantz, and David A. Stonestrom	
2.	Geophysical Methods for Investigating Ground-Water Recharge	377
	By Ty P.A. Ferré, Andrew M. Binley, Kyle W. Blasch, James B. Callegary, Steven M. Crawford, James B. Fink, Alan L. Flint, Lorraine E. Flint, John P. Hoffmann, John A. Izbicki, Marc T. Levitt, Donald R. Pool, and Bridget R. Scanlon	

Conversion Factors and Datums

Multiply	Ву	To obtain
	Length	
millimeter (mm)	3.93701	hundreth of an inch (1/100 in)
centimeter (cm)	0.393701	inch (in)
meter (m)	39.3701	inch (in)
meter (m)	3.28084	foot (ft)
kilometer (km)	0.621371	mile (mi)
	Area	
square meter (m²)	10.76391	square foot (ft²)
hectare (ha)	2.47104	acre (acre)
square kilometer (km²)	247.104	acre (acre)
square kilometer (km²)	0.386102	square mile (mi ²)
	Volume	
cubic centimeter (cm³)	0.0610237	cubic inch (in ³)
liter (L)	0.264172	gallon (gal)
cubic meter (m ³)	264.172	gallon (gal)
cubic hectometer (hm ³)	810.710	acre foot (acre-ft)
million cubic meters (Mm ³)	810.710	acre foot (acre-ft)
	Mass	
milligram (mg)	0.0154327	grain avoirdunois (gr)
aram (a)	0.0352740	ounce avoirdunois (oz)
kiloaram (ka)	2 20462	nound avoirdupois (b)
kilografii (kg)	Density	
aram per cubic centimeter (a/cm ³)	0 578037	ounce per cubic inch (oz/in ³)
megagram per cubic meter (Mg/m ³)	62 4280	pound per cubic foot (lb/ft ³)
	Rate or flux density	
millimeter per second (mm/s)	0.0393701	inch per second (in/s)
millimeter per vear (mm/vr)	0.0393701	inch per vear (in/vr)
meter ner hour (m/hr)	3.28084	foot per hour (ft/hr)
meter per hour (m/hr)	78,7402	foot per day (ft/day)
meter per day (m/d)	3.28084	foot per day (ft/d)
meter per vear (m/vr)	3 28084	foot per vear (ft/vr)
liter per second (I/s)	15 8503	aellon per minute (ael/min)
cubic mater per second (m ³ /s)	35 3147	cubic foot per second (ft ³ /s)
cubic meter per second (m/s)	0 588578	cubic foot per second (ft^3/s)
aubie meter per finnute (m//inin)	35 3147	cubic foot per second (11/s)
cubic meter per day (m^3/d)	26/ 1721	cubic root per day (rt/u)
cubic meter per day (m/d)	204.1721	ganon per uay (gai/u)
cubic nectometer per year (nm ² /yr)	01U./1U 010 710	acre toot per year (acre-ft/yr)
Inimion cubic meters per year	010./10	acre toot per year (acre-ft/yr)
(101117) yr)		
motor por doy (m/d)	nyuraulic conductivity	foot por doy (ft/d)
meter per day (m/d)	0.20004	1001 per day (11/d)
hilemene (liDe)	Pressure	nound non once in the 1
KIIOPASCAI (KMA)	0.145038	pouna per square inch (psi)
megapascal (IVIPa)	9.86923	atmosphere (atm)

Conversion Factors and Datums—Continued

Multiply	Ву	To obtain
	Heat	
joule (J)	0.23885	calorie, international (cal)
	Volumetric heat capacity	
joule per cubic meter per degree	0.0037575	calorie per cubic foot per degree
Celsius (J/m³ °C)		Fahrenheit (cal/ft³°F)
	Thermal conductivity	
watt per meter per degree Celsius	0.040445	calorie per second per foot per
(W/m°C)		degree Fahrenheit (cal/s ft³ °F)
	Radioactivity	
becquerel per liter (Bq/L)	27.027	picocurie per liter (pCi/L)

Except as noted, horizontal coordinates refer to the North American Datum of 1927 (NAD 27).

Vertical coordinates refer to the North American Vertical Datum of 1988 (NAVD 88).

"Altitude" in this report refers to the vertical distance above the vertical datum.

Temperature in degrees Celsius (°C) can be converted to degrees Fahrenheit (°F) as follows: °F = (1.8 × °C) + 32

Concentration units for chemical constituents in water are milligrams of solute per liter of solution (mg/L), or micrograms of solute per liter of solution (μ g/L).

Specific-conductance units are microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25 °C).

