RECOVERY IMPLEMENTATION PRO # FISCAL YEAR 2007 ANNUAL BUDGET AND WORK PLAN *Approved:* 10-19-06 | San Juan RIP Biology Committee, Prop
Funding | oosed FY 07 | | | | | |--|----------------|--------------|----------|-------|--| | Title | Agency | Estimated Fu | | nding | | | | | Base | Capital | oth | | | Monitoring | | • | <u> </u> | | | | Sub-Adult/Adult Large Bodied Fish Comm. Monitoring | FWS, GJ | \$109,640 | | | | | YOY/Small Bodied Fish Monitoring | NMDGF | \$81,246 | | | | | Larval Colorado Pikeminnow Survey | UNM,NMDFG | \$68,851 | | | | | Larval Razorback Sucker Survey | UNM,NMDFG | \$62,514 | | | | | Specimen Curation/Identification | UNM | \$23,755 | | | | | Update and Maintenance of GIS Database | FWS | \$69,089 | | | | | Subtotal | | \$385,865 | | | | | | | | L | | | | Peer Review | | | • | | | | Peer Review | Bio/West | \$34,000 | | | | | Subtotal | | \$34,000 | | | | | | | | | | | | Research | | | | | | | Population Model Maintenance (Work Shop) | | \$10,000 | Subtotal | | \$10,000 | | | | | Recovery | | | | | | | Nonnative Species Control in the Upper San Juan River | FWS, Abq | \$158,520 | | | | | Nonnative Species Control in the Lower San Juan River | UDWR | \$171,277 | | | | | Razorback Sucker Augmentation and Monitoring | FWS, GJ | \$153,440 | | | | | Purchase of PIT Tags and Readers | BR | \$48,450 | | | | | Stocking of Fingerling Colorado Pikeminnow | FWS, GJ | \$22,428 | | | | | Colorado Pikeminnow Fingerling Production | FWS,
DNFHTC | \$84,798 | | | | | Razorback Sucker Production and Rearing | FWS,
DNFHTC | \$79,391 | | | | | Razor Back Augmentation Uvalde | FWS | \$61,616 | | | | | Operation of PNM Fish Passage Structure and NAPI Pond Management | Navajo GF | \$132,872 | | | | | | | | | | | | Subtotal | | \$912,792 | | | | | Biology Committee Total | | \$1,342,657 | | | | | | | | | | | | San Juan RIP All Activities, Propose Funding | ed FY 07 | | | | | | i ullullu | | | | | | | | <u> </u> | Base | Capital | 0 | |---|--------------------|--|-----------|-----| | Biology Committee | | T T | | | | Piology Committee Total (Ongoing Projects) | N . | ¢4 242 657 | | | | Biology Committee Total (Ongoing Projects) | | \$1,342,657 | | | | New 2007 Projects | | | | | | Long Term Channel Monitoring, Habitat Mapping,
H2O temp | RFP | \$270,000 | | | | Subtota | | \$270,000 | | | | Hydrology Committee | | | | | | Maintenance and Operation of Model | BR, Durango | \$88,920 | | | | Streamflow measurements | USGS | \$6,400 | | | | Subtota | | \$95,320 | | | | D. C. Fred March | | | | | | Program Coordination and Management | EMC 45 | #200 cool | ı | Φ.4 | | Program Management FWS Base Fund Management | FWS Abq
BR, SLC | \$209,686
\$131,487 | | \$1 | | Capital Projects Management | BR, SLC | φ131,40 <i>l</i> | \$68,300 | | | Capital Projects Management Capital Hogback Cana | | | \$250,000 | | | Subtota | | \$341,173 | \$318,300 | \$1 | | Cubicia | | 4041,170 | ψο το,οσο | Ψ | | SJ RIP Tota | | \$2,049,150 | \$318,300 | \$1 | | Actual Available Annual Base Funds | ; | \$2,275,873 | | | | Amount of remaining 2007 funds not obligated | | \$226,723 | | | | j | | | | | | | | | | | | Addition Projects Funded | | | | | | Addition Projects Funded Colorado Pikeminnow Survey amendment to Habitat Survey | RFP | \$50,000 | | | | Colorado Pikeminnow Survey amendment to
Habitat Survey
Navajo nation NAPI ponds equipment | RFP | \$20,000 | | | | Colorado Pikeminnow Survey amendment to
Habitat Survey
Navajo nation NAPI ponds equipment
Back Water Feasibility Assessment | RFP | \$20,000
\$30,000 | | | | Colorado Pikeminnow Survey amendment to Habitat Survey Navajo nation NAPI ponds equipment Back Water Feasibility Assessment PNM Maintenance PNM weir | RFP | \$20,000
\$30,000
\$25,000 | | | | Colorado Pikeminnow Survey amendment to Habitat Survey Navajo nation NAPI ponds equipment Back Water Feasibility Assessment PNM Maintenance PNM weir Rafts, electrofishing gear | RFP | \$20,000
\$30,000
\$25,000
\$100,000 | | | | Colorado Pikeminnow Survey amendment to Habitat Survey Navajo nation NAPI ponds equipment Back Water Feasibility Assessment PNM Maintenance PNM weir Rafts, electrofishing gear LRP Completion | | \$20,000
\$30,000
\$25,000
\$100,000
\$30,000 | | | | Colorado Pikeminnow Survey amendment to Habitat Survey Navajo nation NAPI ponds equipment Back Water Feasibility Assessment PNM Maintenance PNM weir Rafts, electrofishing gear LRP Completion Tota | | \$20,000
\$30,000
\$25,000
\$100,000
\$30,000
\$255,000 | | | | Colorado Pikeminnow Survey amendment to Habitat Survey Navajo nation NAPI ponds equipment Back Water Feasibility Assessment PNM Maintenance PNM weir Rafts, electrofishing gear LRP Completion | | \$20,000
\$30,000
\$25,000
\$100,000
\$30,000 | | | | Colorado Pikeminnow Survey amendment to Habitat Survey Navajo nation NAPI ponds equipment Back Water Feasibility Assessment PNM Maintenance PNM weir Rafts, electrofishing gear LRP Completion Tota | | \$20,000
\$30,000
\$25,000
\$100,000
\$30,000
\$255,000 | | | | Colorado Pikeminnow Survey amendment to Habitat Survey Navajo nation NAPI ponds equipment Back Water Feasibility Assessment PNM Maintenance PNM weir Rafts, electrofishing gear LRP Completion Tota Balance Remaining | | \$20,000
\$30,000
\$25,000
\$100,000
\$30,000
\$255,000 | | | | Colorado Pikeminnow Survey amendment to Habitat Survey Navajo nation NAPI ponds equipment Back Water Feasibility Assessment PNM Maintenance PNM weir Rafts, electrofishing gear LRP Completion Tota Balance Remaining | | \$20,000
\$30,000
\$25,000
\$100,000
\$30,000
\$255,000 | | | Sub-Adult & Adult Large-Bodied Fish Community Monitoring (a.k.a. Adult/Juvenile Fish Community Monitoring) Fiscal Year 2007 Project Proposal 9 March 2006 Principal Investigators: Dale Ryden and Chuck McAda U. S. Fish and Wildlife Service, Colorado River Fishery Project # 764 Horizon Drive, Building B Grand Junction, Colorado 81506-3946 (970) 245-9319 dale_ryden@fws.gov and chuck_mcada@fws.gov #### **Background** Studies performed before 1991 documented a native San Juan River fish fauna of eight species, including Colorado pikeminnow (previously known as Colorado squawfish), razorback sucker, and roundtail chub and provided baseline information on distribution and abundance of native and introduced fish species in the San Juan River. These studies indicated that at least one of the two endangered fish species (i.e., Colorado pikeminnow) was still a viable member of the San Juan River fish community. Between 1991 and 1998, the Main Channel Fish Community Monitoring study (called "Adult Monitoring" for short), greatly refined our understanding of the San Juan River fish community. The main sampling technique employed during the 1991-1997 Adult Monitoring study was raftborne electrofishing, although radio telemetry was also heavily employed. Data collected during the 1991-1997 Adult Monitoring study provided information on specific habitat usage by rare fish species. In addition, data gathered during the 1991-1997 Adult Monitoring study aided in the selection of specific sites for detailed hydrologic measurements and larval drift sampling. Integration of 1991-1997 Adult Monitoring data with data from Colorado pikeminnow macrohabitat studies, razorback sucker experimental stocking studies, tributary and secondary channel studies, fish health studies, contaminants studies, habitat mapping studies, and non-native species interaction studies, helped provide a logical framework upon which to make flow recommendations for the reoperation of Navajo Reservoir that would benefit the San Juan River's endangered fishes (as well as other members of the native fish community). The Sub-Adult & Adult Large-Bodied Fish Community Monitoring study (also referred to as Adult Monitoring), which began in 1999, is a direct offshoot of the 1991-1997 Adult Monitoring study. This study is one of a suite of long-term monitoring efforts detailed in the San Juan River Monitoring Plan and Protocols (Propst et al. 2000) that are designed to help evaluate progress under the San Juan River Recovery Implementation Program (SJRIP) and the SJRIP's Long Range Plan. The current Adult Monitoring study incorporates essentially the same monitoring protocols as did its 1991-1997 precursor study (e.g., sampling via raft-borne electrofishing). This allows for data collected during the current Adult Monitoring study to be validly combined with and compared to the older 1991-1997 Adult Monitoring data. The combination of these two data sets provides statistically-powerful, long-term trend data through which the SJRIP's Biology Committee can view changes in the San Juan River's large-bodied fish community over time. This long-term trend data allows the SJRIP Biology Committee to evaluate whether various management actions being implemented are having the desired effects on the San Juan River fish community. In addition, Adult Monitoring has proven to be a highly effective tool for monitoring populations of both stocked razorback sucker and Colorado pikeminnow. # Relationship to the Recovery Program The need for a long-term, standardized monitoring program, of which the Adult Monitoring study is a part, is addressed in objective 5.7.1, a Milestone in the SJRIP Long Range Plan. Additionally, future monitoring will help determine fish community response to reoperation flows from Navajo Dam (Objective 5.2.10), as well as monitoring both wild and augmented populations
of Colorado pikeminnow and razorback sucker (Objective 5.3.9). Protocols for the Adult Monitoring study (as detailed in Propst et al. 2000) were developed under the guidance of and approved by the SJRIP Biology Committee. These criteria were accepted as final by the San Juan River Biology Committee on 31 March 2000. #### **Description of Study Area** The study area for Adult Monitoring extends from river mile (RM) 180.0 (just downstream of the Animas River confluence) in Farmington, New Mexico, downstream to RM 2.9 (Clay Hills Landing) just upstream of Lake Powell in Utah. ## **Objectives** - 1. Monitor the San Juan River's fish community, specifically the large-bodied fish species, to identify shifts in fish community structure, species relative abundance and distribution, and length/weight frequencies that are occurring over time. Determine whether these shifts in fish community parameters correspond to management actions that are being implemented by the SJRIP. These include (but may not be limited to) the following: - a. Reoperation of water releases from Navajo Reservoir - b. Mechanical removal of nonnative fishes - c. Modification or removal of instream water diversion structures - d. Augmentation efforts for both federally-listed endangered fish species—Colorado pikeminnow and razorback sucker - 2. Monitor population trends (e.g., distribution and abundance, habitat use, spawning and staging areas, growth rates, recruitment) of the rare San Juan River fish species Colorado pikeminnow, razorback sucker, and roundtail chub (both wild and stocked fish). - 3. Remove nonnative fish species which prey upon and may potentially compete with native fish species in the San Juan River. #### Methods Objectives 1-3: One Adult Monitoring trip will take place in the fall of 2007. This trip will sample the entire study area, from near the Animas River confluence in New Mexico (RM 180.0) to Clay Hills Landing in Utah (RM 2.9). Raft-borne electrofishing will be the primary sampling technique. Sampling will begin in the second to third week of September and will be concluded by the second to third week of October. Two oar-powered rafts, with one netter each, will electrofish in a continuous downstream fashion, with one raft on each shoreline. Netters will net all stunned fish that can possibly be collected, regardless of species or body size. Trailing or "chase" rafts will not be used to collect fish. No outboard motors will be used. Sampling crews will consist of approximately 8-9 people (4 for electrofishing, 2 for baggage rafts, and 2-3 for other research elements that are being done simultaneously with our sampling). Electrofishing will sample two out of every three miles (approximately 120 total sampled miles). All fish collected will be enumerated by species and life stage at the end of every sampled mile. Every fourth sampled mile (known as a "designated mile" or DM), all fish collected will be weighed and measured. All native fish collected will be returned alive to the river. All nonnative fish collected will be removed from the river. All nonnative predatory fishes (e.g. - walleye, striped bass, largemouth bass, smallmouth bass) collected will be weighed and measured, and may have stomach samples taken, before being removed from the river. Tag numbers, total length, and weight will be recorded on all recaptured, FLOY-tagged fish (both native and nonnative), as well as any rare fish collected. Colorado pikeminnow, razorback sucker, and roundtail chub greater than 200 mm TL will be implanted with PIT (Passive Integrated Transponder) tags. Notes will be kept on any parasites and/or abnormalities observed on collected fishes. Electrofishing will follow the methods set forth above and in the SJRIP's long-term monitoring plan (as detailed in Propst et al. 2000). Alternate sampling techniques (e.g., seining, trammel netting, backpack electrofishing, etc.) may be employed where suitable habitat is available or if low-water conditions preclude the use of raft-mounted electrofishing, at the principal investigator's discretion. The U.S. Fish and Wildlife Service will assume the lead responsibility for Adult Monitoring trips and other cooperating agencies will provide personnel and equipment as needed. Costs for cooperating agencies are included in this budget. ## **Products** An interim progress report for Adult Monitoring data collected during 2007 is scheduled to be available by 31 March 2008. The "draft final" of this interim progress report which incorporates comments received, is scheduled to be completed by 1 June 2008. DBASE files containing information on total catch and length/weight data gathered on Adult Monitoring trips will be submitted to the University of New Mexico's Museum of Southwestern Biology (Division of Fishes) for inclusion in the SJRIP's integrated database and web page by 31 March 2008. # **Qualifications of Personnel Included in the Budget** Principal Biologist (GS-12) -- Dale Ryden Holds a BS degree. Has 16 years experience performing fisheries research/management in the Colorado River Basin. Dale has been performing fisheries research/management in the San Juan River Basin for the last 15 years. Biological Technicians (GS-7) – Bio. Techs from USFWS-CRFP All hold at least a BS degree. Depending upon the individual, they have from 1-7 years experience performing fisheries research/management in the Colorado River Basin. Most have 1-3 years of experience performing fisheries research/management on the San Juan River. Project Leader (GS-14) -- Chuck McAda Holds an MS degree. Has 26 years experience performing fisheries research/management in the Colorado River Basin. Chuck is the current chairman of the San Juan River Recovery Implementation Program's Biology Committee. #### **Projected Duration of Project** The Adult Monitoring study began in 1991 (see Introduction for details). It has continued, annually, with a consistent sampling regime every year since that time. This has allowed for the compilation of one of the longest-running and most statistically powerful fisheries databases available to the SJRIP. The Adult Monitoring study was modified with just very slight changes (e.g., a reduction in sampling frequency from every RM to two out of every three RM's) when it was incorporated as an integral part of the long-term San Juan River Monitoring Plan and Protocols (Propst et al. 2000). This suite of long-term monitoring studies were initiated in 1999 and are scheduled to run through the termination of the San Juan River Recovery Implementation Program. ### **Literature Cited** Propst, D. L., S. P. Platania, D. W. Ryden, and R. L. Bliesner. 2000. San Juan River Monitoring Plan and Protocols. San Juan River Recovery Implementation Program; U. S. Fish and Wildlife Service, Albquerque, NM. 20 pp. + appendices. # YOY/Small Bodied Fish Monitoring Fiscal Year 2007 Project Proposal Principal Investigators: David L. Propst and Yvette Paroz Conservation Services Division New Mexico Department of Game and Fish One Wildlife Way, P.O. Box 25112 Santa Fe, NM 87504 (505 476-8103) dpropst@state.nm.us yparoz@state.nm.us # **Background** As set forth in Section 5.7 of the San Juan River Basin Recovery Implementation Program (SJRIP) Long-Range Plan, a long-term monitoring program "to identify changes in the endangered and other native species populations, status, distributions and habitat conditions" was to be developed by the SJRIP Biology Committee. The ichthyofaunal monitoring portion of the San Juan River Monitoring Plan and Protocols (Propst, et al., 2000) was divided into four primary areas, larval fish drift sampling, larval fish seining, young-of-year/small bodied fishes, and subadult and adult/large-bodied fishes. The portion of the San Juan River to be monitored extends from the confluence of the Animas and San Juan rivers (Farmington) to Lake Powell (Clay Hills Crossing). The purposes of small-bodied fish monitoring are to document occurrence and mesohabitat of young-of year Colorado pikeminnow, razorback sucker, and roundtail chub; characterize the fish assemblages of primary channel shoreline and near-shoreline mesohabitats, secondary channels, and backwaters; and document and assess changes in the abundance of common native and nonnative small-bodied fishes (including age 0 flannelmouth sucker, bluehead sucker, common carp, and channel catfish). The following work proposal for 2007 is to conduct the young-ofyear/small-bodied fishes monitoring effort per protocols set forth in the San Juan River Monitoring Plan and Protocols (SJRMPP). Beginning in 2003, specimens collected from each mesohabitat were preserved separately, data were recorded in database by mesohabitat, and annual reporting included summary of species occurrences by mesohabitat. During 2004, 2005, and 2006 autumn monitoring, sampling of primary channel near-shore riffle and run mesohabitats was accomplished, on a trial basis, by using a backpack electrofisher to stun fishes and capture them in a bag seine. This sampling was done every six miles in Geomorphic reaches 6 through 3. In addition to accomplishing work (field, laboratory, data analyses, and report writing) specific to the young-of-year/small-bodied fish monitoring effort, NMGF personnel participate in telemetry studies, native-nonnative interactions studies (upper and lower San Juan), Colorado pikeminnow augmentation evaluation, and larval fish sampling of the San Juan River Basin Recovery Implementation Program. This work and budgeting for NMGF participation in these activities is included with Scopes of Work for each activity and submitted by Principal Investigator(s) for each. ## **Study Area** The study area for YOY/small bodied fish monitoring extends from river mile RM 180.0 (Animas River confluence) in Farmington, New Mexico, downstream to RM 2.9 (Clay Hills Crossing), just above Lake Powell in Utah. # **Collections** Specimens collected will be inspected to determine
if any rare fishes (Colorado pikeminnow, roundtail chub, and razorback sucker) are present in a sample or collection. All identifiable rare fish and all large-bodied native fish (i.e., flannelmouth and bluehead suckers)>150 mm TL will be released. Juveniles of common large-bodied native fishes are typically measured (total length) the in the field and released. Specimens from each sampled mesohabitat will be preserved separately. All other specimens will be preserved in 10% formalin and returned to the New Mexico Department of Game and Fish Laboratory for identification, enumeration, and measurement (total length). After processing, all specimens will be accessioned to the UNM Museum of Southwestern Biology, Fish Section. # **Objectives** The objectives of this portion of the San Juan River monitoring effort are to document primary channel shoreline and near-shoreline mesohabitat, secondary channel, and backwater use by age-0 Colorado pikeminnow, razorback sucker, and roundtail chub; obtain data that will aid in the evaluation of the responses (e.g., reproduction, recruitment, and growth) of native and nonnative fishes to different flow regimes and other management actions (e.g., impediment modification); track trends in species populations (e.g., abundance and relative condition); and characterize patterns of mesohabitat use by common native and nonnative small-bodied fishes (including age 0 flannelmouth sucker, bluehead sucker, common carp, and channel catfish). The data will also be available to all researchers and may be used in conjunction with data obtained in other studies to evaluate future management activities. #### **Methods** The study reach (Farmington to Clay Hills Crossing) includes geomorphic reaches 6 through 1, with Reach 1 being the most downstream. Primary channel sampling will occur every third mile within the study reaches. Sampling of near-shoreline primary channel mesohabitats with electrofishing gear will occur every sixth mile. To the extent possible, all secondary channels will be sampled. Secondary channels are defined as channels having less than 25% of the volume of flow at the time of sampling and are at least 300 m in length. Inflow at the top of a channel is not necessary for it to be classified as a secondary channel. Young-of-year/small-bodies fish monitoring will occur in conjunction with the large-bodied fish monitoring effort. Fieldwork will be accomplished in autumn (late-September through mid-October) and involves one foray through each of three macro-reaches (Farmington-Shiprock, Shiprock-Four Corners, and Four Corners-Cray Hills Crossing). In addition to structured primary channel sampling, all backwaters and embayments ($>25 \text{ m}^2$) associated with the primary channel within each third-mile will be sampled. Large backwaters (ca. 250 m²) outside designated sample-miles will be sampled, if possible. Sample sites within secondary channels will be a sufficient distance from inflow to and outflow from the secondary channel to minimize primary channel faunal and physiochemical influences. Secondary channel sample sites will be at least 100 and not more than 200 m in length. Each mesohabitats (e.g., pool, riffle, riffle-eddy, and shoal) within the site will be sampled in rough proportion to its availability within the site; typically, at least five mesohabitat types will be sampled in each secondary channel with inflow. Mesohabitat of secondary channels lacking inflow is typically only pool. Each mesohabitat will be sampled separately with 3.2 x. 1.6 m (4 mm mesh) drag seines. Each secondary channel sampling effort will be a minimum of 5 seine hauls (= 5 mesohabitats). The number of seine hauls, area (m²) of seined portion of each mesohabitat, and types of mesohabitats sampled will be recorded on standard field forms. Specimens collected in each mesohabitat will be inspected to determine if any rare fishes (Colorado pikeminnow, roundtail chub, and razorback sucker) are present in the seine. If a rare fish is captured, it will be identified, total length (±1.0 mm) and mass (±1.0g) determined, and released. Any rare fish >150 mm TL will be scanned to determine presence of a PIT tag. If none is present, the specimen will be implanted with a PIT tag having a unique alphanumeric code. All pertinent data (i.e., total and standard lengths, mass, PIT tag code, mesohabitat, water depth, substrate, and cover) on rare fish captured will be recorded. All large-bodied native fish (i.e., flannelmouth and bluehead suckers) will be weighted, measured, and released. All other specimens will be preserved separately by mesohabitat in 10% formalin and returned to the New Mexico Department of Game and Fish Laboratory for identification, enumeration, and measurement (total length). Field collection number, habitat number, and river mile will be recorded on a water-proof label and placed in each specimen container. Location of site (UTM) will be determined with a GPS unit. Identification of all retained rare fishes will be confirmed by personnel of the Museum of Southwestern Biology. Preserved specimens will be accessioned to the New Mexico Department of Game and Fish Collection of Fishes or the University of New Mexico Museum Southwestern Biology. Within each third-mile, shoreline habitats of the primary channel will be sampled. At each designated mile, all mesohabitats (e.g., riffle, debris pool, and shoal) along 200 m (near center of mile) of shoreline will be sampled. All mesohabitats present will be sampled in rough proportion to their availability within the site. Regardless of number of mesohabitats present at a primary channel site, at least 5 seine hauls will be made with a drag seine (3.2 x 1.6 m, 4mm mesh). Shoreline (river right or left) sampled will be dependent upon accessibility of the shoreline. Where more than one shoreline is accessible (and can be seined efficiently), that with greater habitat diversity/complexity will be sampled. Alternatively, primary channel island shorelines may be sampled. Procedures for specimen processing, retention, and accounting will be same as for secondary channels. In addition to seining primary channel shoreline mesohabitats, a primary channel near-shore riffle, nearshore run, and near-shore shoal (if present) will be sampled with backpack electrofishing gear every sixth mile (in conjunction with primary channel seine sampling). Electrofishing samples will not be made downstream of RM 67; downstream of RM 67, primary channel habitats are generally not suitable for sampling with backpack electrofishers. Where feasible, area electrofished will be enclosed on three sides with seines. Regardless of enclosure, or not, a 20 bag seine will be used to capture stunned fish. If lateral seines are used to form enclosure, one 30 ft seine (1/4 in mesh) will be held parallel to shore. The shoreline will serve as parallel "fence" to lateral seine, if feasible. If not, a second seine will be placed to provide parallel fence. A 20 ft bag seine (1/4 in panel mesh and 1/8 in bag mesh) will be placed across downstream opening. A backpack shocker will be used to stun and drive fish into bag seine. One electrofishing pass will be made within each enclosure. Fish captured in each enclosure will be identified, enumerated, and measured (except nonnatives < 100 mm TL, which will be preserved). Location (UTM) will be determined with a GPS unit. Specimen and habitat data will be obtained and recorded as required for secondary channel seine sampling. All retained specimens from primary channel sampling will be preserved by mesohabitat. All retained specimens will be accessioned to the New Mexico Department of Game and Fish Collection of Fishes or the University of New Mexico Museum Southwestern Biology. Backwaters and embayments (>25 m²) not located within structured primary channel sampling sites, but within each designated mile, also will be sampled. During periods of low flow, secondary channel mouths frequently function as backwaters or embayments. In this monitoring effort, secondary channel mouths without surface inflow from upstream will be treated as backwater/embayment habitat. The maximum number of backwaters or embayments sampled will be one per mile. Three seine hauls typically will be made in each backwater or embayment sampled. One seine will be across mouth of backwater (or embayment), one in middle, and one near head of backwater (or embayment). Specimens collected in each seine haul will be preserved separately. All specimens collected, except rare fishes, will be retained and returned to the laboratory for identification and enumeration. All rare fish will be measured and released; those >150 mm will be PIT tagged. Data collection and recording of relevant information (including GPS determined location) will be the same as for secondary and primary channels. Sampling effort for all seine collections will be number fish/unit area. Electrofishing sampling effort will be number fish/unit area and number fish/electrofishing minute. Ambient temperature and water quality data (water temperature, dissolved oxygen, conductivity, and salinity) will be measured in each sampled secondary channel, at primary channel sites, and in backwaters/embayments. Secondary channel water quality data will be obtained a sufficient distance from the inflow to the secondary channel to minimize primary channel influences. All water quality data for each sample will be recorded on standard field forms. # **Products** Data collected during the 2007 monitoring effort will be summarized by geomorphic reach. Minimally, the annual report will report density per species (number/m²) per geomorphic reach (primary and secondary channels and backwaters) and rare fishes and the mesohabitats in which each was found. A comparison of off-shore enclosure versus shoreline mesohabitat sampling catch (species and catch-per-unit effort) and a preliminary evaluation of each method will be
presented. Community-comparison metrics, such as the Shannon-Wiener Index and Morisita's Index of Diversity, will be used for longitudinal and annual comparisons. River discharge data (Four Corners gage) will be used to assess the effect of discharge volume on species density estimates. All data obtained during 2006 monitoring activities will be electronically recorded in format determined by the SJRIP Biology Committee. The annual report (including electronic database) will be submitted to the SJRIP Biology Committed by 31 March 2008. #### **Literature Cited** Propst, D.L., S. P. Platania, D.W. Ryden, and R. Bliesner. 2000. San Juan River Monitoring Plan and Protocols. San Juan Basin Recovery Implementation Program. U.S. Fish and Wildlife Service, Albuquerque, NM. # San Juan River Larval Colorado Pikeminnow Survey Fiscal Year 2007 Project Proposal Principal Investigators: Michael A. Farrington, and W. Howard Brandenburg, Division of Fishes, Museum of Southwestern Biology University of New Mexico Albuquerque, NM 87131 (505) 277-3218 mporter@unm.edu (505) 277-3218 whburg@unm.edu and Co-principal Investigator: David L. Propst New Mexico Department of Game and Fish Conservation Services Division 1 Wildlife Way, Santa Fe, NM 87505 (505) 476-8103 dpropst@state.nm.us # **Background** Beginning in spring 1995, personnel from the Division of Fishes, Museum of Southwestern Biology (MSB), at the University of New Mexico assumed responsibility for the San Juan River larval fish passive drift-netting study. This project, formerly conducted by the Utah Division of Wildlife Resources, continued with only minor changes in sampling protocol. Data collected from this research activity provided several discrete types of information on the fishes of the San Juan River. Data that can be obtained on the endangered fishes of the river include determining approximate spawning period, identifying approximate location of spawning sites, and assessing effects of annual hydrology (and temperature) on their reproductive activities. Similar data could also be obtained for other members of the ichthyofaunal community and contrasted with previously drift-net sampling to assess the effects of that year's flow regime on fish reproduction. Samples collected during this research program were and will continue to be processed and curated by Fish Division personnel at the University of New Mexico. Between 1993-2004, a total of eight larval Colorado pikeminnow have been collected. The two YOY Colorado pikeminnow collected in 1993 (at Mexican Hat) were the same length (9.2 mm TL; MSB 18098, 18099) and were taken on consecutive days in late July (26-27). From these two individuals, we determined the date of spawning to be about 8-9 July 1995. Two larval Colorado pikeminnow were taken at Mexican Hat during the 1995 larval fish passive drift-netting study. The first specimen, 9.5 mm TL mesolarvae (MSB 26187) was taken between 2114-2310 hours on 2 August 1995. The next morning (3 August 1995) between 0531-0800 hours, a second Colorado pikeminnow, 9.0 mm TL mesolarva (MSB 26191) was collected. The similar size and developmental stage of these two individuals, in combination with the fact that the two fish were collected within 12 hours of each other, strongly suggested that they were cohorts from a spawning event. From these two individuals, a spawning date (between 15-17 July 1995) was determined. A single YOY Colorado pikeminnow was collected in 1996. That specimen was an 8.6 mm TL yolked-mesolarva taken on 2 August 1996 in a drift net at The Mixer sampling locality (RM 128.0). The 1996 back-calculated spawning date for Colorado pikeminnow (18 July 1996) was similar to that predicted in 1995 despite considerable differences in spring peak discharge (1995 - 12,100 cfs; 1996 - 3,450 cfs) and total annual discharge. The 1997-2000 drift netting samples did not yield any Colorado pikeminnow. A single larval Colorado pikeminnow was collected in 2001 at The Mixer sampling locality (RM 128.0). The specimen was collected on 1 August 2001, and was a 8.5mm TL yolked mesolarva. From this specimen a spawning date (between 17-18) July was determined. Two larval Colorado pikeminnow were collected in 2004. The first individual was collected on 22 July 2004 at river mile 46.3, while the second was collected at river mile 17.0 on 26 July 2004. The first individual was a 14.2mm TL metalarva, with the second being a 18.1mm TL metalarva. Spawning dates for these two individuals was determined to be 24 and 25 June 2004 respectively. Summary of larval and YOY Colorado pikeminnow collected in the San Juan River during Table 1. larval drift-netting (1993-2004) and back-calculated dates of spawning. | Field | MSB | Number | Total | Date | Date | River | Sample | |-----------|---------|----------|--------|-----------|-----------|-------|---------------| | Number | Catalog | of | Length | Collecte | Spawned | Mile | Method | | | Number | Specimen | C | d | 1 | | | | | | S | | | • | | | | MH72693-2 | 18098 | 1 | 9.2 | 26 Jul 93 | 08 Jul 93 | 53.0 | drift netting | | MH72793-2 | 18099 | 1 | 9.2 | 27 Jul 93 | 09 Jul 93 | 53.0 | drift netting | | JPS95-205 | 26187 | 1 | 9.2 | 02 Aug 95 | 15 Jul 95 | 53.0 | drift netting | | JPS95-207 | 26191 | 1 | 9.0 | 03 Aug 95 | 17 Jul 95 | 53.0 | drift netting | | WHB96-037 | 29717 | 1 | 8.6 | 02 Aug 96 | 18 Jul 96 | 128.0 | drift netting | | FC01-054 | 50194 | 1 | 8.5 | 01 Aug 01 | 17 Jul 01 | 128.0 | drift netting | | MAF04-046 | 53090 | 1 | 14.2 | 22 Jul 04 | 24 Jun 04 | 46.3 | larval seine | | MAF04-059 | 53130 | 1 | 18.1 | 26 Jul 04 | 25 Jun 04 | 17.0 | larval seine | | TOTAL | | 8 | | | | | | The specimen collected in 2001 represents the first larval progeny of non-stocked (ie, wild) Colorado pikeminnow collected in the drift since August 1996. In 2001, fewer than 1,000 specimens were collected during a year replete with intense summer rainstorm events. These flushing flows transported considerable detritus into the river and overwhelmed drift collecting gear with debris. This excessive amount of debris required over a year of processing before fish could be separated from all samples and identified. The sampling conducted in 1999 occurred during an extremely low flow year, which was reflected in the collection of a very limited number of drifting larval fish (only 84 at Four Corners and 79 at Mexican Hat). Conversely, 2000 was a more "normal" flow year resulting in the collection of over 2,100 specimens (1,370 at Four Corners and 768 at Mexican Hat). The limited number of wild adult San Juan River Colorado pikeminnow (versus stocked individuals) is reflected in the extremely low catch rate of larval Colorado pikeminnow. However, numerous adult and sub-adult pikeminnow have been stocked into the San Juan River over the last ten years in an effort to augment the diminished wild population. The Colorado pikeminnow augmentation plan calls for continued stocking efforts in the San Juan River over the next 10 years. The Biology Research Team expects, as was documented with stocked razorback sucker, that reproduction among stocked pikeminnow will occur and can be documented through the sampling of larval fish. There are no means to differentiate between larval progeny of wild and stocked larval Colorado pikeminnow. As the number of adult (reproductively mature) Colorado pikeminnow in the San Juan River increases (due to both stocking and recruitment), so does the probability of elevated levels of spawning by this species. The San Juan River Biology Committee charged us with exploring the possibility of expanding the sampling effort for larval Colorado pikeminnow in fiscal year 2003. One means of accomplishing this task was to include an additional sampling site (increasing from two to three sites). Another suggestion for FY 2003 Colorado pikeminnow studies was to perform targeted sampling for Colorado pikeminnow similar to that being performed for larval razorback sucker. Collections targeting larval Colorado pikeminnow could be accomplished either by expanding the duration of the current larval razorback sucker survey (April-June) or through development of a discrete (new) project. These and other items were considered and evaluated during the February 2002 San Juan Biology Committee meeting. The team recommended the immediate expansion of the larval razorback sucker survey (April-June) to encompass the months of June, July, and August with seining efforts to target sampling for Colorado pikeminnow. This change in sampling protocol required deviation from the FY 2002 Scope of Work and was initiated July 2002 (using FY 2002 funds). Approval for this change in sampling was acquired at the 19-21 February 2002 San Juan Biology Committee meeting in Farmington, New Mexico. This new sampling protocol resulted in the collection of over 95,000 specimens for the Colorado pikeminnow larval survey in 2002, and over 70,000 specimens in 2003. Nevertheless, no larval Colorado pikeminnow were collected in either 2002 or 2003. Sampling during 2004 yielded over 145,000 specimens, including two larval Colorado pikeminnow. These were the first larval Colorado pikeminnow collected using the new sampling protocol approved by the San Juan Biology Committee in February 2002. The objectives of this specific monitoring effort are identified in the aforementioned document (1a, 3a, 3b) and listed below. #### **Study Area** The principal sampling area for this study will be the San Juan River between Cudei Diversion Dam (RM 141.5) and the Clay Hills boat landing (RM 2.9) just above Lake Powell Utah. This study will include acquiring collections in reaches of the San Juan River under the jurisdiction of the National Park Service. # **Objectives** - 1. Determine the relative annual reproductive success of Colorado pikeminnow (1a). - 2. Provide annual summaries of monitoring results (3a). - 3. Provide detailed analysis of data collected to determine progress towards
endangered species recovery in three years and thence every five years (3b). - 4. Provide comparative analysis of the reproductive success of the San Juan River fishes. - 5. Attempt to validate presumed spawning period of Colorado pikeminnow. # Methods Sampling for Colorado pikeminnow larvae will be conducted in the San Juan River between Cudei (RM 141.5) and Clay Hills (RM 2.9) from early July through early September using sampling techniques that will provide sufficient numbers of fish necessary to meet study objectives. Access to the river will be gained through the use of inflatable rafts. Sampling efforts for larval fish will be concentrated in low velocity habitats. Samples in those habitats will be collected with small mesh seines. Meso-habitat type, length, maximum and minimum depths, water clarity, water quality, and substrate will be recorded for each sampling locality. Digital photos as well as GPS coordinates will also be taken at each of the sampling localities. For each sampling locality, river mile will be determined to the nearest tenth of a mile using the San Juan River Basin Recovery Implementation Program 2003 Standardized Map Set. For seine samples, the length and number of hauls made will be recorded. Catch per unit effort for seine samples will be recorded as the number of fish per $100m^2$. Catch rates will be compared across and within reach by species and temporally. Specimens will be distinguished and compared by residence status (native versus non-native) and catch rate will be over-lain with the annual hydrograph. #### **Products** Draft reports for the 2007 larval sampling activities and collection efforts will be prepared and distributed by 31 March 2008 to the San Juan River Biology Committee for review. Upon receipt of written comments, that report will be finalization and disseminated to members of the San Juan River Biology Committee by 1 June 2008. Fish collected from those studies will be curated in the Division of Fishes, Museum of Southwestern Biology (MSB), Department of Biology, at the University of New Mexico. Original field notes will be retained in the Division of Fishes and collection information will be electronically stored in a permanent MSB database program where the geo-referenced collection information will be maintained in a consistent database and GIS format. These data and any maps generated from them will be available to the San Juan River Biology Committee via hard-copy reports and electronically. Electronic copies of the field and collection data will be transferred to the San Juan River database manager following the successful protocol previously employed. # San Juan River Larval Razorback Sucker Survey Fiscal Year 2007 Project Proposal Principal Investigators: W. Howard Brandenburg and Michael A. Farrington Division of Fishes - Museum of Southwestern Biology University of New Mexico Albuquerque, NM 87131 (505) 277-3218 whburg@unm.edu (505) 277-6005 <u>mporter@unm.edu</u> and Principal Investigators: David L. Propst New Mexico Department of Game and Fish Conservation Services Division One Wildlife Way, Santa Fe, NM 87505 (505) 476-8103 dpropst@state.nm.us #### **Background** In 1994, the first series of razorback sucker (n=672) were stocked in the San Juan River between Bluff, Utah and Hogback, New Mexico. Mean length and mass of those individuals, at the time of stocking, was about 400 mm TL and 710 g, respectively. In 1995, 13 recaptured razorback sucker were tuberculate males and six of those individuals were ripe. Four-recaptured 1995-razorback sucker were determined to be female but, unlike the males, none were sexually mature. In their 1995 report of activities, Ryden and Pfeifer (1996) suggested that the majority of the experimentally stocked San Juan River razorback sucker reached sexual maturity in 1995-96 and that spawning of these individuals might begin in the following two years. The UNM-NMGF larval fish drift study, the primary focus of which was to determine spawning period, identify approximate location of spawning sites, and assess the effects of annual hydrology (and temperature) on Colorado pikeminnow reproductive activities, provided similar information for other members of the ichthyofaunal community. At the November 1996 San Juan River Biology Committee integration meeting, it was suggested that a portion of the UNM-led larval fish drift study be expanded to allow for documentation of razorback sucker spawning. However, because reproduction by razorback sucker (March-May) occurred considerably earlier than Colorado pikeminnow (June-July), separate investigations of spawning periodicity and magnitude were necessary for each species. The most significant potential difference identified between the two studies, besides temporal differences in spawning, was that we were attempting to provide the first documentation of reproduction by individuals (razorback sucker) whose spawning potential had not been determined. Sampling for larval razorback sucker was being conducted with no assurance that the stocked population of adult razorback sucker would spawn in this system. Conversely, we knew from previous studies that Colorado pikeminnow reproduction had and was still occurring in the San Juan River and, because of this certainty, our larval fish sampling efforts for this minnow could be different than those for razorback sucker. Numerous Upper Colorado River basin researchers had reported light-traps as one of the best means of collecting larval razorback sucker, we elected to use that sampling procedure during the first year (calendar year 1997) of sampling. The only previous San Juan River fish investigation that had employed light-traps was in 1994-1995 (conducted by the National Park Service) near the San Juan River-Lake Powell confluence. The 1994 sampling effort produced an extremely large number of larval fish (ca. 25,000) from a modest number of samples (n=20), of which over 99% were red shiner. Similar sampling in 1995 yielded 25,455 specimens in 47 light-traps samples and as in 1994, red shiner numerically dominated the catch. No Colorado pikeminnow or razorback sucker were taken in the 1994-1995 light-trap sampling efforts. During the 1997 razorback sucker larval fish survey, light-traps were set nightly in low-velocity habitats between Aneth and Mexican Hat from late March through mid-June 1997. The traps were distributed at dusk and retrieved about four hours later. Fish taken in those samples were preserved in the field. Sampling success during the 1997 razorback sucker larval fish study was poor. While there were over 200 light-trap sets, those sampling efforts produced only 297 fish. Of those, about 200 (66%) were larval suckers (either flannelmouth sucker or bluehead sucker). Larval razorback sucker were not present in the 1997 sampling survey. While there were probably several factors to account for the poor light trap catch rate, a principal factor was the limited access to suitable habitats. Light traps are most effective when set in habitats with little or no water velocity. During our driving survey of riverine habitats in the region (March 1997), we identified numerous locations that appeared to be suitable sites for light trap sampling. However, we found that high flow in the San Juan River eliminated virtually all previously identified low velocity habitats. Further driving reconnaissance failed to yield additional locations to set light traps. We determined that being limited to specific collecting sites was not the most efficient means of collecting large numbers of individuals. In 1998 we modified our sampling technique to allow for the sampling of a greater portion of the San Juan River and the collection of a significantly larger number of larval fish over a wider reach of the river. We conducted sampling forays (n=6) at approximately bi-weekly intervals from 17 April (first trip - no larval suckers) to 6 June 1998 between the Four Corners drift-net station (RM 128) and Bluff (RM 80) and used both active (seining) and passive (drift-netting, light-traps) sampling techniques to collect larval fish. The primary sampling method was a fine mesh larval seine (in 1998, we collected more larval sucker in a single seine sample than in all of the 1997 light trap samples). Drift-nets were set periodically to determine if larval sucker comprised a significant portion of the drift community while light-traps were set adjacent to campsites if appropriate aquatic mesohabitats could be located. An inflatable raft was used to traverse this river reach and allowed us the opportunity to sample habitats that were either not formerly accessible or observable under the constraints of the previous sampling protocol. The 1998 sampling protocol resulted in 183 collections containing ca. 13,000 specimens between river miles 68.7 and 126.1. The majority of these individuals (n=9,960) were larval catostomids. This 43-fold increase in number of specimens, as compared with 1997, provided substantially better resolution of spawning periodicity of the sucker community. In addition, the 1998 samples produced enough individuals for us to determine, with a high degree of confidence, if razorback sucker reproduction occurred in the San Juan River during that period. None of the aforementioned information was obtainable from 1997 light-trap samples. In 1998, two larval razorback sucker were collected. These specimens provide verification of spawning by the re-established population. In 1999, the study area was expanded to include the San Juan River from upstream of Four Corners (River Mile 128) to near Clay Hills (River Mile 4.9). The scope of work for that year included at least one collecting effort between Sand Island and Clay Hills. A total of 174 fish collections were made in 1999 producing over 20,000 fishes. Over 37% of these individuals were sucker larvae (n=7,635). Seven larval razorback sucker were collected in 1999 between 4 May
and 14 June. The seven larvae (razorback sucker) were taken in backwaters or low velocity habitats located between river miles 96.2 and 11.5. Almost half (n=3) of these individuals were in the newly expanded reach. There was no substantive change in the sampling protocol or methodology for this project in 2000. A total of 210 collections were made between 4 April and 23 June 2000. These collections yielded 11,316 specimens of which 7,587 (67%) were larval sucker. There was a marked increase in the number of larval razorback sucker taken in 2000 as compared with 1999 and 1998. Identifications of individuals revealed 129 larval razorback sucker in 24 separate collections. Individuals were collected in low velocity habitats between river miles 124.8 and 8.0. The lowest-most sampling location that yielded larval razorback sucker (RM 8.1) produced over 85 individuals in a single sample (26 May 2000). The uppermost collection of larval razorback sucker was less than four river miles downstream of the upper boundary of the study area on 1 June 2000. In 2001 the study area was expanded once more to include an additional 14 miles upstream, to Cudei NM. There was a substantial increase in the number of fish collected in 2001. A total of 206 collections were made between 10 April 2001 and 14 June 2001 yielding 95,628 specimens. The majority of these fishes were represented by non-native larval cyprinids accounting for 94% of the total number of fish collected in 2001. Catostomids comprised only 8.4% of the total catch. There was a decline in the overall catch of larval razorback in 2001 (n=50). The decreased number in 2001 compared with 2000 (n=129) is within the normal boundaries of expected sample variation. Razorback sucker were collected at 15 sites, two of which produced more than 10 individuals, and for the first time since 1999, larval razorback (n=2) were collected in light-traps. The results in 2002 produced informative and interesting data. A total of 152 fish collections were made between river mile 141.6 and 2.8 from 15 April 2002- 29 June 2002. A total of 813 larval and juvenile razorback sucker was collected during 2002, the largest number taken to date. Twenty collections contained >10 individual razorback sucker and five samples contained >50 individuals. In 2002 razorback sucker exhibited a more uniform longitudinal distribution compared to previous years. The most upstream larval razorback sucker collection was RM 134.5 (Reach 5) while the most downstream site of collection was Clay Hills, Utah (RM 2.8). Reaches 3 and 4 produced the greatest number of razorback sucker (n=312 and n=320 respectively). Much larger juveniles were collected in 2002 than in previous years. The largest juvenile razorback sucker collected was 54.4 mm TL as compared to 28.8 mm TL for the largest specimen collected prior to 2002. Juvenile razorback sucker comprised 15.9% of all razorback sucker collected in 2002 and were taken throughout the study area. Due to the continued documentation and increased numbers of razorback sucker larvae collected over the previous years, the study design was altered in 2003. Rather than breaking the river up into upper and lower reaches as was done in previous years, the entire study area was sampled each trip and data analyzed according to the accepted San Juan River Reaches. This change facilitated integration of the larval surveys with that of the other monitoring activities (i.e., small bodied fish, adult monitoring, habitat, etc). The 2003 larval razorback sucker survey produced a total of 208 fish collections and a total effort of 7,329.5 m² in which 41,181 specimens were collected. Catostomids comprised 15.2% (n=6,275) of the total fish catch. For the sixth consecutive year razorback sucker reproduction was documented on the San Juan River in 2003. Although there was a 41.9% decrease in larval razorback sucker collected in 2003 (n= 472) compared with 2002 (n= 813), there were 60.2% more individuals collected in 2003 than 1998 through 2001 combined. The distribution of razorback sucker in 2003 was reduced from previous years to reaches 3, 2, and 1, with reaches 3 and 1 producing the greatest numbers of individuals (42.4% and 40.2%, respectively). The methods and study area remained the same in 2004 as in 2003. A total of 182 collections were made from 19 April and 15 June 2004 with a total effort of 6,645.3 m^2 . Catostomids comprised 43.7% of the total catch in 2004 (n=6,393). For the first time since this projects inception, bluehead sucker was the dominant sucker species and comprised the second highest CPUE in 2004 (49.7 fish per $100\mathrm{m}^2$). A total of 41 larval razorback sucker were collected in 2004. This represents a substantial decline in the number of larval razorback sucker compared to previous years. There was a wider spatial distribution of larval razorback sucker in 2004 (RM 130.1-8.0) compared with 2003. Juvenile razorbacks sucker were not observed in the 2004 collections. To date the results of this investigation have provided seven consecutive years of unequivocal documentation of reproduction in the San Juan River by razorback sucker that have been stocked as part of the San Juan River Basin Recovery Implementation Program. The sampling process has proven an extremely effective means of monitoring the spatial and temporal range of individuals in this ontogenetic stage of razorback sucker. This work is being conducted as required by the San Juan River Basin Recovery Implementation Program Monitoring Plan and Protocol dated 31 March 2000. The objectives of this specific monitoring effort are identified in the aforementioned document (1a, 3a, 3b) and listed below. #### **Study Area** The principal sampling area for this study will be the San Juan River between Cudei (near RM 141.5) and the Clay Hills boat landing (ca. RM 2.9) just above Lake Powell in Utah. A spring 2000 collection of larval razorback sucker at RM 124.8 indicated the need to expand the upstream boundary of the study area (formerly RM 128). Beginning in 2001, sampling included an additional 14 river miles of the San Juan River (the reach between Cudei and RM 128). As in all post 1999 sampling efforts, the study will include making collections in reaches of the San Juan River under the jurisdiction of the National Park Service. #### **Objectives** - 1. Determine the spawning periodicity of catostomids between mid-April and early June and examine potential correlation with temperature and discharge. - 2. Attempt to validate presumed spawning period of San Juan River catostomids using data from the razorback sucker and Colorado pikeminnow larval fish studies. - 3. Determine if reproduction by razorback sucker occurred in the San Juan River (upstream of Mexican Hat, UT). - 4. Provide comparative analysis of the reproductive effort of catostomids. - 5. Determine the relative annual reproductive success of razorback sucker (1a). - 6. Provide annual summaries of monitoring results (3a). - 7. Provide detailed analysis of data collected to determine progress towards endangered species recovery in three years and thence every five years (3b). #### Methods Sampling for razorback sucker larvae will be conducted in the San Juan River between Cudei (RM 141.5) and Clay Hills (RM 2.9) from early April through early June using sampling techniques that will provide sufficient number of individual fish necessary to meet study objectives. GPS readings and digital photos, and water quality (dissolved oxygen, conductivity, temperature, and salinity) will be taken at each sampling locality, and researchers will record UTM coordinates and zone corresponding with each field number as agreed upon at the May, 2001 meeting of the San Juan River Biological Committee. Access to the river shall be acquired through the use of an inflatable raft. The tentative sampling schedule will be once a month between April and June and each sampling effort will encompass the entire study area (Cudei to Clay Hills). As previous San Juan River investigations have clearly demonstrated, larval fish most frequently occur and are most abundant in low velocity habitats (i.e., backwaters, isolated pools, and secondary channels), sampling efforts will be concentrated in these mesohabitats. Small mesh seines (1 m x 1 m x 0.8 mm) will be the primary means of collecting larval fish from low-velocity habitats. Meso-habitat type, length, maximum depth, and substrate will be recorded for each sample. For seine samples, the length of each seine haul will be determined in addition to the number of seine hauls per site. All retained specimens will be placed in plastic bags containing a solution of 5% buffered formalin and a tag inscribed with unique alphanumeric code that will also be recorded on the field data sheet. River Mile, standardized for the San Juan River Basin Recovery Implementation Program, will be the primary descriptor used to designate the location of sampling sites. In addition Global Positioning System (GPS) readings will be taken at each sampling locality as stipulated at the May 2001 meeting of the San Juan River Biological Committee. Universal Transverse Mercator (UTM) coordinates and zone will be determined with a Garmin Navigation Geographic Positioning System Instrument for each sampling locality and recorded on a field data sheet whose unique alpha-numeric code matches that of the tag in the retained sample. Preserved collections will be returned to the laboratory where they will be sorted, specimens identified to species, enumerated, measured (minimum and maximum size [mm SL] for each species at each site), transferred to 70% ethyl alcohol, and catalogued in the Division of Fishes of the Museum of Southwestern Biology (MSB) at the University of New Mexico (UNM). Specimens whose species-specific identity is dubious or merit additional verification will be forwarded to Darrel E. Snyder (Larval Fish Laboratory, Colorado State
University) for review. Catch per unit effort (CPUE), for each seine sample, will be determined as the number of fish per 100 m² of water sampled. The annual 2007 razorback sucker survey report will present, in summarized tabular form, fish catch rate (per species) for the entire study period as well by river reach. In addition, catch rate between and within reaches will be compared temporally. Detailed collection information (i.e., catch methodology, species composition of the sample, mesohabitat description, physical-chemical habitat characteristics, length and developmental stage of razorback sucker specimens) will be provided for samples that contain larval razorback sucker. Community-comparison metrics, such as the Shannon-Wiener Index and Morisita's Index of Diversity, will be used for longitudinal and annual comparisons. Specimens will be distinguished and compared by residence status (native versus non-native) and catch rate over-laid with the annual hydrograph. Mean daily discharge data during the study period will be obtained from U.S. Geological Survey Gauge at Four Corners (#09371010), Colorado. The river discharge data will be used to assess the effect of discharge volume on species density estimates. #### **Products** A draft report for the 2007 larval razorback sucker sampling activities (combined with 2007 larval Colorado pikeminnow sampling activities) will be prepared and distributed to the San Juan River Biology Committee for review by 31 March 2008. Upon receipt of written comments, that report will be finalized and disseminated to members of the San Juan River Biology Committee by 1 June 2008. Fish collected from this study will be curated in the Division of Fishes, Museum of Southwestern Biology (MSB), Department of Biology, at the University of New Mexico. Original field notes will be retained in the Division of Fishes and collection information will be electronically stored in a permanent MSB database program where the geo-referenced collection information will be maintained in a consistent database and GIS format. These data and any maps generated from them will be available to the San Juan River Biology Committee via hard-copy reports and electronically. Electronic copies of the field and collection data will be transferred to the San Juan River database manager. # San Juan River Specimen Curation Fiscal Year 2007 Project Proposal Principal Investigators: Alexandra M. Snyder and Thomas F. Turner Division of Fishes - Museum of Southwestern Biology University of New Mexico Albuquerque, NM 87131 (505) 277-6005 amsnyder@unm.edu turnert@unm.edu #### **Background** Personnel from the Division of Fishes, Museum of Southwestern Biology (MSB), at the University of New Mexico are responsible for two inter-related programs on the San Juan River. The Fish Division is the repository for specimens collected and retained by researchers with the San Juan River Recovery Implementation Program. Fish taken under these programs are initially sorted by the principal investigator, held until they have submitted their yearly-progress report, and then received by MSB personnel. The collection is accessioned, specimens transferred from formalin to alcohol, identifications verified, individuals enumerated, length ranges recorded (largest and smallest specimen in a collection), collection data verified and transferred to wet labels, and incorporated into a database. It is standard policy at all major Natural History museums (i.e., Smithsonian Institution, Carnegie Museum, University of Michigan Museum of Zoology) that, prior to incorporation into the collection, all specimens be examined by qualified personnel (in that particular field of study) in an effort to verify the original identification and collection information. This system provides a final check (safeguard mechanism) to minimize the likelihood of misidentification of San Juan River fish species with particular attention on Colorado pikeminnow and razorback sucker. Any changes in species identifications that are detected are noted and returned to the principal investigator along with the entire data set (listing of collection locality, collectors, date, original field number, species, number of specimens, length ranges, and museum catalog number). In addition to performing duties associated with collections curation, we are also responsible for complete processing (sorting, identifying, counting, curating, and reporting) of selected San Juan River collections (Colorado pikeminnow larval fish sampling and razorback sucker larval fish sampling). The samples generated by the aforementioned studies resulted in the collection of over 20,000 larval fish during 1999, 15,000 during 2000, and 96,000 during 2001. In 1999 and 2001, we processed almost 200,000 larval and juvenile fishes collected by the New Mexico Department of Game and Fish and Utah Division of Wildlife Resources. As in the past, deviations in the identifications of those samples have been noted and forwarded to the principal investigators. The number of fish processed by the MSB Division of Fishes under the San Juan River Basin Recovery Program can fluctuate greatly between years. One reason for vacillation in number of specimens is that samples sent to MSB by non-MSB researchers are not processed until almost one year following collection. This lag between time of collection and MSB processing is necessary as individual researchers must perform preliminary sorting and require the specimens for preparation of their reports. Other factors such as annual variability of sampling conditions and initiation of new or completion of old projects has resulted in marked changes in the number of samples and specimens (As occurred between 2001 and 2002 when drift sampling for larval Colorado pikeminnow was eliminated in favor of seine sampling). Discussion of this issue with the San Juan River Biology Committee resulted in the recommendation that the annual budget for the San Juan River Specimen Curation and Larval Fish Identification reflect an "average" year of sample processing. Almost all MSB-San Juan River Basin archived samples are the result of collections made under the San Juan River Basin Recovery Implementation Program Monitoring Plan and Protocol. The Biology Committee recognized that some years would require more effort from MSB than budgeted while other years might not require the same high level of activity. A relatively stable budget allowed for uninterrupted processing of samples and was sufficient to allow the processing of backlogged samples generated during years of exceptionally high fish capture. To date, over 1,000,000 specimens (along with associated locality and ecological data) have been curated into the MSB Division of Fish Collection and are available to researchers. #### Study Area This project does not involve the collection of specimens but instead the processing and curation of samples gathered by the different research components of the San Juan River Research program. The collective sampling area for other researchers will be the San Juan River between the outfall of Navajo Reservoir and the Clay Hills boat landing (RM 2.9) just above Lake Powell in Utah. #### **Objectives** - 1. Provide a permanent repository for San Juan River fish collections, field notes, and associated data - 2. Verify species identifications, enumerate specimens, and report to principal investigators - 3. Maintain a GIS reference database for current material - 4. Assist principal investigators with secondary collection sorting and identifications as time and resources permit #### Methods The primary task to be completed under this project is the processing and curation of fish specimens generated by research projects executed under the auspices of the San Juan River Basin Recovery Implementation Program. Samples are transferred to the Division of Fishes, by the principal investigator of a project, once that individual has completed their work and prepared the necessary reports. (This usually infers a lag-time of one year between collection of specimens and transference to the Division of Fishes). Collections are matched with the appropriate data-sheet, transferred from formalin to alcohol, stored in museum quality jars, re-identified, counted, measured (range), labeled, and catalogued into the permanent MSB Fish Division collection and placed on the shelves in the light and temperature controlled collection room. All data associated with the specimens are entered into the database of the Division of Fishes and subsequently copied to the San Juan River database. In addition to the aforementioned responsibilities, the Division of Fishes is available and has frequently assisted principal investigators by taking on the added responsibility of processing (a limited number) of their unsorted collections (without requesting additional funding). Specimens are sorted, identified, counted, measured, catalogued, and data submitted to the principal investigator for inclusion in reports. In cases where the amount of backlogged material in the possession of the principal investigator was beyond our capabilities, supplemental funds have been sought so that additional personnel can be hired (under the supervision of the permanent staff) to process the excess material. #### **Products** A draft report of the 2006 San Juan River specimen curation and larval fish identification sampling activities will be prepared and distributed by 31 March 2007 to the San Juan River Biology Committee for review. Upon receipt of written comments, that report will be finalized and disseminated to members of the San Juan River Biology Committee by 1 June 2006. Fish collected from this study will be curated in the Division of Fishes, Museum of Southwestern Biology (MSB), Department of Biology, at the University of New Mexico. Original field notes will be retained in the Division of Fishes and collection information will be
electronically stored in a permanent MSB database program. Electronic copies of the field and collection data will be transferred to the San Juan River database manager following the successful protocol previously employed. # Update and Maintenance of San Juan River Basin Recovery Implementation Program Database Fiscal Year 2007 Project Proposal Principal Investigators: Kevin Winter and Larry Baca NMESFO - U.S. Fish and Wildlife Service 2105 Osuna NE Albuquerque, New Mexico 87113 kevin_winter@fws.gov (505) 761-4723 larry_baca@fws.gov (505) 761-4740 # **Background** San Juan River research efforts that preceded the establishment of the San Juan River Basin Recovery Implementation Program (SJRRIP), in combination with those that have subsequently resulted from that program, form the basis of the suite of decisions already made and those to be made regarding biologic and hydrologic issues. An immense amount of information has been gathered through the San Juan River research activities that have been conducted over the last 15 years. Most of this information has been synthesized and made available in the form of reports or publications. For example, in 2003 and 2004 researchers consolidated and analyzed data from their individual long-term research projects and presented it as an integrated report of five years of research (1999-2003). Likewise, the flow recommendation report released in 1999 represented a synthesis between biological, hydrological, and habitat research activates. Preparation of the integration report was difficult due to the absence of an updated, standardized, and easily accessible SJRBRIP database. An updated SJRBRIP database has not been distributed to the researchers since 1998, the last time Keller-Bliesner Engineering, LLC (previously the organization responsible for maintaining the database until the end of 2002, when the project was transferred to UNM) produced and distributed a CD containing the database. A project was initiated to develop and maintain a web-based system. This project has been terminated. The purpose of this proposal is to fund an effort to update, maintain and distribute the SJRRIP's Database. In addition, continuation of funds to cover the cost of maintenance and distribution of the database are requested. # **Study Area** This project will encompass the San Juan River Basin downstream of Navajo Reservoir but may ultimately be expanded to include the entire San Juan River Basin. #### **Objectives** - 1. Maintain and incorporate researchers' data into the San Juan River Recovery Implementation Program's GIS Database. - 2. Maintain, perform Quality Control, annually update, and distribute current San Juan River Recovery Implementation Program GIS researcher database using appropriate format. - 3. Establish electronic archives of the aforementioned database at the ultimate repository for this information (U.S. Fish and Wildlife Service Region 2 Office, Albuquerque, New Mexico). - 1. Generate for distribution and maintain a standardized set of hard-copy aerial photos with river mile, 10th of mile, and appropriate landmarks connoted. # Methods 1. Update and Maintain GIS Database. In 2006, the existing GIS Database, will be transferred to USFWS-NMESFO. The database and data will be inspected and a list of tasks developed for updating the system for the SJRRIP. In consultation and coordination with Keller-Bliesner, the NMESFO will integrate existing and new data into the existing San Juan River Recovery Implementation Program's Database. Data will be checked for Quality Control and updated as necessary. - 2. <u>Contact and coordinate</u> with appropriate personnel in the Upper Colorado River Basin and Glen Canyon Environmental Studies offices to investigate the feasibility of linkage of the proposed San Juan River Recovery Implementation Database with other regional fish databases. - 3. Generate and Maintain standardized and customized maps. Appropriate base layers, including Digital Orthophoto Quarter Quadrangles (DOQQs) will be obtained and additional layers, including 10th of mile designations will be generated in order to provide researchers with a standardized set of hard copy aerial photo maps for use in the field. These standardized maps will allow for seamless integration of field data with the GIS database. In addition, at researchers' request, customized maps will be generated for use in reports and presentations. #### **Products** The database, once updated, will be disseminated to all committee members and be made available via a password-protected project ITP site. The database will reside with NMESFO -Region 2 (Albuquerque) of the U.S. Fish and Wildlife Service, the designated repository for the data. # Peer Review 2007 Fiscal Year 2007 Project Proposal Principal Investigator: Paul B. Holden BIO-WEST, Inc., Logan, Utah Jicarilla-Apache Nation (435) 752-4202 pholden@bio-west.com #### **Background** A Peer Review Panel was established in 1997 to assist the SJRIP with reports and plans for future studies. The four members of the panel participated in meetings in 1997 where the flow recommendations were discussed, and continued involvement in the flow recommendation report process by commenting on the pre-draft report and attending a Biology Committee meeting to discuss the pre-draft report in 1998. They also met with the Biology Committee in 1999 to discuss the draft flow recommendation report that the Biology Committee sent to the Coordination Committee for review. In addition, in 1999 the Peer Review Panel reviewed the draft Monitoring Plan, and initial drafts of the final research reports. In 2000 and 2001, the Peer Review Panel reviewed and commented on the final research reports, the long term monitoring plan, and the Program Evaluation Report. In 2002, the Peer Review Panel was changed somewhat. Drs. Ron Ryel and David Galat were retained from the existing panel and two new members were added. Dr. John Pitlick from the University of Colorado was selected as the geomorphologist and Dr. Stephen Ross from the University of Southern Mississippi was selected as the fishery ecologist after a lengthy selection process. During 2003 the Peer Review Panel participated in subcommittee and Biology Committee meetings related to integration of 1999-2002 monitoring data, as well as attending Biology Committee meetings related to the Work Plan. Dr. Galat resigned from the panel and the Biology Committee selected Dr. Wayne Hubert, U.S. Geological Survey University of Wyoming, to fill that position as a river aquatic ecologist for the Panel. Dr. Hubert resigned in late 2003 and Dr. Mel Warren was selected to replace him on the panel. During 2004-2006 the Peer Review panel remained involved in the integration effort with Dr. Ryel taking a larger role in conducting statistical analyses of fishery data. The committee also became involved in reviewing scopes of work for new projects that were solicited by the Bureau of Reclamation and continued their review of annual research reports. This proposal provides for funding for the Peer Review Panel activities during 2007. It is anticipated that the Panel will meet with the Biology Committee at two meetings during the year, the February, 2007 summary meeting and another meeting typically in May to discuss Scopes of Work for 2008. #### Goal The goal of peer review is to provide additional scientific oversight over San Juan River Recovery Implementation Program technical studies and reporting. The Peer Review Panel will work with the Biology Committee to produce scientific credible documents and will assist the Biology Committee in maintaining a highly scientific direction to the Program. # **Methods** The Peer Review Panel will meet with the Biology Committee in 2007 two times to review monitoring and research progress and to discuss scopes of work for 2008. They will provide verbal input during the meetings and provide written reviews of the progress of the Program. Their reviews will be provided to the Biology Committee through Dr. Paul Holden in letter form, or on the Biology Committee list server, and through discussions at the Biology Committee meetings. Biology Committee researchers may call Peer Review Panel members to ask for advice, and Peer Review Panel members may call Biology Committee researchers if they have questions concerning Program activities. All correspondence between the Biology Committee and the Peer Review Panel will be coordinated through Dr. Paul Holden. #### **Products** Peer review participation at 2 Biology Committee meeting, letter or verbal reports from each peer reviewer. **Primary Contact**: Dr. Paul Holden BIO/WEST, Inc. 1063 W. 1400 N. Logan, UT 84321 Phone:435-752-4202 FAX:435-752-0507 e-mail: pholden@bio-west.com #### **Personnel:** Dr. John Pitlik Department of Geology Univeristy of Colorado Boulder, CO 80309-0260 Phone: 303-492-5906 email: pitlick@spot.colorado.edu Dr. Stephen Ross Curator Emeritus of Fishes, Department of Biology and Museum of Southwestern Biology MSC 03-2020 University of New Mexico Albuquerque, NM 87131-0001 office email: stross1@unm.edu office phone: 505 277-3893 home email: syross@centurytel.nethome phone: 970 264-0158 Dr. Mel Warren, Jr. Team Leader and Research Biologist Center for Bottomland Hardwoods Research Southern Research Station, USDA Forest Service 1000 Front Street Oxford, MS 38655 Phone: 662-234-2744, ext. 246 FAX: 662-234-8318 email: mwarren01@fs.fed.us Dr. Ron Ryel Department of Forest, Range, and Wildlife Utah State University 5230 Old Main Hill Logan, UT 84322-5230 Phone: 435-797-8119 FAX: 435-797-3796 email: ron.ryel@usu.edu # Non-native Species Monitoring and Control in the Upper San Juan River FY 2007 Workplan Proposal Principal Investigators – Jason E. Davis, Cody M. Robertson and James E. Brooks U.S. Fish and Wildlife Service, New Mexico Fishery Resources Office 3800
Commons N.E. Albuquerque, NM 87109 (505) 342-9900 <u>Jason E Davis@fws.gov</u> <u>Cody Robertson@fws.gov</u> <u>Jim Brooks@fws.gov</u> ## **Background** From 1991 to 1997, non-native species studies on the San Juan River focused on the identification of impacts to native fishes. Research characterized non-native species distribution and abundance in main channel habitats, seasonal movements of both channel catfish *Ictalurus punctatus* and common carp *Cyprinus carpio*, food habits of non-native predators, overlap of resource use between native and non-native fish species, and the relation of these findings to differing flow regimes. Channel catfish were the most abundant large bodied non-native fish in main channel collections (Ryden, 2000). Data showed channel catfish occupied a variety of main channel habitats, exhibited localized movement, and fish > 450 millimeters total length (TL) preyed upon native fishes (Brooks et al., 2000). Beginning in 1999, emphasis on removal of channel catfish and common carp was placed on a portion of Reach 6, PNM Weir to Hogback Diversion (River Mile [RM] 166.6 to 159.0) and was designed to address efficacy of mechanical removal and minimization of the reproductive effort in the upper portion of these species ranges. This sub-reach was selected based on studies conducted from 1991 to 1997 indicating low numbers of both channel catfish and common carp above PNM Weir and channel catfish collected within this reach were almost exclusively large adult fish, > 300 mm (Ryden, 2000). Intensive non-native removal completed its fifth consecutive year in 2005. Removal efforts have focused on the PNM Weir to Hogback Diversion Section but were expanded to include the Hogback to Shiprock Section in 2003. This downstream expansion in effort was a result of frequently low catch rates (CPUE), < 5.0 channel catfish/hour of electrofishing, from PNM to Hogback during removal trips and an associated high abundance, > 40.0 channel catfish/hour of electrofishing downstream of Hogback Diversion. Channel catfish CPUE throughout intensive removal reaches has varied from 2001-2005 and between Sections. Mark/recapture data suggest that these flucuations in CPUE may be a result of channel catfish emigration from areas adjacent to intensive removal reaches. Although an overall reduction in CPUE has not been observed since 2001, increases in juvenile fish and associated decreases in adult fish have been observed (Davis, 2005). Juvenile catfish comprised < 1% of the total catch in 1999 and > 45% in 2004. Fish > 500 mm comprised < 52.6% of the catch in 1999 and < 52.6% in 2004. A shift to smaller sized channel catfish is important to the control of this species due to attainment of sexual maturity and increased reproductive potential of larger sizes. Helms (1975) found that length was positively correlated with fecundity. In this study, 1 of 10 channel catfish were sexually mature at 330 mm TL, producing about 4,500 eggs compared to 5 of 10 at 380 mm TL, producing over 41,000 eggs. These shifts to smaller individuals coupled with declines in seasonal abundance throughout this reach may have long term effects to the channel catfish populations in adjacent downstream reaches. In addition, common carp CPUE from PNM Weir to Hogback Diversion have decreased among 2001-2005 comparisons. No apparent decrease in size class distribution of common carp has been noticed with the majority of the catch consisting of individuals > 400 mm TL. Supplementing intensive removal trips are the opportunistic removal of non-native fish during juvenile/adult fish monitoring trips (RM's 147.9-0.00). Monitoring trips in 2004 showed riverwide declines in CPUE for both channel catfish and common carp (Davis, 2005 and Ryden, personal communication). Although these trends cannot be attributed exclusively to removal efforts, the observed declines in CPUE of non-native fishes is encouraging. Declining shifts in channel catfish size structure, most notably in Reaches 4-2 (RM 131.0-17.0), may be effecting overall recruitment in the San Juan River. Since 2002, elevation at Lake Powell has been decreasing resulting in the formation of a waterfall near Piute Farms, RM -0.50 (Jackson, 2004). Researchers with the SJRIP have hypothesized that the formation of this waterfall may be limiting movement by non-native fishes from Lake Powell into the lower reaches of the San Juan River. This hypothesis is supported by the lack of striped bass *Morone saxatilis* and walleye *Sander vitreus* in various electrofishing collections since 2002 (Jackson 2005; Ryden 2004; Davis 2005). This waterfall may also be limiting upstream movement by channel catfish and common carp. For the past several years the Utah Division of Wildlife Resources have focused non-native removal efforts in the lower San Juan River (RM 52.7 - 0.00) while U.S. Fish and Wildlife Service efforts have focused on 18.7 river miles in the upper portions of critical habitat for both Colorado pikeminnow *Ptychocheilus lucius* and razorback sucker *Xyrauchen texanus*. Current conditions including declining trends in riverwide CPUE for both species, a shift to smaller less fecund individuals, and the presence of a waterfall preventing upstream movement of non-native fish provide researchers with a unique opportunity to expand removal efforts. If removal efforts continue, while a high percentage of the population are small less fecund individuals, a continued decrease in overall abundance can be expected. Expansion of removal to areas where exploitation occurs only once or twice a year (RM's 147.9 - 52.7) may be critical in accomplishing significant riverwide declines in distribution and abundance of these two non-native fish. Expansion of removal efforts will include sampling trips to be conducted from Shiprock to Montezuma Creek, Utah (RM 147.9 – 93.6), when deemed feasible. These trips will only be conducted when channel catfish and common carp CPUE are at levels from PNM to Shiprock Bridge that researchers feel a shift in effort would be beneficial to overall goals. The addition of this stretch will add 54.3 river miles of removal to the 69.7 river miles where intensive removal currently takes place. Given the popularity of channel catfish as a sport fish and the concerns expressed by the public regarding disposal of removed fish, a program to transplant removed fish to isolated fishing impoundments within the Basin was initiated in 1998 and continues through the present. Channel catfish are transported by the New Mexico Department of Game and Fish or the Navajo Nation to closed impoundments. This effort is strongly supported by the State of New Mexico and the local public and expansion of the program is highly recommended. The USFWS has a long standing working relationship with Native American tribes in assisting in various fisheries related issues including non-native recreational fishing programs on tribal lands. The Service has long provided recreational game fish to tribal partners throughout the Southwest with emphasis on rainbow trout, *Oncorhyncus mykiss*, and channel catfish. Many hatchery programs which supplied these fish for tribal use have suffered cutbacks or complete closures causing many tribal programs to suffer. The Southwest Tribal Fisheries Commission (SWTFC) was formed to restore and enhance tribal sport fishery resources and may provide additional support for distribution of removed channel catfish. ## **Objectives** - 1. Continue data collection and mechanical removal of large bodied non-native fish during main channel and rare fish monitoring efforts. - 2. Evaluate distribution and abundance patterns of non-native species to determine effects of mechanical removal. - 3. Characterize distribution and abundance of endangered fish in the upper reaches of the San Juan River - 4. Expand intensive removal efforts downstream to Montezuma Creek, Utah (RM 93.6) while still maintaining sufficient effort to maintain current accomplishments within upstream sub-reaches. - 5. Continue and expand transplantation of channel catfish to closed impoundments isolated from the San Juan River with the assistance of New Mexico Department of Game and Fish, Navajo Nation Fish and Wildlife Service and the SWTFC. #### Methods Mechanical removal will continue during the fall main channel monitoring efforts. During these sampling efforts, all non-native species collected will be sacrificed and data recorded for species identification and enumeration, ontogenetic stage (young-of-year, sub-adult, adult) at non-designated miles, and standard and total lengths and weight at designated miles. Data will be summarized by geomorphic reach and sampling will occur two out of every three river miles. Data for recaptured channel catfish and common carp tagged during all studies will be recorded in the field and integrated into existing databases for movement and abundance. Catch per unit effort (CPUE) will be calculated as number of fish collected per hour electrofishing time and be calculated for the total collection and for each species. Analyses will include comparison of 1998-2006 data summaries. Initial sampling efforts, minimum of one trip, will be conducted from PNM Weir to Hogback Diversion to monitor and evaluate prior year's effort and to remove fish that remain or have moved upstream of Hogback Diversion. If catch rates remain low (< 5.0 catfish/hour of electrofishing) during initial sampling, removal efforts will shift to the adjacent downstream reach. After high spring flows sampling efforts again will be shifted to the PNM Weir to Hogback Diversion reach to address any upstream emigration that occurred. Removal from PNM Weir to Shiprock will be conducted by two electrofishing rafts and one support raft. Captured channel catfish will be measured (nearest 1 mm) for standard and total lengths, weighed (nearest 1 g), and, if not sacrificed for study purposes, transported by hatchery truck to
isolated recreational angling impoundments. All other nonnative species sampled during these efforts will be sacrificed and appropriate data recorded for location, length/weight, and, for lacustrine predators, stomach contents. Total and individual daily catch rates will be calculated to evaluate efforts of short-term suppression efforts to locally deplete non-native species numbers. Fish collected with the support raft will be kept separate from fish collected by electrofishing rafts and will be analyzed both independently and combined to determine if significant differences in CPUE exist. If lack of significant differences exists, support raft fish will be included in CPUE effort comparisons among trips and years. In addition, removal trips will be tentatively conducted from Shiprock to Montezuma Creek, Utah. Trips throughout this Section will occur when researchers determine CPUE in upstream reaches are at low enough levels to warrant a shift in effort. These trips will follow similar protocol to removal efforts conducted by UDWR in the lower portion of the San Juan River. Two shocking rafts will sample the entire reach with a support raft following to collect fish not captured by the electrofishing rafts. Fish will be processed, weighed and measured, every three river miles. If rare species are collected, sampling will be immediately halted and the fish will be weighed, measured, checked for the presence of a radio transmitter or PIT tag and will be released within the general area of collection. Notes on the condition of the fish and location of collection (RM) will be recorded. In addition, both catch rate and length/weight relationship data on native fish (flannelmouth sucker *Catostomus latipinnis* and bluehead sucker *Catostomus discobolus*) collected during fall adult monitoring and spring razorback sucker trips will be analyzed to determine effects non-native removal has had on distribution and abundance of these species. Tentative intensive removal trips by Section (FY 2007)**: PNM to Hogback- minimum of two trips Hogback to Shiprock- 3-6 trips Shiprock to Montezuma Creek- minimum of 2 trips Total # of trips- 10 trips in FY 2007 ** trips by Section will be determined by total numbers collected in uppermost reaches #### **Deliverables** An electronic data file will be provided for inclusion in the centralized database by 31 March 2008. A draft summary report detailing findings will be submitted to the San Juan River Implementation Program, Biology Committee, by 31 March 2008. Revisions will be completed and a final annual report will be submitted by 1 June 2008. #### **Literature Cited** Brooks, J.E., M.J. Buntjer, and J.R. Smith. 2000. Non-native species interactions: Management implications to aid in recovery of the Colorado pikeminnow *Ptychocheilus lucius* and razorback sucker *Xyrauchen texanus* in the San Juan River, CO-NM-UT. San Juan River Recovery Implementation Program, U.S. Fish and Wildlife Service, Albuquerque, NM. Davis, J.E.. 2005. Non-native species monitoring and control in the Upper San Juan River, New Mexico 2004 (FINAL REPORT). Progress Report for the San Juan River Recovery Implementation Program, U.S. Fish and Wildlife Service, Albuquerque, NM. Jackson, J.A. 2005. Nonnative control in the Lower San Juan River 2004. Interim Progress Report (Draft). San Juan River Recovery Implementation Program, Albuquerque, NM. Jackson, J.A. 2004. Nonnative control in the Lower San Juan River 2003. Interim Progress Report (Draft). San Juan River Recovery Implementation Program, Albuquerque, NM. Helms, D.R. 1975. Variations in the abundance of channel catfish year classes in the upper Mississippi River and causative factors. Iowa Conservation Commission, Iowa Fisheries Technical Series 75-1, Des Moines. Ryden, D.W. 2004. Long term monitoring of sub-adult and adult large-bodied fishes in the San Juan River: 2003 (Draft). San Juan River Recovery Implementation Program, Albuquerque, NM. Ryden, D.W. 2000. Adult fish community monitoring on the San Juan River, 1991-1997. San Juan River Recovery Implementation Program, U.S. Fish and Wildlife Service, Albuquerque, NM. # Nonnative Species Control in the Lower San Juan River Fiscal Year 2007 Project Proposal Principal Investigator: Julie A. Jackson Utah Division of Wildlife Resources, Moab Field Station 1165 S. Hwy 191- Suite 4, Moab, Utah 84532 (435) 259-3782 juliejackson@utah.gov # **Background** The lower San Juan River is particularly important in the recovery of the Colorado pikeminnow (Ptychocheilus lucius) and razorback sucker (Xyrauchen texanus) since it contains typical nursery habitat similar to what is present on the Green and Colorado rivers. Within the past five years, collections of endangered fish have been increasing in this section of river. The largest collection of razorback sucker larvae in 2002 was from Reach 2 (RM 21.2; Brandenburg et al. 2003) and the largest single collection of razorback sucker larvae in 2003 came from a backwater in Reach 1 at RM 8.1 (Brandenburg et al. 2004). Additionally, adult razorback sucker were found congregating around Slickhorn Rapid (RM 17.7) in the spring of 2002, apparently using this area for spawning (Jackson 2003) Collections of adult Colorado pikeminnow in the San Juan River have been extremely rare. No wild adults have been collected since 2000 (Ryden 2003). From 2002 to 2004, Colorado pikeminnow adults and subadults, presumably from the 1996-1997 stocking efforts, have been found using the lower canyon (Reaches 1 and 2) of the San Juan River in the spring and summer (Jackson 2005). In 2003 and 2004, young-of-year Colorado pikeminnow stocked in the fall of the previous year near Farmington, NM, were also found using the lower portions of the San Juan River (Golden et al. 2005). One of the most encouraging findings from 2004 was the collection of two wild spawned Colorado pikeminnow larvae at RM 46.3 and 18.1 (Brandenburg et al. 2005). Nonnative fish species remain prevalent in the lower San Juan River. Channel catfish (*Ictalurus punctatus*) and common carp (*Cyprinus carpio*) are typically the most abundant fish species collected during fall monitoring in Reaches 1 and 2 (Ryden 2003). Native and endangered fish are threatened by predation from adult channel catfish (Marsh and Brooks 1989, Brooks et al. 2000), and may compete for food and space with juvenile channel catfish. Additionally, Colorado pikeminnow have been found with channel catfish lodged in their throats in the San Juan (Ryden and Smith 2002) and Green (McAda 1983, personal observation) rivers. Common carp tend to feed on larval fish and eggs (Cooper 1987). In the spring and summer of 2004, recently stocked razorback sucker and Colorado pikeminnow were found in the stomachs of two different channel catfish (Jackson, 2005). Since 1995, many nonnative species including striped bass (*Morone saxatilis*) and walleye (*Sander vitreus*) have been able to move into the San Juan River from Lake Powell. From 1988 to 1995, a waterfall at approximately RM 0 acted as a barrier between the San Juan River and Lake Powell, preventing species from moving upstream. During 1995, rising lake levels inundated the waterfall. When lake levels receded in the winter of 1996, the waterfall did not reappear. Striped bass, walleye and threadfin shad (*Dorosoma petenense*), not previously documented in the San Juan River before waterfall inundation, were collected during large bodied fish sampling (Ryden 2001). Since then, striped bass and walleye have been collected periodically until 2000 when large numbers were collected near Farmington, NM (approximately 166 river miles upstream of Lake Powell). Many native suckers were found inside the stomachs of these striped bass (unpublished data from San Juan River database). The San Juan River Recovery Implementation Program (SJRIP) determined in 2001 that control of striped bass and other nonnative species in the lower river was warranted. Utah Division of Wildlife Resources began nonnative fish control with the goal of removing striped bass and other nonnative species in the lower San Juan River, while documenting river and lake conditions that may correlate to striped bass movement out of Lake Powell. It was anticipated that these correlations will provide in determining the most effective time to remove striped bass. During 2002, Lake Powell water temperature was positively correlated with the highest catch of striped bass in June, in the lower San Juan River (Jackson, 2003). A new waterfall at RM –0.5 has prevented striped bass and other fish from moving from Lake Powell since 2003. No striped bass or walleye were observed in the lower San Juan River in 2003 and 2004. Over 24,000 channel catfish and approximately 2,700 common carp were mechanically removed from the lower San Juan River from 2002 to 2004. A decrease in mean total length (TL) of channel catfish was observed between 2002 and 2004, indicating that removal efforts are causing a shift in the population size structure to smaller individuals. Additionally, shifts in sized structure of channel catfish have been reported further upstream (Davis 2005) and on a river-wide scale (Ryden 2005). Furthermore, similar shifts in yield and population structure have been observed in sport and commercial fisheries as the rate of exploitation increased (Bennet 1971; McHugh 1984, Pitlo 1997). Continued removal of all size classes of channel catfish in the San Juan River may eventually lead to decreased fecundity and a reduction of the overall population, therefore lessening the impact that these fish have on the native and endangered fish community. A significant decline in catch rates of common carp was observed from 2002 to 2004. However, it is unclear if this decline was directly related to removal efforts, the presence of the waterfall, or the low water conditions that have been present over the period of this project. It is probable that a combination of these
factors is causative to some extent. The continuation of removal efforts for channel catfish and common carp will aid in the illumination of contributory factors and the evaluation of the success of this project and similar nonnative control efforts. Over the course of this project, important information has been obtained on the progress of the endangered fish community as well. We have observed the apparent spawning aggregation of razorback sucker in spring 2002 at Slickhorn Rapid and collected some of the first wild spawned juvenile razorback sucker in 2003 and 2004. Since 2002, we have documented the distribution and abundance of Colorado pikeminnow in the lower San Juan River stocked from 2002 to 2004. Preliminary population estimates for juvenile Colorado pikeminnow residing in the lower San Juan River were generated in 2004 from recapture data. And finally, during 2004, we documented the first cases of channel catfish predation on stocked juvenile razorback sucker and Colorado pikeminnow in the San Juan River. This work plan proposes the continuation of nonnative control in the lower San Juan River from Mexican Hat to Clay Hills, and sampling just below the waterfall at Piute Farms. Since it is likely that striped bass and other fish are unable to navigate the waterfall, sampling below the waterfall will determine their presence or absence. If they are there, we can continue to document the riverine and lacustrine conditions related to their movement. This study will serve to determine the most effective time for removal actions, so that more intensive and specific removal efforts may be employed in the future when Lake Powell is once again influencing the lower San Juan River. The presence of the waterfall at Piute Farms may provide a rare opportunity to concentrate on removal of other nonnative fish while influx from the lake is eliminated. Continuing removal in the lower river above the waterfall will aid in removal efforts being conducted further upstream, and suppress predation and competition impacts on the endangered and native fish community by nonnative fish in the lower San Juan River. In addition, we propose to continue to document the progress of Colorado pikeminnow and razorback sucker in the lower San Juan River. Recapture data for juvenile Colorado pikeminnow collected during nonnative removal will serve in determining population size, growth and movement of these fish in the lower San Juan River. Furthermore, conducting work below the waterfall will provide information on endangered fish that may be present and unable to move upstream. # **Description of Study Area** The study area for this project includes the San Juan River from Mexican Hat (RM 53) to Clay Hills (RM 2.9), Utah. Additionally, sampling will be conducted just below the waterfall at RM-0.5. The river from Mexican Hat to RM 16 is part of Geomorphic Reach 2 and is primarily bedrock confined and dominated by riffle-type habitat. River mile 16 down to Clay Hills contains Geomorphic Reach 1 where the river is canyon bound with an active alluvial bed. Habitats within this section are heavily influenced by the shifting thalweg, changing river flow, and reservoir elevations. This section of river has been identified as important nursery habitat for native and endangered fish species. #### **Objectives** - 1. Continue mechanical removal of large-bodied nonnative species in the lower portion of the San Juan River from Mexican Hat to Clay Hills. - 2. Generate a population estimate of channel catfish by mark-recapture data from Mexican Hat to Clay Hills. - 3. Characterize distribution and abundance of endangered fish in the lower San Juan River. - 4. Generate a population estimate of juvenile Colorado pikeminnow (>150 mm) by mark recapture data from Mexican Hat to Clay Hills. - 5. Characterize abundance of endangered fish in the San Juan River just below the waterfall. - 6. Characterize abundance of reservoir immigrants (striped bass and walleye) moving out of Lake Powell into the San Juan River upstream to the new waterfall. - 7. Relate striped bass movement from Lake Powell into the San Juan River to lake and river conditions (including temperature, flows and turbidity). # Methods/Approach Mechanical removal of nonnative species will be conducted from Mexican Hat to Clay Hills, Utah. Sampling effort will be conducted via two raft mounted electrofishing boats. The entire study area will be electrofished in a downstream fashion with one boat on each shoreline. Each boat will have one netter and one rower. A third boat will follow behind to pick up nonnative fish missed by the electrofishing boats. These fish will not be included in catch rate calculations, so that comparisons can be made between trips and years. Nine five-day trips with 6 people are anticipated, and timing of sampling will be dependent on 2005 data. Bimonthly trips will be conducted, which will likely translate into every other week sampling from March through August. Data from the adult fall monitoring conducted by U.S. Fish and Wildlife Service- Grand Junction in October will be incorporated into data analysis. In an average water year, this schedule would allow for sampling a variety of habitat conditions, including variable flows, temperatures, and turbidity. In addition, a variety of sampling methods will be used below the waterfall, including hoop and trammel netting, hook and line, and electrofishing, if possible. Five sampling events will take place at the waterfall, most likely between April and August. All nonnative fish collected will be identified, enumerated, measured to the nearest mm for total and standard length, weighed to the nearest gram, and removed from the river. Gender and reproductive status of lacustrine species will be determined and approximate location of capture by river mile recorded. Stomach contents of lacustrine species will be examined. Contents needing microscopic identification will be preserved. Any threatened and/or endangered fish encountered will be collected, identified, enumerated, measured to the nearest mm for total and standard length, weighed to the nearest gram, and scanned for a PIT tag. If a PIT tag is not present, one will be inserted. General condition of the fish will be recorded in addition to any parasites or abnormalities. All threatened and endangered fish collected will be returned to the river at the location in which they were caught. River mile and GPS coordinates will be recorded at the location in which threatened and endangered fish are collected. Catch rates for all fish will be calculated as number of fish caught per hour. Other native fish will not be netted. Channel catfish collected during the first trip of the year will receive a floy tag and be returned to the river. Channel catfish collected on subsequent trips will be removed from the river. A Lincoln-Peterson population estimate will be generated for channel catfish captured during the first pass and recaptured in the second pass. Captures of channel catfish during subsequent trips will allow us to monitor ratios of marked to unmarked fish and use these ratios to calculate a rough population estimate thereafter. Ratios of marked fish to unmarked fish will help determine if assumptions of a closed population are being met. Population estimates will be generated for juvenile Colorado pikeminnow (>150 mm) in the lower San Juan River using closed population models within program CAPTURE. Program CAPTURE will be used to determine confidence intervals around the estimate, the coefficient of variation, and the probability of capture. Population estimates between two passes will be calculated using the Lincoln-Peterson model. Conducting several trips in the lower San Juan River will allow for choosing the "mark" pass and the number of "recapture" passes. Use of different mark and recapture passes will allow for testing of the reality of the results generated. Furthermore, using several combinations of trips will allow for lessening the likelihood of violating assumptions of the models used. Colorado pikeminnow collected during Bio-West's sampling in the lower river will augment the number of marked fish, which will ultimately strengthen the resulting estimate. General water quality parameters will be recorded including temperature, conductivity, salinity and dissolved oxygen. Daily river discharge, temperature and turbidity will be compared to catch rates for striped bass to determine the relationship between river conditions and movement of these fish upstream. Costs for other cooperating agencies that may provide personnel and equipment as needed are included in this budget. # **Products/Schedule** A draft report for the Nonnative Species Control in the Lower San Juan River activities will be prepared and distributed to the San Juan River Biology Committee for review by 31 March 2007. Historical information on nonnative fish species use of the lower San Juan River will be included, to the extent it is available. Upon receipt of written comments, that report will be finalized and forwarded to members of the San Juan River Biology Committee 1 June 2007. Electronic copies of the field and collection data will be transferred to the San Juan River database manager following the successful protocol previously employed. #### **Literature Cited** Bennet, G.W., 1971. Management of lakes and ponds, 2nd edition. Van Nostrand Rienhold, New York. Brandenburg, H.W., M.A. Farrington, S.J. Gottlieb. 2003. Razorback sucker larval fish survey in the San Juan River during 2002. Draft report to the San Juan River Basin Recovery Implementation Program. U.S. Fish and Wildlife Service, Albuquerque NM. Brandenburg, H.W., M.A. Farrington, S.J. Gottlieb. 2004. Razorback sucker larval fish survey in the San Juan River during 2003. Draft report to the San Juan River Basin Recovery Implementation Program. U.S. Fish and Wildlife Service, Albuquerque NM. Brandenburg, W.H., M.A.
Farrington, S.J. Gottlieb. 2005. San Juan River 2004 Colorado pikeminnow and razorback sucker larval surveys. Draft Report. San Juan River Basin Recovery Implementation Program, USFWS, Albuquerque, NM Brooks, J.E., M.J. Buntjer, J.R. Smith. 2000. Non-native species interactions: Management implications to aid in the recovery of the Colorado pikeminnow (*Ptychocheilus lucius*) and razorback sucker (*Xyruachen texanus*) in the San Juan River, CO-NM-UT. U. S. Fish and Wildlife Service, Albuquerque, NM.. - Cooper, E.L. ed. 1987. Carp in North America. American Fisheries Society. Maryland, Bethesda - Davis, J.E. 2005. Non-native species monitoring and control in the Upper San Juan River, New Mexico 2004 (Draft Report). Progress Report for the San Juan River Recovery Implementation Program, U.S. Fish and Wildlife Service, Albuquerque, NM. - Golden, M.E., P.B. Holden, S.K. Dahle. 2005. Retention, Growth, and Habitat Use of Stocked Colorado Pikeminnow in the San Juan River: 2002-2003 Draft Annual Report for the San Juan River Basin Recovery Implementation Program. U. S. Fish and Wildlife Service, Albuquerque NM. - Jackson, J.A. 2003. Nonnative control in the lower San Juan River, 2002. Interim Progress Report for the San Juan River Recovery Implementation Program, U.S. Fish and Wildlife Service, Albuquerque, NM. - Jackson, J.A. 2005. Nonnative control in the lower San Juan River, 2004. Draft Progress Report for the San Juan River Recovery Implementation Program, U.S. Fish and Wildlife Service, Albuquerque, NM. - Marsh, P.C. and J.E. Brooks.1989. Predation by ictalurid catfishes as a deterrent to reestablishment of hatchery-reared razorback suckers. Southwestern Naturalist 34(2):188-195. - McAda, C.W.1983. Colorado squawfish, *Ptychocheilus lucius* (Cyprinidae), with a channel catfish, *Ictalurus punctatus* (Ictaluridae), lodged in its throat. Southwestern Naturalist 28(1):119-120. - McHugh, J.L. 1984. Industrial fisheries, pages 68-80 in R.T. Barber, C.N.K. Mooers, M.J. Bowman, and B. Zeitschel, editors. Lecture notes on coastal and estuarine studies. Springer-Verlag, New York. - Pitlo, J.Jr. 1997. Response of upper Mississippi River channel catfish populations to changes in commercial harvest regulations. North American Journal of Fisheries Management 17: 848-859. - Ryden, D. W. 2001. Long term monitoring of sub-adult and adult large-bodied fishes in the San Juan River, 2000. Interim Progress Report. U.S. Fish and Wildlife Service. Grand Junction, CO. 61 pp. - Ryden, D. W. 2003. Long term monitoring of sub-adult and adult large-bodied fishes in the San Juan River: 1999-2001 Integration Report. U.S. Fish and Wildlife Service. Grand Junction, CO. 68 pp. - Ryden, D. W. 2005. Long term monitoring of sub-adult and adult large-bodied fishes in the San Juan River, 2004. Interim Progress Report. U.S. Fish and Wildlife Service. Grand Junction, CO. - Ryden, D. W. and J.R. Smith. 2002. Colorado pikeminnow with a channel catfish lodged in its throat in the San Juan River, Utah. Southwestern Naturalist 47:92-94. # Razorback Sucker Augmentation and Monitoring Fiscal Year 2007 Project Proposal 9 March 2006 Principal Investigators: Dale Ryden and Chuck McAda U. S. Fish and Wildlife Service, Colorado River Fishery Project 764 Horizon Drive, Building B Grand Junction, Colorado 81506-3946 (970) 245-9319 dale ryden@fws.gov and chuck mcada@fws.gov # **Background** Razorback sucker is a federally-listed endangered fish native to the San Juan River. At present this species remains rare in the San Juan River. In order to gain information on habitat use, possible spawning areas, and survival and growth rates of hatchery-reared razorback sucker in the wild, it was necessary to experimentally stock a small number of fish. Experimental stocking of razorback sucker into the San Juan River began in 1994, as outlined in An Experimental Stocking Plan For Razorback Sucker In The San Juan River. Between 1994 and 1996, a total of 940 razorback sucker were stocked into the San Juan River by personnel from the U.S. Fish and Wildlife Service's (Service) Colorado River Fishery Project (CRFP) office in Grand Junction, Colorado. All fish were PIT-tagged before release into the wild. Based on the success of this experimental stocking study the decision was made to implement a full-scale augmentation program for razorback sucker in the San Juan River. Information obtained during the evaluation of stocked razorback sucker will help address objectives 5.1 through 5.5 in the San Juan River Long Range Plan. In August 1997, a Five-Year Augmentation Plan for Razorback Sucker in the San Juan River was finalized. The five-year augmentation plan, recommended the stocking of 73,482 razorback sucker into the San Juan River between 1997 and 2001. Stocking of razorback sucker from various sources into the San Juan River began in early September 1997. However, between 3 September 1997 and 1 November 2001 a total of only 5,896 razorback sucker were stocked into the San Juan River. If razorback sucker stocked as part of the experimental stocking plan (1994-1997) are included, 6,836 razorback sucker have been stocked into the San Juan River since 1994. The 5,896 razorback sucker stocked as part of the five-year augmentation effort represents a shortfall of 67,586 fish when compared to numbers recommended in the five-year augmentation. The inability to achieve San Juan River razorback sucker augmentation goals has been due to a suite of circumstances all of which ultimately result in a lack of fish. However, the main problem is that rearing facilities outside of the San Juan River Basin lack the capabilities to hold and rear razorback sucker for the San Juan River Recovery Implementation Program (SJRIP). To alleviate this problem, the SJRIP undertook efforts to obtain or build grow-out ponds within the San Juan River basin that would afford a measure of self-sufficiency (for holding/rearing fish) to the San Juan River razorback sucker augmentation program. Beginning in 1997, a series of grow-out ponds were established on NAPI lands southwest of Farmington, New Mexico. Presently there are about 25 surface acres of grow-out ponds (i.e., nine individual ponds) being used to rear razorback sucker. In 2007, the 6-Pack ponds, Hidden Pond, and East & West Avocet Pond will all be stocked, either with age-0 razorback sucker obtained from the Service's 24-Road hatchery (in the spring), or with razorback sucker (≥ 200 mm TL) from Dexter National Fish Hatchery (NFH; in the fall), or with some combination of the two. The razorback sucker being reared at the 24-Road Hatchery would be excess fish being culled from the UCRB razorback sucker broodstock lots. Conversely, the razorback sucker being reared at Dexter NFH will be fish that are being reared specifically for the SJRIP's razorback sucker augmentation effort. Because of the large shortfall in numbers of stocked fish during the 1997-2001 augmentation effort, the San Juan River Biology Committee adopted an addendum to the 1997 stocking plan (finalized in February 2003) that extends the intensive stocking period for razorback sucker for an additional eight-year time period. The addendum called for stocking a minimum of 11,400 age-2 razorback sucker per year, with the goal of establishing an adult population of 5,800 adult razorback sucker in the San Juan River. This eight-year stocking period was originally supposed to begin in 2004 and continue through 2011. However, because of several different factors (i.e., West Avocet Pond being out of production during most of 2004 and all of 2005, a partial fish kill in 6-Pack Pond # 1 during spring 2005, the lack of a finalized pond management plan and an "on-the-ground" pond manager, the need to wait for Dexter NFH to get "up to speed" in delivering annual shipments of 200+ mm fish), the San Juan River Biology Committee has decided to delay "starting the clock" on this eight-year stocking period (i.e., realistically trying to meet the annual stocking goals of 11,400 age-2 fish as specified in the stocking plan addendum) until all corrective measures are completed/in-place. In the meantime, razorback sucker stocked into the grow-out ponds in spring 2006 (as well as holdover fish from previous years' harvest efforts) will be harvested and stocked throughout 2007 (and outyears, if necessary) as an interim effort to continue bolstering numbers of razorback sucker in the San Juan River. In 2007, the grow-out ponds currently in use will be sampled multiple times (approximately five weeks of harvest effort) and fish \geq 300 mm TL will be selectively removed, PIT-tagged, and stocked into the San Juan River. This selective removal of larger fish from grow-out ponds will allow for accelerated growth of smaller razorback sucker remaining in the grow-out ponds. #### **Description of Study Area** Razorback sucker will be reared in ponds southwest of Farmington, New Mexico for two full growing seasons (or to $TL \ge 300$ mm), at which time they will be harvested, PIT-tagged, and stocked into the San Juan River at RM 158.6, just downstream of the Hogback Diversion (between Farmington and Shiprock, New Mexico). The study area for monitoring razorback sucker stocked into the San Juan River extends from RM 158.6 (just downstream of Hogback Diversion in New Mexico) downstream to RM 2.9 (Clay Hills boat landing) just upstream of Lake Powell in Utah. #### **Objectives** - 1. Obtain, rear, harvest, and stock razorback sucker in order to fulfill the tasks and objectives outlined in the current version of the razorback sucker augmentation plan addendum (2003 final) - 2. Monitor stocked razorback sucker in the wild for various parameters, including: - a. Spawning season habitat use and movement patterns - b. Survival and growth rates - c. Determine whether hatchery-reared razorback sucker will recruit into the adult population and successfully spawn in the wild - 3. Remove nonnative fish species which prey upon and
compete with native fish species in the San Juan River. #### **Methods** USFWS personnel will coordinate the obtaining of larval razorback sucker from appropriate sources during March and April 2007. CRFP personnel will determine when it is appropriate to transfer larval razorback sucker from holding facilities to grow-out ponds (presumably late May to early June). This transfer and disposition of larvae will be determined and coordinated by CRFP personnel. CRFP personnel will also coordinate with personnel from Dexter NFH to determine when during 2007 razorback sucker \geq 200 mm TL should be stocked into the grow-out ponds, which grow-out ponds should be stocked, and the stocking densities appropriate for each individual grow-out pond. CRFP personnel will coordinate obtaining any excess larval or juvenile razorback sucker that may become available from UCRB recovery efforts (e.g., those from the 24-Road hatchery). CRFP personnel will transport these fish and stock them in the appropriate grow-out pond. Razorback sucker will be reared in grow-out ponds for two full growing seasons (or until they are ≥ 300 mm TL) before being stocked. Management of ponds, including maintenance of water level, fertilization, and monitoring of pond water quality, invertebrate, and plant communities will be performed by personnel from cooperating agencies/entities under a separate workplan. Once a pond management plan has been developed, it is assumed that long-term management of the grow-out ponds will become the responsibility of a locally-based, "on-the-ground" pond manager. Beginning in 2005, the main thrust for rearing razorback sucker entered a two-step process. In the first step larval razorback sucker will be intensively-reared at Dexter NFH to maximize growth of these fish in their first year. It is anticipated that intensively-managed age-0 fish will be fed an artificial diet and precautions will be taken to eliminate, or at least minimize, threats from avian and aquatic predators (e.g., tiger salamanders), which can take a very heavy toll on larval fish. In the fall of their first growing season, or early in the spring of their second growing season (i.e., when these fish reach \geq 200 mm TL), these fish will be harvested, transported to, and stocked into the existing grow-out ponds near Farmington, NM. Fish will spend their second growing season in the more passively-managed, grow-out ponds before being harvested, PIT-tagged, and stocked into the San Juan River. This approach should allow fish being stocked into existing grow-out ponds to avoid predation by aquatic predators (specifically tiger salamanders) due to their larger size and increased mobility. Harvest of grow-out ponds will occur for approximately five weeks during the year. Ponds will be harvested using fyke nets (6-8 per pond), working a maximum of three grow-out ponds at any one time. During harvest, razorback sucker \geq 300 mm TL will be harvested from ponds, PIT-tagged, and stocked into the San Juan River just downstream of Hogback Diversion (RM 158.6). Razorback sucker < 300 mm TL will be returned to grow-out ponds. However, the first 50 sub-harvestable (i.e., < 300 mm TL) and first 50 harvestable (\geq 300 mm TL) fish (100 fish total) collected from each pond will be weighed and measured. This will allow for the tracking of fish growth in the ponds throughout the year. To monitor fish that have been stocked into the river, CRFP personnel (along with personnel from cooperating agencies) will monitor stocked fish on two electrofishing/netting trips in 2007. One trip will sample RM 158.6-76.4, followed shortly thereafter (or possibly concurrently) by a second trip that will sample RM 52.9-2.9. These two sampling trips will occur on the ascending limb of the hydrograph, from late April to late May. The canyon-bound river section from RM 76.4-52.9 will not be sampled due to the paucity of razorback sucker collections that have historically occurred there and in order to avoid conflicting with the heavy recreational rafting usage in this section of the San Juan River. Raft-borne electrofishing will be the primary sampling technique (although selective seining and trammel netting may also be used at the sampling crews' discretion) used to determine dispersal, and relative abundance of stocked razorback sucker. Razorback sucker captured on the April/May razorback sucker monitoring trips will be counted as "marked" fish for use in a capture-recapture population estimate. The fall 2007 main channel fish community monitoring trip will act as the second "riverwide" pass to monitor stocked razorback sucker. Population estimates can then be generated using mark-recapture models (e.g., Programs CAPTURE and/or MARK, or alternately the Lincoln-Petersen and/or Schnabel population estimate models). Electrofishing and handling of rare fish species will follow the protocols found in the **Sub-Adult and Adult Large-Bodied Fish Community Monitoring** workplan, except that only data on rare fish species collected (i.e., razorback sucker, Colorado pikeminnow, and roundtail chub) will be recorded. When rare fish species are collected, PIT tag number, length, weight, reproductive status (if evident), and information about health abnormalities (if any) will be recorded. Electrofishing recapture efforts will be aimed at gaining data on age, growth, and sexual status, as well as trying to identify groups of razorback sucker that are aggregating to spawn. If spawning aggregations of razorback sucker are identified, crews from other research elements monitoring razorback sucker larval drift (i.e., Steven Platania) and habitat quality and quantity (i.e., Ron Bliesner and Vince Lamarra) will be notified. In support of objective 3, mechanical removal of nonnative fish species will continue to take place on all razorback sucker monitoring trips. The Service (CRFP) will have the lead for the razorback sucker monitoring with the Service's New Mexico Fishery Resources Office (NMFRO) providing field personnel and equipment for monitoring trips. Other cooperating agencies may provide personnel and equipment for these trips as needed. #### **Products** An interim progress report for razorback sucker monitoring trips conducted in 2007 is scheduled to be completed by 31 March 2008. A "draft final" incorporating all comments received is scheduled to be completed by 1 June 2008. DBASE files containing information on total catch and length/weight data gathered for rare fish species will be submitted to the University of New Mexico's Museum of Southwestern Biology (Division of Fishes) for inclusion in the SJRIP's integrated database and web page by 31 March 2008. #### Qualifications of Personnel Included in the Budget Principal Biologist (GS-12) -- Dale Ryden Holds a BS degree. Has 16 years experience performing fisheries research/management in the Colorado River Basin. Dale has been performing fisheries research/management in the San Juan River Basin for the last 15 years. Biological Technicians (GS-7) – Bio. Techs from USFWS-CRFP All hold at least a BS degree depending upon the individual, they have from 1-7 years experience performing fisheries research/management in the Colorado River Basin. Most have 1-3 years of experience performing fisheries research/management on the San Juan River. Project Leader (GS-14) -- Chuck McAda Holds an MS degree. Has 26 years experience performing fisheries research/management in the Colorado River Basin. Chuck is the current chairman of the San Juan River Recovery Implementation Program's Biology Committee. #### **Projected Duration Of Project** This project was initiated in 1997 in support of the razorback sucker augmentation efforts that were ongoing at the time and it has continued annually since that time. This augmentation and monitoring effort is scheduled to run through the end of the eight-year razorback sucker augmentation effort specified in An Augmentation Plan For Razorback Sucker In The San Juan River: An Addendum To The Five-Year Augmentation Plan For Razorback Sucker In The San Juan River (Ryden 1997) (Ryden 2003). The eight-year stocking period in question was specified in the 2003 stocking plan addendum as being from 2004-2011. However, because of several different factors (i.e., West Avocet Pond being out of production for most of 2004 and all of 2005, a partial fish kill in 6-Pack Pond # 1 during spring 2005, the lack of a finalized pond management plan and an "on-the-ground" pond manager, the need to wait for Dexter NFH to get "up to speed" in delivering annual shipments of 200+ mm fish), the San Juan River Biology Committee has decided to delay "starting the clock" on this eight-year stocking period (i.e., realistically trying to meet the annual stocking goals of 11,400 age-2 fish as specified in the stocking plan addendum) until all corrective measures are completed/in-place. Therefore, this project is scheduled to continue annually as an interim stocking effort until the San Juan River Biology Committee "starts the clock" on the eight-year stocking period. At that time, the razorback sucker augmentation and monitoring effort will be scheduled to end at the end of that eight-year time period. #### **Literature Cited** Ryden, D. W. 2003. An augmentation plan for razorback sucker in the San Juan River: An addendum to the five-year augmentation plan for razorback sucker in the San Juan River (Ryden 1997). U. S. Fish and Wildlife Service, Grand Junction, CO. 32 pp. ## PIT TAG PROCUREMENT 2007 Project Proposal Mark McKinstry U.S. Bureau of Reclamation 125 S. State St. Salt Lake City, UT 84138-1147 801-524-3835 #### **Background** Pit tags are used to individually mark fish for use in movement studies and for mark-recapture estimates in the San Juan River Basin. Pit tags are not specific to any particular project, but are used by several different projects. Pit tags and readers purchased for the SJRIP will be combined with the
purchase made for the UCRIP to save money by purchasing larger quantities and save expenses associated with administering the contract. All pit tags and readers will be shipped to USFWS in Grand Junction C/O Chuck McAda at: U.S. Fish and Wildlife Service Colorado River Fishery Project 764 Horizon Drive, Building B Grand Junction, Colorado 81506-3946 Phone: 970-245-9319 (19) #### **TASKS - 2007** - 1. Research information for RFP - 2. Develop RFP and advertise - 3. Purchase pit tags and readers and distribute to end-users #### Stocking of Fingerling Colorado Pikeminnow and Reporting of 2006 Results Fiscal Year 2007 Project Proposal 9 March 2006 Principal Investigator: Dale Ryden and Chuck McAda U.S. Fish and Wildlife Service, Colorado River Fishery Project 764 Horizon Drive, Building B Grand Junction, Colorado 81506-3946 (970) 245-9319 dale ryden@fws.gov and chuck mcada@fws.gov #### **Background** Colorado pikeminnow is a federally-listed endangered fish native to the San Juan River. The capture of low numbers of Colorado pikeminnow of all life stages over the past ten years has confirmed that a small, but reproducing population of Colorado pikeminnow still exists in the San Juan River. In 1996, experimental stocking of Colorado pikeminnow into the San Juan River was undertaken by the Utah Division of Wildlife Resources (UDWR). The purpose of this effort was to evaluate dispersal and retention of stocked juvenile Colorado pikeminnow as well as determining the availability, use, and selection of habitats critical to early life stage Colorado pikeminnow. Between 1996 and 2000, approximately 832,000 larval and age-0 Colorado pikeminnow were stocked into the San Juan River by the UDWR. In addition, 197 adult Colorado pikeminnow have been stocked into the San Juan River, 49 in 1997 and 148 in 2001. To date, several hundred stocked juvenile and adult Colorado pikeminnow have been recaptured during either seining or electrofishing efforts. A handful of the individuals stocked in 1996/1997 have been documented as having recruited into the San Juan River adult Colorado pikeminnow population. Based on data collected from these experimentally stocked fish, it was apparent that stocked, hatchery-reared, juvenile Colorado pikeminnow could survive in the San Juan River and could provide a viable method of supplementing the numbers and expanding the range of the wild San Juan River Colorado pikeminnow population. The need for artificial propagation and augmentation of this species in the San Juan River is apparent for several reasons. Augmentation of Colorado pikeminnow would increase population numbers, provide more individuals for research purposes, add genetic diversity to the existing gene pool, and provide a riverine refugia population that would, hopefully, remain stable until further research can identify factors limiting successful recruitment of this species in the San Juan River. The San Juan River Long Range Plan identifies the need to assess the feasibility of, and then implement the augmentation of Colorado pikeminnow. In January 2003, *An Augmentation Plan For Colorado Pikeminnow In The San Juan River* was finalized. This augmentation plan provides the necessary guidance for augmentation efforts as well as directly fulfilling objective 5.3.8.2 of the San Juan River Long Range Plan. The first stocking of Colorado pikeminnow under the direction of this augmentation plan took place on 24 October 2002 (plan was still in draft form), when 210,418 age-0 Colorado pikeminnow were stocked into the San Juan River, half each at RM 180.2 and RM 158.6. The second stocking of 176,933 age-0 Colorado pikeminnow occurred on 6 November 2003, with fish being stocked into numerous low velocity habitats between RM 188.4 and RM 148.5. The third stocking (actually two separate stocking efforts, totaling 280,000 age-0 fish) occurred on 21 and 28 October 2004, with age-0 fish being stocked into numerous low velocity habitats between RM 188.4 and RM 148.5. As of the date of this workplan, a fourth stocking of Colorado pikeminnow has not yet occurred. However, this fourth stocking is scheduled to take place on 20 October and again on 3 November 2005 in the same general locations where the 2004 stockings occurred. It is anticipated that $\sim 300,000$ age-0 fish will be stocked during this fourth stocking effort. The Colorado pikeminnow augmentation plan calls for a minimum of 300,000 age-0 Colorado pikeminnow to be stocked at roughly the same stocking locations in each of the next four years (i.e., through 2009). In December 2002, a study was begun (under a separate workplan) to intensively monitor newly-stocked age-0 Colorado pikeminnow at several stations, throughout the river on three to four occasions during the year. #### **Objectives** - 1. Coordinate with Dexter National Fish Hatchery to procure and stock fish according to guidelines set forth in *An Augmentation Plan For Colorado Pikeminnow In The San Juan River* - 2. Provide a report that gathers information from various sources on fingerling production, numbers of fish stocked, subsequent recaptures during various sampling efforts (other than the intensive monitoring effort), and makes recommendations (if necessary) for modifying methods being employed for Colorado pikeminnow augmentation efforts. #### Methods Objective 1: Young Colorado pikeminnow will be reared in grow-out ponds (under a separate workplan) at Dexter National Fish Hatchery (NFH) until late October or early November, at which time they will be harvested and stocked into the San Juan River in river sections specified in the augmentation plan (i.e., between Fruitland diversion and PNM weir; between Hogback diversion and Shiprock bridge). Once young Colorado pikeminnow are transported to the San Juan River, CRFP crews (two crews of two people each) will load them into live wells and transport them downstream via boat, stocking them in several appropriate low-velocity locations in the two target sections of river. Fish will be stocked in roughly equal numbers in each of the two river reaches. This will allow young Colorado pikeminnow to be introduced into many appropriate low velocity habitats and avoid their grouping up in large numbers and thus becoming more susceptible to predation (e.g., by channel catfish) or catastrophic loss due to other factors. Objective 2: After stocking, CRFP personnel will collect information on stocked fish from Dexter NFH (numbers produced, size at stocking, locations stocked at) and on recaptures during subsequent monitoring and sampling efforts by various agencies/entities involved in SJRIP research projects (other than the intensive Colorado pikeminnow monitoring effort). This data will be examined to help determine if augmentation efforts are successful. Success will be determined by examining post-stocking dispersal patterns, analyzing age and growth data, and using either CPUE trends or mark-recapture population estimators (e.g., Programs CAPTURE and/or MARK, or alternately the Lincoln-Petersen and/or Schnabel population estimate models) to determine survivorship, with the end goal of determining if progress is being made towards reaching target numbers set forth in the Colorado pikeminnow augmentation plan. Results obtained will be used to make recommendations for modifying (if necessary) methods being employed for augmentation efforts in future years. #### **Products** An interim progress report detailing the field activities performed in 2007 will be produced by 30 March 2008. A "draft final" of this report, incorporating all comments received will be completed by 1 June 2008. DBASE files containing information on stocked and recaptured Colorado pikeminnow will be submitted to the University of New Mexico's Museum of Southwestern Biology (Division of Fishes) for inclusion in the San Juan River Recovery Implementation Program integrated database and web page by 31 March 2008. #### **Qualifications of Personnel Included in the Budget** Principal Biologist (GS-12) -- Dale Ryden Holds a BS degree. Has 16 years experience performing fisheries research/management in the Colorado River Basin. Dale has been performing fisheries research/management in the San Juan River Basin for the last 15 years. Biological Technicians (GS-7) – Bio. Techs from USFWS-CRFP All hold at least a BS degree. Depending upon the individual, they have from 1-7 years experience performing fisheries research/management in the Colorado River Basin. Most have 1-3 years of experience performing fisheries research/management on the San Juan River. Project Leader (GS-14) -- Chuck McAda Holds an MS degree. Has 26 years experience performing fisheries research/management in the Colorado River Basin. Chuck is the current chairman of the San Juan River Recovery Implementation Program's Biology Committee. #### **Projected Duration of Project** This project was initiated in October 2002 in support of the eight-year Colorado pikeminnow augmentation effort (2002-2009) and has continued annually since that time. These stocking and subsequent reporting efforts are currently scheduled to run through the end of the eight-year augmentation effort (i.e., 2009), as specified in <u>An Augmentation Plan For Colorado Pikeminnow In The San Juan</u> River (Ryden 2003). #### **Literature Cited** Ryden, D. W. 2003. An augmentation plan for Colorado pikeminnow in the San Juan River. U. S. Fish and Wildlife Service, Grand Junction, CO. 63 pp. + appendices. #### Colorado Pikeminnow Fingerling Production San Juan River Basin Recovery Implementation Program Fiscal Year 2007 Project Proposal Principal Investigators- Roger L. Hamman and Manuel E. Ulibarri Dexter National Fish Hatchery and Technology Center U.S. Fish and Wildlife Service P.O. Box 219, 7116 Hatchery Road Dexter, NM 88230-0219 April 06, 2005 > 505-734-5910 Work 505-734-6130 Fax roger_hamman@fws.gov manuel_ulibarri@fws.gov #### **Background** Once very common throughout the
Colorado River Basin, Colorado pikeminnow have declined from historic levels and are now found primarily in the Upper basin of the Colorado River. Various factors have contributed to the decline of the specie including alteration of natural stream flows and temperature regimes, loss of habitat and habitat fragmentation as a result of water development and the introduction of nonnative fish species. Colorado Pikeminnow are native to the San Juan River. Its historic distribution included the entire mainstem San Juan River up to Rosa, New Mexico, located approximately 25 miles upstream from present day Navajo Dam. Currently the species is considered extremely rare and the small population is estimated at less then 20 adults. This small group of fish has persisted in the San Juan River since the closure of Navajo Dam in 1962. Recent studies being conducted by the San Juan Recovery Implementation Program (SJRIP) indicate that the Colorado pikeminnow is reproducing and recruiting in the river to at least a limited degree, however the low numbers collected do not satisfy recovery goal requirements for the specie. The Recovery criteria calls for a target of 1,000 subadults fish established by the end of a five year down listing period, and 800 adults maintained during the 7 year delisting period. The Upper Colorado River Endangered Fish Recovery Program has recommended that the wild population be increased by augmenting with hatchery produced fish. Dexter NFH & TC has been the leader in propagating and culturing Colorado pikeminnow (<u>Ptychocheilus lucius</u>) since 1981. The facility maintains several captive stocks as genetic reserves and has successfully produced fish for the Upper and Lower Colorado River Basin programs and the SJRIP. The major emphasis has been on the reproductive biology, broodstock development and culturing fry, fingerlings and adults. This work plan proposes to continue the production of 300,000 fingerlings (50 mm TL) annually and initiate a phase II growout program to produce an additional 3,000, 150mm fish for reintroduction in the San Juan River. In order to meet the target size and number of phase II fish, Dexter will maintain approximately 6,000, young-of- year fingerlings annually for growout. Funding is also requested to provide proper care of broodstock necessary to successfully carry out this study for future years and aide in restoration of the species. Stocking will require coordination with New Mexico FRO, CRFP-Grand Junction, New Mexico Department of Game and Fish, Colorado Division of Wildlife and Utah Department of Wildlife Resources. #### **Objectives** - 1. Produce 300,000 fingerlings (50 mm) and 3,000 phase II fish (150mm) for stocking in the San Juan River in 2007. - 2. Continue data collection on induced spawning of Colorado pikeminnow under controlled conditions. - 3. Provide staff to assist with PIT tagging phase II fish. - 4. Transport and distribute 300,000 Colorado pikeminnow fingerlings and 3,000 Phase II fish from Dexter to the San Juan River. - 5. Maintain 400 Colorado pikeminnow broodstock for recovery efforts. #### Methods Broodstock will consist of 400 (F1) adults. These fish are 1974, 1981 and 1991 year-class progeny from wild adults collected from the Yampa, Green and Colorado Rivers, respectively. A maximum of 40 paired matings (1 female X 1 male) will be spawned during 2006. Given the past history of hormonal induced ovulation, 30 females (75%) should produce viable eggs during a given year. All members of the broodstock are PIT tagged and records of spawning pairs will be maintained at Dexter. Ovulation will be induced with intraperitoneal injections of common carp pituitary (CCP) at the rate of 4 mg/kg of body weight. When eggs can be expelled using slight pressure, a female will be stripped and milt added from one male. Each individual egg lot will be enumerated and kept separate in Heath trays until hatching occurs, about 96 hours after fertilization. When eggs begin hatching, larvae will be transferred to hatchery tanks and held until swim-up occurs, five to seven days. Fry will be enumerated and stocked into three earthen ponds ranging from .33 to .35 ha. Fry will be cultured in earthen ponds for 120 days and phase II fish for 240 days and will then be available for stocking in the San Juan River during October, 2006. #### Rearing Razorback Sucker Sub-Adults at Dexter National Fish Hatchery and Technology Center Fiscal Year 2007 Proposal Aerial Photo of Dexter National Fish Hatchery & Technology Center 2004 Photo courtesy of Dr. Robert Flynn, NM State University – Agriculture ## Prepared for: U.S. Bureau of Reclamation RFP 04-SF-40-2250 and The San Juan Recovery Implementation Program Principal Investigators – Roger L. Hamman, Manuel E. Ulibarri Dexter National Fish Hatchery and Technology Center P.O. Box 219, 7116 Hatchery Road Dexter, New Mexico 88230-0219 505-734-5910 505-734-6130 Fax > Roger_Hamman@fws.gov Manuel Ulibarri@fws.gov #### I. Table of Contents | Executive Summ | mary | |------------------|---| | Introduction | | | Background | Location Mission Facilities Water Source RBS captive broodstock Facility Site Plan | | Production Plan | Objectives
Methods | | Projected harve | st and & delivery dates | | Predator control | l . | | Dexter Water qu | uality | | Handling and T | ransportation Protocol | | Fish Health Mo | nitoring | | Budget | | | Schedule | | | Personnel | | | Appendices: | | | Appendix table | Five Year Hatchery Production Summary FY2003 Razorback Sucker Subadult Production Summary Dexter NFH&TC Razorback Sucker Spawning Protocols | #### **Executive Summary** Dexter National Fish Hatchery and Technology Center (DNFH&TC) continues to play a vital role in the restoration and recovery of endangered and threatened fishes of the Southwest. Following a 10 year span of facility improvements, Dexter has developed into a state-of-the-art fish culture and research facility. In 2004 aquatic species propagation and conservation programs continued to advance under static operating budgets and major renovations to the physical plant. Throughout the year, Dexter staff fostered new and existing partnerships in order to successfully propagate and maintain 17 federally listed fish species; and conduct applied research in the fields of molecular ecology, nutrition, marking, and water reuse. A major emphasis was placed on meeting fish propagation and augmentation needs for several resource implementation/management programs which included the Colorado, San Juan, Mimbres and Virgin Rivers and the Rio Grande. The U.S. Fish and Wildlife Service (USFWS) has developed extensive infrastructure and expertise at DNFH&TC to successfully contribute to recovery programs. The DNFH&TC program has been totally devoted to the maintenance, propagation and culture of threatened and endangered fish species for thirty years. During that period it has successfully cultured razorback sucker, bonytail and Colorado pikeminnow of the Colorado River system. Currently DNFH&TC maintains a large genetically diverse razorback sucker broodstock and over the years has developed successful spawning, culture and distribution methodologies for the species that are still used today. The facility utilizes an abundant water supply to produce over 1 million fish annually. The following scope of work identifies the facilities and methodologies that will be used at Dexter to produce 20,000, 200+ mm razorback sucker for use by the San Juan River Basin Implementation Program (SJRIP) to meet its augmentation objectives for the species in the San Juan River. Production guides have been developed for the species based on historical growth rates at Dexter. Most recently the facility successfully reared large numbers of razorback sub-adults (300+mm) for stocking into Lake Mohave, Arizona, Lower Colorado river. #### **Background** Location Dexter National Fish Hatchery and Technology Center is located in the Pecos River Valley of southeastern New Mexico, 200 miles southeast of Albuquerque, 20 miles south of Roswell, and one mile east of Dexter on State Road 190 (Figure 1.). The hatchery was authorized under the White Act of 1930 (46 Stat. 371 - 05/21/30), to meet the demands for warm water game fish throughout the southwest. The land, originally the property of the New Mexico State Game and Fish Commission, was acquired by the Federal Government on August 31, 1931. The station lands comprise a total of 640 acres in Section 16, T13S, R26E, Chaves County. Construction of the facility started immediately after purchase with assistance of the Public Works Administration and Progress Administration. Operations began in 1932. #### Mission Dexter National Fish Hatchery's early mission was to produce warm water fish for distribution in the southwest. Largemouth bass, smallmouth bass, bluegill, and channel catfish were distributed to federal reservoirs, state lakes, farm ponds and Indian reservations, for recreational fishing. This mission was very successful and continued for over 40 years. In 1974 DNFH&TC was selected as the place to establish a threatened and endangered holding facility and was totally devoted to the propagation and culture of imperiled fishes by 1978. With its establishment three main goals were set for this new program: (1) establish a refuge for critically imperiled fishes of the American Southwest; (2) implement studies and develop projects investigating spawning and culture techniques; and (3) produce and rear selected species for reintroduction programs. Center objectives were also established to further define the new mission and operations: (1) maintain a viable and protected gene pool of various imperiled fishes of the Southwest; (2) develop culture
techniques for native fishes; (3) study their biological requirements; (4) provide live and preserved fish specimens to authorized agencies and institutions; (5) provide an exchange of expertise and data on holding, culture, and management of these species; (6) publish findings when appropriate. A total of 16 listed and 1 species of special concern were maintained at DNFH&TC during FY-2004. With the exception of one species, the Pahranagat roundtail chub, all species are from New Mexico or a state contiguous to New Mexico borders (Arizona, Utah, Colorado, Texas, and the Mexican states Chihuahua and Sonora). Dexter NFH & TC's responsibility to provide for the long-term maintenance of these fish is indeed unique, as is the development of culture and production techniques for selected species in order to provide fish for reintroduction under recommended and approved recovery programs. Dexter National Fish Hatchery was designated a Technology Center in FY-1991, one of seven currently in the Fish and Wildlife Service. This was in recognition of the pioneering fishery research work that has been carried out at the facility to further the recovery of native fishery resources of the Southwest. #### **Facilities** Situated on the northern fringes of the Chihuahua Desert, the elevation at Dexter is 3,500 feet, average rainfall is 12 inches, and the growing season of 180-200 days. Station facilities include: Administration/Laboratory Building; Fish Culture Building; Visitors Center; Maintenance/Shop Building; Vehicle Storage Building; Equipment Storage Building; Feed Building; General Storage Building.; three government houses; one mobile home, two RVs and one RV space. Fish culture facilities in operation during FY-2004 consisted of 71 earthen/lined ponds ranging in size from 0.1-1.0 acres, four (6' X 40') fiberglass raceways, four (8' X 40') concrete raceways, Twenty (2' X 12') rectangular fiberglass tanks, forty (4') fiberglass circular tanks, fifty (3') fiberglass circular tanks and 80 ten-gallon and 20 forty-gallon aquariums. The facility utilizes three water reuse systems in the fish culture building. Phase III Facility Improvement Project was completed on June 5, 2003. #### Water An abundant supply of fish culture water is supplied by five shallow aquifer wells (150 feet in depth) capable of pumping a combined 2,000+ gallons per minute. The well water is a constant 64⁰ F, pH of 7.5-8.5, total hardness of 2,100 ppm, and total dissolved solids of 3,500 ppm. Water rights, allocated through the New Mexico State Engineer's Office, total 2,185.5 acre-feet per annum or 10,927.5 acre-feet per five-year water period. Waste water from all fish culture operations collects in two sumps on the southeastern area of the facility and provides year round water to the wetlands. #### **Lake Mohave Razorback Broodfish** Staff at Dexter National Fish Hatchery and Technology Center successfully propagate and maintain 17 federally listed fish species; and produces over 1.0 million fish annually for recovery and restoration programs throughout the southwest (Appendix 1 and 2). Razorback sucker have been maintained and cultured at facility since 1981. Captive broodstock representing the Lake Mohave population exist at DNFH&TC. According to station records, the initial broodstock was founded with progeny from 136 wild adult fish collected from Lake Mohave in 1981. An additional 147 wild individuals were collected from the lake in 1982, spawned that year, and contributed fry to the stocking efforts in the Gila, Salt and Verde rivers and Lake Mohave, but were not incorporated into the captive broodstock. In 1984, Dexter's RBS captive broodstock consisted of 360 three-year old fish derived from the wild adults spawned at Dexter in 1981. Wild caught adults collected in 1981 and 1982 had expired by the end of 1985. The first captive broodstock of RBS at DNFH&TC is referred to as the '81 broodstock. The '81 broodstock currently contains 133 adult fish (Table 2). Initial spawning of this broodstock occurred in 1984 (Hamman 1985). It should be noted that no progeny of the '81 broodstock are currently held as broodstock at any facility. Since the broodstock's inception, all offspring have been stocked to meet production commitments. Over the past 19 years, offspring from this stock have been stocked into Lake Mohave and Lake Havasu; Gila, Salt, Verde and San Juan rivers; Niland-Imperial Valley Hatchery, California; Page Springs SFH, Arizona; Buenos Aires, Cibola, Imperial, Havasu National Wildlife Refuges; and the Colorado River Fisheries Project (CRFP) at Vernal, Utah. The second broodstock is referred to as the Paired Matings (PM) broodstock. This stock, comprised of approximately 90 unique family groups is the product of paired matings of wild caught adults spawned at Willow Beach NFH from 1994 to 2004. Those efforts resulted in 1,200 fish currently held as PM future broodstock at DNFHTC (Table 2). A third broodstock has been developed at DNFHTC, and consists of six year classes of juvenile wild-caught fish from Lake Mohave. These fish were captured as fry from eight locations throughout Lake Mohave and given the designation of Wild Caught (WC) future broodstock (Table 2). Table 2. Dexter NFH & TC Razorback Sucker Captive Broodstock | | | Numbe | ers | Founders | Lot | | |------------|-----------------------|---------|----------|-----------------|--------------------|-------------| | Year Class | <u>Origin</u> | on hand | <u>d</u> | Represented | Designation | | | 1981 | F ₁ Mohave | 133 | | adults / Mohave | | ' 81 | | 1994-2003 | Mohave | 1200 | | 90 / Mohave | PM | | | 1999-2004 | Moha | ve | | 1000 | fry /Mohave | | | WC | | | | | • | | | 2003 | F_2 Mo | have | 1000 | 25/ '81 cap | tive stock | F_2 | ⁶¹⁻¹⁹⁸¹ year class, Mohave-Lake Mohave, AZ, PM-Pair Matings, WC-Wild Caught, WB-Willow Beach, P- Production. In 2001-2004 production of subadult razorbacks at DNFH&TC yielded excellent survival and growth. The overall survival for razorback sucker grown to 300mm was 92.5%, while 44.8% of the fish achieved the target growout size of 300 mm. DNFH&TC's spawning and growing season consists of fish being spawned in the early spring and fry stocked in to earthen or lined ponds and grown out- door from April to October. Total dissolved oxygen and temperature are monitored daily and fish feed on phyto and zooplankton produced in fertilized ponds for approximately 45 days at which time they are offered a prepared razorback sucker diet. Fingerlings are routinely held and cultured in the Fish Culture building during the months of January - March to prevent mortalities associated with outdoor over wintering. In the fall of the year when the fish reach target size they are harvested from the ponds and transferred to the Fish Culture building for sorting and tagging. Following a 7 to 10 day rest and recovery period they are loaded into distribution trucks and hauled to their stocking locations. Dexter has successfully hauled 300+mm razorbacks and Bonytail to Lake Mohave, Arizona, in the lower Colorado River. These distribution trips log 660 miles (12 hours) of hauling time in one direction. #### **Production Plan** #### **Objectives** The main objective of this proposed work is to spawn razorback sucker adults and rear 20,000, 200+mm fish annually and deliver them to existing grow-out ponds located on the Navajo Indian Irrigation Project. Additional objectives of the work include: - 1. Improve, maintain and staff facilities at DNFH&TC to rear and distribute the target # of fish. - 2. Continue data collection on induced spawning of razorback sucker under controlled conditions. - 3. Continue data collection on stocking densities in Dexter ponds for optimal growth of razorbacks and evaluate and adjust as necessary to meet required numbers and size. - 4. Maintain razorback sucker captive broodstock for recovery efforts. #### **Methods** DNFH&TC will conduct captive propagation activities that include spawning of a minimum of 25 pairs of broodstock, incubation of fertilized eggs, enumeration and stocking of swimup fry into DNFH&TC ponds, harvest of target sized fish from ponds, enumeration and distribution to Navajo Indian Irrigation Project. The project will utilize indoor and outdoor facilities. All spawning and incubation activities will be conducted indoor in the fish culture building. Razorback sucker will be reared in four earthen ponds at surface acres of 0.72, 0.79, 0.82, and 0.86. Within this scope DNFH&TC proposes to line these four ponds with plastic due to associated water seepage, water conservation and pond management purposes. #### **Spawning** Broodfish will be harvested from ponds in early March and held indoor for spawning. Razorback sucker spawning protocols developed at DNFH&TC that will be used are listed in Appendix Table 3. #### **Rearing Ponds** To meet the production goal of 20,000 (200mm) fish, rearing ponds will be stocked at the following densities: Phase I Growth: (April thru May - 60 day growing period) ``` Pond 1- .72 acre @ 22,500 fry Pond 2- .79 acre @ 22,500 fry ``` Phase II Growth: (June thru October - 150 day growing period) Harvest ponds from phase I growing period; enumerate and stock fingerlings into 4 ponds. ``` Pond 1- .72 acre @ 10,000 fingerlings Pond 2- .79 acre @ 10,000 fingerlings Pond 3- .82 acre @ 10,000 fingerlings Pond 4- .86 acre @ 10,000 fingerlings ``` Earthen ponds will be used for the first year of production or until the ponds are lined with plastic. Pond bottoms will be packed and graded prior to receiving fish. Non-level pond bottoms can hinder fish harvest and aquatic vegetation can entrap fish at harvest time. Fertilization and slow filling of ponds will start 10 to 14 days prior to stocking. Staff will ensure that water quality is monitored. Temperature, dissolved oxygen and pH readings will be taken twice daily at 7:00am and 3:00 pm at the deepest part of the pond. If the dissolved
oxygen drops to < = 3 mg/I, supplemental aeration will be started. All feeding, fertilization and chemical applications will be stopped till adequate oxygen levels are restored. Aerators will be run all night for several days till the oxygen is back up to acceptable levels, (5-7 mg/1). Staff will avoid handling fish for 7-10 days following a stress related circumstance. #### **Pond Vegetation Control and Fertilization** Sonar, Diuron or Barrier will be used in earthen ponds to control rooted aquatic vegetation. Staff will use granular form when possible and broadcast the entire pond bottom at the recommended rates. ``` Sonar - 20 lbs per acre (dry broadcast) Diuron- 25 lbs per acre (dry broadcast) Barrier- 100 lbs per acre (dry broadcast) ``` Copper sulfate (CUSo4) will be used to control floating filamentous algae blooms. Treatments will began approximately 45 days after fish are stocked into the ponds and repeated every 30 days. Application rates in DNFH&TC ponds are 3 to 5 lbs per acre. A secondary benefit derived from using CUSo4 is its effectiveness in controlling external parasites. Zooplankton and invertebrate insect populations are cultured with the proper fertilization regime. Four types of fertilizer will be used: - 1. Alfalfa meal - 2. Alfalfa pellets - 3. Cottonseed meal - 4. Super phosphate Initial fertilization rates for earthen ponds are 100 lbs of cottonseed meal, 100 lbs of alfalfa meal or pellets and 3 lbs of super phosphate. Follow up rates are administered on Monday and Thursday with 10 lbs cottonseed meal, and 10 lbs, alfalfa meal or pellets. Water temperature, dissolved oxygen (DO) and pH readings will be taken in all rearing ponds daily. All readings will be recorded on record charts. If morning DO readings are below 3.0 or above 13.0 all fertilization will be stopped until DO's are brought back to accepted levels. If pH readings are greater than 9.5 fertilization will be terminated. #### **Feeding Schedule** Fish will be sampled at the end of every month. Size, weight and over all condition will be recorded. Feed amounts will be adjusted and projected for the upcoming month. Razorback grower 0301 feed will be used and purchased from Nelson and Sons, Silver Cup, Murray, Utah. Fish will be fed twice daily, once at 10:00am and at 2:00pm. Feeding rates are based on water temperature and fish densities in the ponds and will be calculated as follows: - water temp > = 70 °F feed 3 % BW per day, Mon thru Fri. - water temp 60-70 °F feed 2 % BW per day, Mon thru Fri. - water temp < 60 °F feed 1.5 % BW per day, Mon, Wed, Fri. Staff will use the following guide to determine the proper particle size to offer the fish. Feed sizes will be mixed at ½ rations of each size when making the transition to the next larger size feed. | Fish Size | Particle Size | |-----------|---------------| | 1-2" | 1.0 mm | | 3-5" | 2.0 mm | | 6-8" | 3.0 mm | #### **Projected Harvest Dates and Delivery Date** Based on historical growth rates for razorback at Dexter, the production target of 20,000, 200+mm fish can be achieved in a fifteen month period. This time frame indicates that the initial delivery of fish would be in June of 2006. In order to initiate a consistent production cycle DNFH&TC proposes to spawn and maintain 40,000 to 50,000 fingerlings in a production year in order to produce the requested number of fish in subsequent years. Following the initial year of production the spawning effort would be reduced to 20,000 annually, and these fish will be incorporated into the production cycle. At any given point of the production cycle there will be 40,000 fish in the system. With this scenario there will be no spawning conducted in the final year of the project in order to allow the final 20,000 fish to exit the production cycle. The fish will be stocked as scheduled in September of 2007. #### **Predator Control** Historically, DNFH&TC has not experienced excessive avian or mammal predation on fish stocks. Salamander, crayfish, frog and turtle infestation of ponds are nonexistent. On an annual basis specific ponds are covered with bird netting during the winter months to eliminate predation by migrating birds. An additional strategy employed by the staff is the harvest and hold stocks of fish indoor during the winter months of November to March. Razorback reared for this project will be maintained indoor in two 40,000 gallon recirculating systems during the winter months. The recirculating systems contain biofiltration, supplemental aeration, temperature control and alarm systems. #### **Dexter Water Quality Analysis** Well and pond water samples are submitted to the Soil, Water, Air, Testing Lab (SWAT) at New Mexico State University in Las Cruces, NM on an annual basis. Over the past three years DNFH&TC has established the following baseline for water quality to monitor changes over time. | Element | Recommended | Well No.1 | Pond 6-B | |--------------------|--------------|-----------|-----------| | | Criterion | | | | Alkalinity | >20 mg/l | 188 mg/l | 165 mg/l | | Calcium | 4-160 mg/l | 18 mg/l | 20 mg/l | | Carbon dioxide | 0.10 mg/l | N/D | N/D | | Chlorides | <250 mg/l | 145 mg/l | 168 mq/l | | Oxygen | >5 mg/l | 3.7 mg/l | 9.68 mg/l | | Hydrogen | <0.002 mg/l | N/S | N/S | | Iron | <0.015 mg/l | 0.13 mg/l | 0.03 mg/l | | Lead | <0.03 mg/l | N/D | N/D | | Nitrogen gas | <110 % | 94% | 94% | | Nitrate (NO3) | <1 mg/l | 2.0 mg/l | 2.03 mg/l | | Nitrate (NO2) | <0.1 mg/l | N/D | N/D | | pH `´´ | 6.7-8.6 mg/l | 7.02 mg/l | 7.87mg/l | | Phosphates (total) | 0.05 mg/l | .04 mg/l | .09 mg/l | | Selenium | <0.005 mg/l | N/D | N/D | | Sodium | <75 mg/l | 230 mg/l | 315 mg/l | | Sulfur | <1 mg/l | N/S | N/S | | Sulfate (SO4) | <50 mg/l | 2059 mg/l | 2109 mg/l | | TDS ` | < 400 mg/l | 3800 mg/l | 4748 mg/l | | Zinc | <0.003 mg/l | N/D | N/D | | | | | | | | | | | | | | | | ^{*}Dissolved oxygen measurements were taken by Dexter personnel. *SWAT Lab New Mexico State University Box 30003 Las Cruces, NM 88003 (505) 646-4422 #### **Handling and Transport Protocol** Transport of all eggs and fish will follow guidelines described in the USFWS Protocols for Biological Investigations developed by Dr. Gary Carmichael, retired U.S. Fish & Wildlife Service employee. The protocol is as follows: ^{*}N/D- Not Detected, N/S- Not Sampled - 1. When razorback fingerlings, subadults and broodfish are handled they will be placed in a .5% salt bath to help in osmoregulation and reduce the effects of handling stress. - 2. Temperature should be 5 degrees Fahrenheit lower in the hauling truck than in the river. - 3. Drivers must be informed of and follow a specified route. - 4. Transport water will contain 0.5 percent NaCl (18.9 grams per gallon) and 0.26 ml/L Stress Coat7 (1 ml per gallon). - 5. Oxygen levels will be greater than 6.0 mg/L as determined with an oxygen meter. - 6. Nets must be functional. Aeration equipment must be in place and must be used. A fish holding container will be a minimum of 5 gallons in size and fish densities will not exceed 1 lb of fish per gallon of water. Small delta mesh (1/8") will be present to transfer the fish from one container to another, although it is preferred to have water to water transfer. Oxygenation/aeration equipment will be in place and working. - 7. Prior to transfer and after the fish are concentrated, they should be quickly placed in the transport tank. When using nets to place fish in transfer buckets or tanks, nets should not be overloaded. The fish on the bottom will be crushed. Using a wet transfer with buckets is preferable. When emptying the nets and buckets, care will be taken to avoid adding algae and mud to the transport tank. Before loading, dissolved oxygen levels should be at saturation. - 8. Immediately after loading, all equipment on the transport vehicle should be re-checked and the vehicle should depart. Oxygen concentrations and temperatures should be monitored at a minimum of every hour. - 9. During unloading tempering water should be present and functional, and thermometers should be used to match water temperatures. Hauling water temperatures should be equal to receiving water temperature. - *Acclimatizing the fish to the receiving water temperature will be conducted in increments of 2 degrees towards equalizing per 15 minutes time. Due to the high alkalinity and TDS of DNFH&TC water, staff will temper and acclimate the transported fish to the receiving water quality for a minimum of 1 hour prior to release. This process will allow sufficient time for the fish to osmoregulate to the receiving water quality. Tempering can be accomplished in the shipping tank by adding receiving water to the tank at given intervals. #### Fish Health Monitoring Protocols All fish should be handled with the best animal husbandry practices available. A feeding schedule will be developed and followed daily. All tanks will be cleaned of uneaten food and feces daily. A daily log recording times of feeding, water temperature and comments on fish health will be maintained. If fish are maintained in a re-circulating system, all filters and pumps will be routinely cleaned and monitored. If fish are held in ponds O2 levels will be closely monitored. At least once a year, a fish health inspection will be conducted to examine fish for bacterial, viral and parasitic infections. Normally 60 fish per lot are sacrificed for an adequate sample. However, in the case of endangered or rare fish of genetic importance, numbers sampled may be less, depending upon availability. Non-lethal methods, if available, will be employed to obtain samples. Condition factors will be calculated on an annual basis and data added to a RBS database. Wet mounts will be examined for parasites and bacteria. Routine condition exams will be conducted and an examination will be conducted on all lots one month prior to delivery to the Navajo Indian Irrigation Project, SJRIP. Brood and refuge stock will have health checks annually and
only when needed to minimize handling stress. The U.S. Fish and Wildlife Service, Regional Fish Health Unit @ Dexter will provide bacterial and viral testing for razorback propagation and rearing activities. Treatment of disease will be the responsibility of the Dexter staff. Fish health experts are available to advise on proper treatment, and to examine fish for infection. #### **Reporting** Staff will abide to the reporting requirements as identified in section B.11- a, b and c "Reporting requirements and distribution" of the RFP 04-sf-40-2250. #### **Schedule** Broodfish will be spawned in March 2006 and fish are reared in earthen ponds for the first season (April - October 2006); held indoor during winter (November 2006- March 2007) stocked into lined ponds in March 2007 and available for distribution in September 2007. #### Personnel #### Manuel E. Ulibarri, Center Director Education: B.S. 1985, Biology, Western New Mexico State University 1986 to 1988 Graduate work in Fisheries Science, New Mexico State University #### Professional Experience: Dexter NFH & TC - 2001 to present (EOD at Dexter NFH & TC 11/04/01) Willow Beach NFH - 1998 to 2001 Uvalde NFH - 1991 to 1998 Mescalero NFH - 1986 to 1991 Rock Lake State Fish Hatchery, Santa Rosa, NM 1981 to 1984 #### Roger L. Hamman, Assistant Center Director Education: B.S. - 1975, Fishery Biology, Southeastern Oklahoma State University B.S. - 1975, Wildlife Biology, Southeastern Oklahoma State University A.S. - 1973, Murray State College Professional Experience: Dexter NFH & TC - 1986 to present Dexter NFH - 1982 to 1986 Willow Beach NFH - 1982 to 1982 Leetown Fish Hatchery Manager Long Course - 1981 to 1982 Willow Beach NFH - 1978 to 1981 Tishomingo NFH - 1975 to 1978, #### **Dave Hampton - Fisheries Biologist** Education: B.S. 1994 - Environmental Ecology, Eastern Illinois University, Professional Experience: Dexter NFH & TC - 1995 to present Army National Guard - 1995 to 2001 Manpower Inc. - 1994, Illinois Garrison Dam NFH - 1993 U.S. Army - 1988 to 1990 #### **Atha Sharon Coats - Administrative Officer** Education: Computer programming - college course, New Mexico Military Institute Hagerman High School Professional Experience: Dexter NFH & TC - 1980 to present USDA, Soil Conservation Service & the Chaves County Soil and Water Conservation District - 1976 to 1979 #### Appendix Table 1. ## FIVE YEAR HATCHERY PRODUCTION SUMMARY Station: Dexter NFH&TC #### 1. Fish Production Data Intensive Culture: Fish Weight Gain (lbs.) Fish Numbers Percent Survival Feed Conversion Extensive Culture: Fish Weight Gain (lbs.) Fish Numbers Percent Survival Pounds per Acre #### 2. Broodstock Production Data: Number of Females Spawned Number of Eggs Number of Fish #### 3. Management Data: Full-Time Equivalents Operational Costs Vehicle/Equipment Costs (Items over \$1,000) Cyclical Maint. Costs Quarters Costs | | į. | Fiscal Year | | | |---------|---------|-------------|---------|---------| | 1999 | 2000 | 2001 | 2002 | 2003 | | | | | | | | | | | | | | | | 228.5 | 91.1 | 110.2 | | | | 13288 | 14209 | 9,595 | | | | 69.4 | 98.0 | 98.3 | | | | 4.8 | 3.7 | 6.4 | | | | | | | | 5440 | 2689 | 1449 | 5344 | 4571 | | 936884 | 640400 | 449611 | 827910 | 1027943 | | | - | - | - | | | 363 | 266 | 161 | 661 | 466 | | | | | | | | 41 | 34 | 23 | 154 | 169 | | 3230203 | 1594194 | 851676 | 3239157 | 5387086 | | 1030434 | 546808 | 294570 | 1630616 | 1435543 | | | | | | | | 8 | 10 | 9 | 9.8 | 11.38 | | 436,856 | 439,314 | 641,226 | 710,737 | 661,549 | | 1,936 | 10,481 | 9,773 | 8,558 | 0 | | 33,500 | 53,000 | 208,500 | 35,000 | 20,000 | | 1,784 | 2,024 | 4,560 | 5,264 | 19,602 | Form 3-115 (Rev. 8/96) Appendix Table 2. FY2003 Razorback Sucker Subadult Production Summary | Species/Strain
and
Lot Number | Fi | Fish on Hand Last Day of Period | | | | | To Date This Fiscal Year | | | | |---|--------|---------------------------------|---------------|-----------|------|------------------|--------------------------|------------|-----------------|---------------------| | | Number | Weight | Weight Length | D.I. F.I. | F.I. | F.I. Weight Gain | Feed Expended | | Conver-
sion | Percent
Survival | | Ť | 2 | 3 | 4 | 5 | 6 | 7 | Pounds
8 | Costs
9 | 10 | 11 | | Bonytail
Lake Mohave
02LMDX | 1,861 | 62.0 | 4.8 | _ | 1 | 57.0 | 421 | 316 | 7.4 | 98.0 | | Bonytail
Lake Mohave
03LMDX | 3,017 | 2.0 | 1.5 | _ | | 1.9 | 14 | 11 | 7.4 | 98.0 | | Razorback sucker
Lake Mohave
02LMDX | 2,204 | 61.0 | 3.5 | 2 | _ | 45.0 | 261 | 196 | 5.8 | 99.0 | | Razorback sucker
Lake Mohave
03LMDX | 2,513 | 6.6 | 1.4 | * | - | 6.3 | 13 | 10 | 2.1 | 98.0 | | | | | | | | | | | | | | | 9,595 | 131.5 | 4541 | de la la | | 110.2 | 709 | 533 | 6.4 | 98.3 | Form 3-103a (Rev. 8/96) #### Appendix Table 3. ## Dexter National Fish Hatchery and Technology Center Razorback Sucker Spawning Protocols: 2005 Roger Hamman #### March 1, 2005 screen, board and start filling broodstock summer pond. #### March 12, 2005 start draining broodstock pond #### March 13, 2005 .continue draining broodstock pond #### March 14, 2005 Harvest pond and bring all broodstock in to Fish Culture Building sort males/females and place in separate tanks •record pit tag numbers, lengths, weights and take genetic samples of each fish inject 25 females with 0.1cc HCG/lb in preparation for spawning inject 25 males if necessary with 0.3 cc HCG/lb in preparation for spawning Move all broodstock not used in spawning activities to summer pond. #### March 15, 2005 ■inject 25 females with 0.1cc HCG/lb #### March 16, 2005 ■inject 25 females with 0.1cc HCG/lb prepare incubation system to receive eggs •gather other equipment and supplies needed for spawning trials #### March 17, 2005 spawn razorbacks using 1 female X 1 male spawning procedure inventory each individual spawn place eggs in incubators #### March 18, 2005 •move spawned broodstock to summer pond check eggs in incubators individual egg lots can be moved at this time prepare a minimum of two 12' tanks to receive fry #### March 19, 2005 check eggs in incubators #### March 20, 2005 •check eggs in incubators begin filling 12' tanks with heatec water #### March 21, 2005 check incubators (morning and afternoon) and transfer fry to 12' tanks #### March 22, 2005 •check incubators (morning and afternoon) and transfer fry to 12' tanks #### March 23, 2005 transfer remaining fry to 12' tanks clean incubators #### March 24, 2005 observe fry in 12' tanks #### March 25, 2005 ■observe fry in 12' tanks #### March 26, 2005 ■observe fry in 12' tanks #### March 27, 2005 observe fry in 12' tanks clean 12' tanks in preparation for stocking fry into rearing ponds #### March 28, 2005 •fry stocked into rearing ponds at 20,000 per acre. ## **Literature Cited:** Hamman, R. 1985. Induced spawning of hatchery -reared razorback sucker. Prog. Fish-Cult.. 47(3): 187-189 # FY 2007 Rearing 350mm Razorback Sucker at the Uvalde National Fish Hatchery, Uvalde, Texas in Cooperation with Dexter National Fish Hatchery and Technology Center Aerial Photo of Uvalde National Fish Hatchery 2001 USFWS Prepared for: Biology Committee The San Juan Recovery Implementation Program Principal Investigator –Manuel E. Ulibarri Dexter National Fish Hatchery and Technology Center P.O. Box 219, 7116 Hatchery Road Dexter, New Mexico 88230-0219 505-734-5910 505-734-6130 Fax Manuel_ Ulibarri@fws.gov #### Introduction Dexter National Fish Hatchery and Technology Center (DNFH&TC) submits the following proposal cooperatively with the Uvalde National Fish Hatchery (UNFH) and proposes to supervise the rearing of 12,000 350mm razorback sucker sub-adults in 10 one acre ponds. The following scope of work identifies the facilities and methodologies that will be used at UNFH to produce 12,000 350mm razorback sucker for use by the San Juan River Basin Implementation Program (SJRIP) to meet its augmentation objectives for the species in the San Juan River. Initial production guides have been developed for the species based on historical growth rates observed at Dexter and Willow Beach. Funding is being requested for operations and capital improvements. Four earthen ponds will be lined with plastic to more efficiently utilize water resources and effectively manage the rearing ponds. One water well will be developed and serve as a back up water supply. Staff, guidance and direction in every phase of the production program will be provided by DNFH&TC. UNFH will provide the infra-structure for stability in the production program. #### **Background** Location Uvalde NFH was established by Act of Congress in 1934, authorized by the White Act 46 Stat. 371, to produced catfish and bass for farm ponds and ranch tanks in as many as 60 counties in South Texas. The facility is located 3 miles Southwest of Uvalde, Texas on FM 481 and approximately 85 miles West of San Antonio. Fish Hatchery Road runs through the hatchery connecting FM 481 and U.S. HWY 90. This is a large warm water fish culture facility that utilizes earthen and lined ponds to produce fish. The hatchery is located on 100 acres of Mesquite Grasslands, in the Rio Grande Plain of Southwest Texas. There are 47 usable ponds totaling 50 surface acres of water. Five ponds were lined with high density polyethylene in FY 1987 and six more in FY 1993 for water conservation purposes. Buildings on the facility were renovated from 2001 to present following a 100 year flood in 1998. Hatchery facilities include an office/fish culture building, shop/garage, fish holding house/nursery, chemical/fertilizer building, and four living quarters with two double garages, two pump houses, and four concrete/two fiberglass raceways. Water for fish culture purposes is pumped from two deep wells. #### STATION OPERATIONS Historically UNFH has been one of the top producing warm water fish culture facilities in the nation. During the mid 90's as many as 6 species were cultured producing 2.6
million fish, weighing 60,000 pounds. Over the past 15 years threatened and endangered fish species like Yaqui catfish, paddlefish, Comanche Springs pupfish and fountain darters have all been propagated and maintained successfully at the facility. The climate in Southwest Texas provides 300 days (10 months) of growing season. Two deep wells provide 72° water year round. #### **Facilities** This project will utilize 10 one acre ponds to fulfill the production commitment of the proposal. These ponds will need minor earth work to the bottoms and banks and are fully functional with water supplies, catch basins and drains. #### Water An abundant amount of fish culture water is supplied by a deep aquifer well (660 feet in depth) capable of pumping 1,500 gallons per minute. The well water is a constant 72°F, pH of 7.5-8.05, total hardness of 496 ppm, and alkalinity of 224 ppm. Water rights total 1,500 acre-feet per annum. #### Lake Mohave Razorback Broodfish Staff at DNFH&TC successfully propagate and maintain 17 federally listed fish species; and produce over 1.0 million fish annually for recovery and restoration programs throughout the southwest. Razorback sucker have been maintained and cultured at facility since 1981. Captive broodstock representing the Lake Mohave population exist at DNFH&TC (Table 1.) and will be spawned at Dexter and eggs or fry transported and stocked in Uvalde ponds for growout. Table 1. Dexter NFH & TC Razorback Sucker Captive Broodstock | | Num | bers | Founders | Lot | |------------------|-----------------------|-----------------|-----------------------|-------------| | Year ClassOrigin | on ha | and Represented | <u>Designation</u> | | | 1981 | F ₁ Mohave | 133 | adults / Mohave | ' 81 | | 1994-2003 | Mohave | 1200 | 90 / Mohave | PM | | 1999-2004 | Mohave | 1000 | fry /Mohave | WC | | 2003-2004 | F ₂ Mohave | 1000 | 50/ '81 captive stock | F_2 | <u>'81-1981 year class, Mohave-Lake Mohave, AZ, PM-Pair Matings, WC-Wild Caught, WB-Willow Beach, P-Production.</u> Uvalde's growing scenario includes receiving eggs or fry from Dexter on March 01. The fry are stocked in to earthen or lined ponds and grown out- door from March to November. Total dissolved oxygen and temperature are monitored daily and fish feed on phyto and zooplankton produced in fertilized ponds for approximately 45 days at which time they are offered a prepared razorback sucker diet. In the fall of the year when the fish reach target size they will be harvested from the ponds and transferred to the fish culture building for sorting and tagging. Following a 7 to 10 day rest and recovery period they will be loaded into distribution trucks and hauled to their stocking locations. The USFWS RDU has successfully hauled 300+mm razorbacks and bonytail to Lake Mohave, Arizona, in the lower Colorado River. These distribution trips log 660 miles (12 hours) of hauling time in one direction. #### **Production Plan** #### **Objectives** The main objective of this proposed work is to rear 12,000 – 350mm razorback sucker sub-adults annually and deliver them to the San Juan River. Additional objectives of the work include: 1. Improve, maintain and staff facilities at Uvalde NFH necessary to rear and distribute the target # of fish. #### Methods DNFH&TC will conduct captive propagation activities that include spawning of a minimum of 25 pairs of broodstock, incubation of fertilized eggs, enumeration and stocking of swim up fry into UNFH ponds, harvest of target sized fish from ponds, enumeration, tagging and distribution to the SJ River. The project will utilize indoor and outdoor facilities. At Dexter all spawning and incubation activities will be conducted indoor in the fish culture building. At Uvalde razorback sucker will be reared in as many as ten one acre earthen ponds. Within this scope we propose to line four ponds with plastic due to associated water seepage, water conservation and pond management purposes. #### Spawning Broodfish will be harvested from DNFH&TC ponds in late February and held indoor for spawning. Over the next week eggs will be incubated and swim up fry shipped to Uvalde for rearing. #### **Rearing Ponds** To meet the production goal of 12,000 (350mm) fish, rearing ponds will be stocked at the following densities: Phase I Growth: (March thru May - 90 day growing period) ``` Pond 1- 1 acre @ 50,000 fry Pond 2- 1 acre @ 50,000 fry ``` Phase II Growth: (June thru November - 150 day growing period) Harvest ponds from phase I growing period; enumerate and stock fingerlings into 8 ponds. ``` Pond 1- 1 acre @ 3.000 fingerlings Pond 2- 1 acre @ 3,000 fingerlings Pond 3- 1 acre @ 3,000 fingerlings Pond 4- 1 acre @ 3,000 fingerlings Pond 5- 1 acre @ 3,000 fingerlings 1 acre @ 3,000 Pond 6- fingerlings Pond 7- 1 acre @ 3,000 fingerlings Pond 8- 1 acre @ 3,000 fingerlings ``` Earthen pond bottoms will be packed and graded prior to receiving fish. Non-level pond bottoms can hinder fish harvest and aquatic vegetation can entrap fish at harvest time. Fertilization and slow filling of ponds will start 10 to 14 days prior to stocking. Staff will ensure that water quality is monitored. Temperature, dissolved oxygen and pH readings will be taken twice daily at 7:00am and 3:00 pm at the deepest part of the pond. If the dissolved oxygen drops to < = 3 mg/I, supplemental aeration will be started. All feeding, fertilization and chemical applications will be stopped till adequate oxygen levels are restored. Aerators will be run all night for several days till the oxygen is back up to acceptable levels, (5-7 mg/1). Staff will avoid handling fish for 7-10 days following a stress related circumstance. #### **Pond Vegetation Control and Fertilization** Sonar, Diuron or Barrier will be used in earthen ponds to control rooted aquatic vegetation. Staff will use granular form when possible and broadcast the entire pond bottom at the recommended rates. Sonar - 20 lbs per acre (dry broadcast) Diuron- 25 lbs per acre (dry broadcast) Barrier- 100 lbs per acre (dry broadcast) Copper sulfate (CUSo4) will be used to control floating filamentous algae blooms. Treatments will began approximately 45 days after fish are stocked into the ponds and repeated every 30 days. Application rates in Uvalde ponds are 2 to 3lbs per acre. A secondary benefit derived from using CUSo4 is its effectiveness in controlling external parasites. Zooplankton and invertebrate insect populations are cultured with the proper fertilization regime. Four types of fertilizer will be used: - 1. Alfalfa meal - 2. Alfalfa pellets - 3. Cottonseed meal - 4. Super phosphate Initial fertilization rates for earthen ponds are 100 lbs of cottonseed meal, 100 lbs of alfalfa meal or pellets and 3 lbs of super phosphate. Follow up rates are administered on Monday and Thursday with 10 lbs cottonseed meal, and 10 lbs, alfalfa meal or pellets. Water temperature, dissolved oxygen (DO) and pH readings will be taken in all rearing ponds daily. All readings will be recorded on record charts. If morning DO readings are below 3.0 or above 13.0 all fertilization will be stopped until DO's are brought back to accepted levels. If pH readings are greater than 9.5 fertilization will be terminated. #### **Feeding Schedule** Fish will be sampled at the end of every month. Size, weight and over all condition will be recorded. Feed amounts will be adjusted and projected for the upcoming month. Razorback grower #350 feed will be used and purchased from Nelson and Sons, Silver Cup, Murray, Utah. Fish will be fed twice daily, once at 10:00am and at 2:00pm. Feeding rates are based on water temperature and fish densities in the ponds and will be calculated as follows: - water temp > = 70 °F feed 3 % BW per day, Mon thru Fri. - water temp 60-70 °F feed 2 % BW per day, Mon thru Fri. - water temp < 60 °F feed 1.5 % BW per day, Mon, Wed, Fri. Staff will use the following guide to determine the proper particle size to offer the fish. Feed sizes will be mixed at ½ rations of each size when making the transition to the next larger size feed. | Fish Size | Particle Size | |-----------|---------------| | 1-2" | 1.0 mm | | 3-5" | 2.0 mm | | 6-8" | 3.0 mm | | 8-14" | 4.0 mm | #### **Projected Harvest Dates and Delivery Date** Based on projected growth rates for razorback at UNFH, the production target of 12,000 350mm fish can be achieved in a eighteen month period. This time frame indicates that the initial delivery of fish would be in September of 2007. In order to establish a consistent long term production cycle UNFH will maintain 24,000 to 30,000 fingerlings in a production year. Following the initial year of production the rearing effort would be reduced to 15,000 annually, and these fish will be incorporated into the production cycle. At any given point of the production year there will be approximately 25,000 fish in the system. #### **Predator Control** During the winter months (December and January) razorbacks reared for this project will be maintained indoor in four 40' Long by 6' wide raceways. These facilities contain 72°F flow through water, supplemental aeration and alarm system. #### Fish Health Monitoring Protocols All fish will be handled with the best animal husbandry practices available. A feeding schedule will be developed and followed daily. If fish are held in ponds O₂ levels will be closely monitored. At least once a year, a fish health inspection will be conducted to examine fish for bacterial, viral and parasitic infections. Normally 60 fish per lot are sacrificed for an adequate sample. However, in the case of endangered or rare fish of genetic importance, numbers sampled may be less, depending upon availability. Non-lethal methods, if available, will be employed to obtain samples. Condition factors will be calculated on an annual basis and data added to a RBS database. Wet mounts will be examined for parasites and bacteria. Routine condition exams will be conducted and an examination will be
conducted on all lots one month prior to delivery to the SJ River. Brood and refuge stock will have health checks annually and only when needed to minimize handling stress. The Region 2 Fish Health Unit @ Dexter will provide bacterial and viral testing for razorback propagation and rearing activities. Treatment of disease will be the responsibility of the Dexter/Uvalde staff. Fish health experts are available to advise on proper treatment, and to examine fish for infection. #### Schedule Broodfish will be spawned on March 01,2006; eggs or swim up fry will be hauled to UNFH and stocked into earthen ponds for the first season (March - November 2006); held indoor during winter (December 2006- March 2006) stocked into clean ponds in March 2007 and available for distribution in September 2007 (late fall and or as requested by the SJRIP). Date: April 3, 2005 TO: Melynda Roberts, UC-826 FROM: Mark McKinstry, UC-735 SUBJ: New agreement for rearing razorback suckers at Uvalde National Fish **Hatchery through Dexter NFH** The San Juan Recovery Implementation Program Coordination Committee recently approved the following project in FY 2006. Under this agreement, Reclamation will need to obligate \$121,616.00 to fund the approved study. Attached is a copy of the approved scope of work, AID form, Economy Act Determination, and FA form. Please use the following table for the Cost Authorities to cover this obligation: | Scope of Work Title | Cost Authority | Cost | |--|--------------------------|------| | Rear 300mm Razorback Sucker at Uvalde National | A30-1878-6410-502-00-0-0 | \$ | | Fish Hatchery, Uvalde, | | | | Texas in Cooperation with Dexter National Fish | | | | Hatchery and Technology | | | | Rear 300mm Razorback Sucker at Uvalde National | X30 0594 0908 280 0006 | \$ | | Fish Hatchery, Uvalde, | | | | Texas in Cooperation with Dexter National Fish | | | | Hatchery and Technology | | | | Total | | \$ | | | | | | | | | | | | | ## ECONOMY ACT DETERMINATION AND FINDINGS INTERAGENCY ACQUISITION NO. Between the Bureau of Reclamation and US Fish and Wildlife Service—Dexter National Fish Hatchery #### **Findings** Pursuant to FAR 17.503, this Determination and Findings is prepared, as required by the Economy Act (31 U.S.C. 1535) to support the Bureau of Reclamation's decision to enter into an interagency acquisition with the US Fish and Wildlife Service. #### **Project Title** Rear 300mm Razorback Sucker at Uvalde National Fish Hatchery, Uvalde, Texas in Cooperation with Dexter National Fish Hatchery and Technology Center #### Background Populations (or aggregations) of the endangered razorback sucker within the San Juan River ecosystem and bonytail in the Colorado River are of particular importance for management and recovery of the species. The San Juan River Basin Recovery Implementation Program (SJRIP) was implemented as a Reasonable and Prudent alternative for a Jeopardy Opinion issued by the US Fish and Wildlife Service to Reclamation for the construction of the Animas LaPlata Project and Navajo Dam operations. As such, Reclamation must implement activities deemed important under this program in order to remain in compliance with the Biological Opinion. In FY 2006 the SJRIP Coordination Committee approved the rearing and stocking of 300 mm razorback sucker beginning in 2007. This SOW addresses that activity. #### **Objectives** There are two main objectives of this proposed work: rear 6,000 – 300mm razorback sucker subadults annually and deliver them to the San Juan River and determine optimal rearing densities for bonytail at UNFH that will enable the consistent production of 300mm fish annually for augmentation programs in the Lower Colorado River. Additional objectives include: - 1. Improve, maintain and staff facilities at Dexter NFH&TC and Uvalde NFH necessary to rear and distribute the target # of fish and conduct the target research. - 2. Test effects of long distance hauling, water quality differences and elevation on RBS and BTC cultured at the UNFH. Determine survival rates over time of fish hauled from DNFH&TC to UNFH. #### **Estimated Cost** The estimated cost of this acquisition is \$121,616 for FY2006 of which Reclamation will fund the entire amount. #### Basis for Decision that Use of Interagency Acquisition is more practicable The SJRIP Biology Committee determined that 11,400 razorback suckers > 300mm were required each year to meet the stocking goals to help achieve recovery of the razorback sucker in the San Juan River. This stocking goal is listed in the SJRIP Long-Range Plan and has been approved by the Coordination Committee. The USFWS is uniquely qualified to propagate and rear endangered fish in the Colorado Basin and has sole management authority over these species. Dexter National Fish Hatchery is currently raising razorback suckers for several programs including the SJRIP, the UCRIP, and the MSCP (LC Region). Dexter NFH also has extensive experience with the captive propagation of bonytail. Providing funds to the FWS is of mutual benefit to both bureaus and serves the mission responsibilities of the Federal Government. #### **Availability of Funds** Funds have been prevalidated in the amount of \$121,616 for fiscal year 2006. The total value is estimated at \$1,000,000 to cover out-year funding and anticipated increases in the amount of production that the SJRIP will need in the future. The duration of the acquisition is from July 15, 2006 through December 30, 2011. #### **Determination** Based on the foregoing findings, I hereby determine within the meaning of the Economy Act (31 U.S.C. 1535) that: - (a) The use of an interagency acquisition is in the best interest of the Government as there is only one government agency involved in the process of protecting the razorback sucker. Dexter National Fish Hatchery Technology Center already performs the work of protection of endangered and threatened species of fish and has expertise within the realm of these species. Furthermore, USFWS has legal and management authority over these species and that authority cannot be transferred to any other agency or group. The Bureau is only funding a portion of the overall costs associated with the project, and meets the mission objectives of both federal agencies. - (b) The FWS has the personnel with expertise capable of accomplishing the services required by the Bureau of Reclamation; - (c) The services cannot be provided as economically by contracting directly with a private source. Dexter NFH is a state of the art facility managing endangered fish only. Many of the fish hatcheries in New Mexico have their fish populations infected with whirling disease or other parasites and we want to avoid this issue with these fish. To have a public fish hatchery change its function from a rearing facility to a research facility would not be cost effective, nor waiting for the facility to make the change would not be prudent to the endangered fish that is trying to be saved. - (d) The Economy Act is not being used to make an acquisition that conflicts with another agency's authority or responsibility. - (e) Adequate funds are available for the subject transaction. - (f) The foregoing determination addresses the issues required at FAR 17.503. | //Mark McKinst | <u>ory</u> <u>07/12/2006</u> | | |------------------------------------|------------------------------|--| | Contracting Officer Technical Repr | resentative Date | | | | | | | | | | | Contracting Officer | Date | | | | | | | | | | | | | | | Chief of the Contracting Office | Date | | #### AWARD INSTRUMENT DETERMINATION #### 1. Title and description of proposed project: Indicate the title and description of the project. The description should include information on the principle purpose of the project and the public purpose of support Rear 300mm Razorback Sucker and Assess Potential for Rearing Bonytail at the Uvalde National Fish Hatchery, Uvalde, Texas in Cooperation with Dexter National Fish Hatchery and Technology Center #### 2. Statutory Authority: - a. Statute or Public Law Number: 106-392 - b. Provide information on which section(s) of the statute authorize financial assistance Indicate the sections which provide information on (1) legislative intent/purpose, (2) what types of projects are authorized, (3) what type of funding instruments are authorized (grant, cooperative agreement, contract, etc.), (4) what types of recipients are eligible for assistance, (5) cost share or matching requirements, (6) any mandatory requirements for competition, (7) any other restrictions such as geographical limitations, program regulations, or regulatory requirements such as Davis-Bacon Act applicability (8) type of assistance authorized (funding technical property) and (9) Section 3 of 106-392 authorizes appropriations for capital and base funding. Base funding for the SJRIP is limited to \$2.0 mil/yr adjusted for inflation starting in 2003. All projects receiving funding must go towards accomplishing the objectives of the Recovery Implementation Programs for the Upper Basin and San Juan Basin. All types of funding instruments are authorized. #### c. CFDA Number or Pseudo Code: Provide the appropriate CFDA Number or Pseudo Code as listed in <u>Appendix A</u> of the Reclamation Financial Assistance Handbook. #### 3. Authorization of appropriations: Identify the public law that provides an authorization of appropriations for the funding required for this project and the amount of funding which has been authorized Public Law 106-392. Level of funding is \$6.0 mill/yr adjusted for inflation beginning in 2003. This amount is to be split 2/3 and 1/3, respectively between the Upper Basin RIP and the San Juan RIP. See Public Law 106-392 for more details. #### 4. Proposed recipient: Manuel E. Ulibarri Dexter National Fish Hatchery and Technology Center P.O. Box 219, 7116 Hatchery Road Dexter, New Mexico 88230-0219 505-734-5910
505-734-6130 Fax Manuel Ulibarri@fws.gov #### **Administrative Contact** Karen Welch Division of Fisheries Resources PO Box 1306 Albuquerque, NM 87103 ### **Bureau of Reclamation Technical Representative** Mark McKinstry Office of Adaptive Management Bureau of Reclamation 125 South State Street, UC-735 Salt Lake City, UT 84138 **a. Competitive award:** This agreement will be awarded on a competitive basis. Eligible recipients include the following categories of organizations: Select from: State, county, municipality, township, or special district government; independent school district; state controlled institution of higher education; Indian tribe: popprofit agency: private higher education institution; individual: profit This award was competed through the San Juan RIP Biology Committee review process. It will be awarded to a profit organization. - **b. Noncompetitive award:** This award will be made on a noncompetitive basis to: - (1) Name of recipient: USFWS Dexter National Fish Hatchery - (2) Type of organization: Government agency, USFWS Designate type of recipient based on categories listed under 4.a. above. - 5. Indicate the type of business instrument proposed for award of this action: - a. Type of instrument: Indicate type of business instrument. See <u>Appendix B</u> of the Reclamation Financial Assistance Handbook for definitions of contracts, grants and cooperative agreements. A **grant** is the appropriate financial assistance instrument if the recipient can expect to perform the project without Federal collaboration, participation, of intervention in the agreement (as long as there is compliance with the terms and conditions of award). A **cooperative agreement** is the appropriate financial assistance instrument if the recipient can expect Federal collaboration or participation in the management of the project, i.e., substantial involvement. Guidance for determining what types of actions - b. If the award instrument will be a cooperative agreement, include an explicit statement of the anticipated nature, character, and extent of Federal programmatic involvement. - 6. Estimate the amount of funding and any other type of assistance that will be provided to the recipient during the term of the agreement: Provide an estimate of the funding amount for the base year and any option years of the agreement. Indicate any other type of assistance (e.g., technical services or assistance, government furnished property, information, consultation) that will be \$121,616 for FY 2006 (\$64,494 from SJRIP and \$57,122 from MSCP-LC Region). I would like to make this agreement for a total of \$1.0 mil for the 5 year period to cover future modifications to continue this work and to cover increases in production in later years due to shortfalls from other facilities. 7. Estimate the amount of cost share or matching and other types of contributions that will be provided by the recipient during the term of the agreement: If this contribution is mandated by the statutory authority identified in 2.a., above, demonstrate that the contribution meets the requirements in the statute No cost share is required. 8. Based on the foregoing information, discuss how the proposed project will assist the recipient in carrying out the public purpose of support or stimulation authorized by the above law. Discuss how the project will assist the recipient in accomplishing its public purpose (needs) which are authorized by the above-stated law. Demonstrate that the project is not primarily for the direct benefit of Reclamation or other Federal government agencies, i.e., the Federal government will not be receiving any form of a deliverable This project will assist with recovery of native fish in the San Juan River by increasing the number of 300mm razorback suckers that are stocked every year to what is required under the long-range plan. These stockings will ultimately allow the SJRIP to meet the goals of the RIP which include recovery of endangered species and continued water development. This project will also assist the MSCP in meeting their goals with the propagation and rearing of bonytail and razorback sucker. #### **DETERMINATION:** Based on the foregoing information, I hereby determine that there is legislative authority to enter into this transaction which is for a public purpose of support or stimulation, and that in accordance with the statutory criteria at <u>31 U.S.C. 6301 et seq.</u>, the proper award instrument for the proposed action is a [grant or cooperative] agreement. | Prepared by: | | k McKinstry | 07/13/2006 | | |--|---|--|--|------------------| | | Name | | Date | | | | Title Biological Scientist | | | | | Approved by: | | | | | | ripproved by. | Name | | Date | | | | Tid. | | | | | | Title | | | | | REVIEW: | | | | | | at an organizati
in the decision-
circumvent app | with 505 DM 2.6.E(1)(a), a review of onal level separate from the level with making process and to ensure that folicable Federal procurement laws or not determination pursuant to 505 DM | here the determinancial assistan regulations. Ac | ination was made to insure objective instruments are not being use ecordingly, I have reviewed the a | etivity
ed to | | Reviewed by: | Name | | Date | | | FA-016
06/03
Upper Colorado Reg | Title | | | | # FINANCIAL ASSISTANCE REQUEST FORM Please complete this form to submit a new request. Include Mandatory Items listed at the end of this form. Send completed form to Pat Postell, Code: UC-820. You may complete this form manually or by computer (Blocks will wrap to contain all available data.) Insert N/A, if not applicable. | 1a. Requestor's Name | 1b. Signature | | | | |--|---|--|--|--| | Mark McKinstry | | | | | | · | | | | | | 1c. Date | 1d. Office, Code, Phone and Fax Number | | | | | To. But | ERD, UC-735, (801) 524-3835 | | | | | April 02 2005 | EKD, 00-755, (001) 524-5055 | | | | | April 03, 2005 | | | | | | 1e. Cost Authority for administrative time | | | | | | | | | | | | X30 0594 0908 260 00 0 2 CRF04 | | | | | | 2. Title of Action | | | | | | Rear 300mm Razorback Sucker at Uvalde Nation | onal Fish Hatchery, Uvalde, Texas in Cooperation with | | | | | Dexter National Fish Hatchery and Technology | • | | | | | Desici i actional i ish Hatenery and Technology | Center | | | | | 2. Degrained Assent Date: | | | | | | 3. Required Award Date: | | | | | | | | | | | | May/June 2006 | | | | | | 4. Technical Contact (Name & Telephone Numbe | r): | | | | | | | | | | | Mark McKinstry (801) 524-3835 | | | | | | ((()) () () () () () () () (| | | | | | 5 CCAOP (Nama & Talanhana Number) if differ | cant than A | | | | | 5. GCAOR (Name & Telephone Number) if different than 4. | | | | | | | | | | | | | | | | | | 6. Period of Performance: | | | | | | | | | | | | FY2006-FY-2011 | | | | | | 7. Out years (number and dollar amount), if any: | | | | | | | | | | | | 2007 2011 Out year funding will be approximate | by \$125,000 to \$250,000/yr. The total for this agreement should | | | | | 2007-2011. Out year funding will be approximately \$125,000 to \$250,000/yr. The total for this agreement should | | | | | | be \$1.0 mil to include additional work that may be required in out years to meet stocking goals. | | | | | | 8. Location of Work/River Basin: | | | | | | | | | | | | San Juan River Basin | | | | | | 9. Copies of Request for Proposals required for distribution to your office. Send copies to (indicate name and | | | | | | mail code): | 10. Was the Award Instrument Determination completed with review and approval signatures? (All) | | | | | | | | | | | | [] No [x] Yes | | | | | | | | | | | | 11. How will the acquisition be funded? | |--| | [x] Incrementally Funded (including the amount funded per fiscal year)[] Entirely Funded up front | | 12. Does P.L. 93-638, Indian Self-Determination Act, apply to this assistance? | | [] Yes [x] No | | 13. Are there any special instructions or information to be included in the solicitation? If yes, please describe. | | 14. Is requirement "SENSITIVE" or "RESTRICTED" in accordance with the Commissioner's letter of 19 Jun 02, Subject: Policy Memorandum-Interim Requirements and Procedures for Handling and Safeguarding the Bureau of Reclamation's Information and Records and the UC Regional Director's letter of 18 Jun 02, same subject as the Commissioner's? | | [] SENSITIVE [] RESTRICTED [x] NOT APPLICABLE | | If "SENSITIVE" OR "RESTRICTED", has this been coordinated with the Homeland Security Officer? [] Yes [] No | | 15. All required approvals are obtained. (REQUIRED PRIOR TO AWARD OF AGREEMENT). | | [] Categorical Exclusion Checklist [] NEPA Compliance | | [x]N/A []OBTAINED [x]N/A []OBTAINED | | If necessary but not obtained, provide status information and projected completion. | | 16. Will this requirement affect an existing contract/agreement (i.e. land, O&M, repayment, safety of dams, recreation) with another entity? If so, has the affected Group Chief been advised? | | []
Yes [x] No If no, why not? | | 17. Does this contract involve cost sharing with other source(s)? If so, identify source(s) from which cost sharing will be obtained and any other agreements or contracts that need to be established or modified to affect the cost sharing. | | Cost sharing not required | | 18. Type of Action: | | [] Grant | | [] Cooperative Agreement | | [] PL 93-638 | # MANDATORY: ITEMS A THROUGH L MUST BE SUBMITTED PRIOR TO PROCESSING. - A. Request (may be hard copy or sent electronic). You **MUST** provide a complete cost structure including the cost authority, the budget/org. code, and the object code. (ALL) - B. Independent Government Cost Estimate (IGCE) (signed and dated by the Estimator). (ALL) - C. Award Instrument Determination (AID) (ALL) - D. Electronic-ready Specifications or Statement of Work and Drawings (in PDF format). (If competed) - E. Suggested Vendor List (suggested sources for competition). - F. If this is a request for proposal (RFP), please provide the evaluation criteria and a list of TPEC members and chairperson. (If competed) - G. If over \$25,000 and sole source, provide a signed sole source justification. - H. Recipient Proposal with detailed budget. (ALL) - I. Name, address and Phone number of recipient technical representative and name of person with signatory authority if different from technical representative. (All not competed) - J. Type of recipient (State, local government, non-profit, educational institution, etc.) (All not competed) - K. Program narrative (background, purpose (public benefit), responsibilities and involvement of both parties, amount and term of the agreement). (ALL) - L. Program/technical approval of recipient technical and budget proposal. (ALL) Cost Structure for Proposal $X30\ 0594\ 0908\ 280\ 00\ 0$ 6; $A30\ 1878\ 6410\ 502\ 00\ 0$ 0 Budget/Org Code 4073000 Object Code Reimbursable Agreements-Other agency 253H I have examined the attached proposal and cost estimate and believe that the stated costs are fair for the services provided. They are similar to costs that we incur for similar activities in the SJRIP and other programs. Additionally, the MSCP-LC Region has approved and cost shared on this project and finds that the costs are very reasonable compared to what they are currently paying. Mark C. McKinstry (524-3835) #### **FY 2007** Rear 300mm Razorback Sucker and Assess Potential for Rearing Bonytail at the Uvalde National Fish Hatchery, Uvalde, Texas in Cooperation with Dexter National Fish Hatchery and Technology Center Aerial Photo of Uvalde National Fish Hatchery 2001 USFWS Prepared for: Biology Committee The San Juan Recovery Implementation Program Principal Investigator –Manuel E. Ulibarri Dexter National Fish Hatchery and Technology Center P.O. Box 219, 7116 Hatchery Road Dexter, New Mexico 88230-0219 505-734-5910 505-734-6130 Fax Manuel_ Ulibarri@fws.gov #### Introduction Dexter National Fish Hatchery and Technology Center (DNFH&TC) submits the following proposal cooperatively with the Uvalde National Fish Hatchery (UNFH) and proposes to supervise the rearing of 6,000 300mm razorback sucker sub-adults and conduct research activities related to rearing 300mm bonytail at the UNFH, Uvalde, Texas. The project will use 12 one acre and 3 quarter acre ponds. The following scope of work identifies the facilities and methodologies that will be used at UNFH to produce the target number of razorback sucker for the San Juan River Basin Implementation Program (SJRIP) to help meet its augmentation objectives for the species in the San Juan River. Research activities will be conducted to assess the capability to produce 300mm bonytail at UNFH for use in the Lower Colorado River Basin program to help meet augmentation targets identified by the Multi-Species Conservation Program. Initial production guides have been developed for the species based on historical growth rates observed at Dexter, Willow Beach, and Achii Hanyo. Funding is being requested for operations and capital improvements. Four earthen ponds will be lined with plastic to more efficiently utilize water resources and effectively manage rearing ponds at both facilities. One water well will be developed and serve as the primary back up water supply. An additional water well will be rehabbed and serve as a backup during the interim. Staff, guidance and direction in every phase of the production and research program will be provided by DNFH&TC. UNFH will provide the infra-structure for stability in the production program. #### **Background** Location Uvalde NFH was established by Act of Congress in 1934, authorized by the White Act 46 Stat. 371, to produced catfish and bass for farm ponds and ranch tanks in as many as 60 counties in South Texas. The facility is located 3 miles Southwest of Uvalde, Texas on FM 481 and approximately 85 miles West of San Antonio. This is a large warm water fish culture facility that utilizes earthen and lined ponds to produce fish. The hatchery is located on 100 acres of Mesquite Grasslands, in the Rio Grande Plain of Southwest Texas. There are 47 usable ponds totaling 50 surface acres of water. Five ponds were lined with high density polyethylene in FY 1987 and six more in FY 1993 for water conservation purposes. Buildings on the facility were renovated from 2001 to present following a 100 year flood in 1998. Hatchery facilities include an office/fish culture building, shop/garage, fish holding house/nursery, chemical/fertilizer building, and four living quarters with two double garages, two pump houses, and four concrete/two fiberglass raceways. Water for fish culture purposes is pumped from two deep wells. #### STATION OPERATIONS Historically UNFH has been one of the top producing warm water fish culture facilities in the nation. During the mid 90's as many as 6 species were cultured producing 2.6 million fish, weighing 60,000 pounds. Over the past 15 years threatened and endangered fish species like Yaqui catfish, paddlefish, Comanche Springs pupfish and fountain darters have all been propagated and maintained successfully at the facility. The climate in Southwest Texas provides 300 days (10 months) of growing season. Two deep wells provide 72° water year round. This project will utilize 15 ponds to fulfill the production and research commitments of the proposal. These ponds will need minor earth work to the bottoms and banks and are fully functional with water supplies, catch basins and drains. #### Water An abundant amount of fish culture water is supplied by a deep aquifer well (660 feet in depth) capable of pumping 1,500 gallons per minute. The well water is a constant 72°F, pH of 7.5-8.05, total hardness of 496 ppm, and alkalinity of 224 ppm. Water rights total 1,500 acre-feet per annum. #### Lake Mohave Razorback and Bonytail Broodfish Staff at DNFH&TC successfully propagate and maintain 17 federally listed fish species; and produce over 1.0 million fish annually for recovery and restoration programs throughout the southwest. Razorback sucker and bonytail broodstock have been maintained and cultured at facility since 1981. Captive broodstock representing the Lake Mohave population exist at DNFH&TC and will be spawned and fry/fingerlings transported and stocked in Uvalde ponds for growout and research purposes. Uvalde's growing scenario includes receiving fry and fingerlings from DNFH&TC in April. The fish are stocked into earthen or lined ponds and grown out- door from April to November. Total dissolved oxygen and temperature are monitored daily and fish feed on phyto and zooplankton produced in fertilized ponds for approximately 45 days at which time they are offered a prepared razorback sucker diet. In the fall of the year when the fish reach target size they will be harvested from the ponds and transferred to the fish culture building for sorting and tagging. Following a 7 to 10 day rest and recovery period they will be loaded into distribution trucks and hauled to their stocking locations. The USFWS RDU has successfully hauled 300+mm razorbacks and bonytail to Lake Mohave, Arizona, in the lower Colorado River. These distribution trips log 660 miles (12 hours) of hauling time in one direction. #### **Production Plan** #### **Objectives** There are two main objectives of this proposed work: rear 6,000 - 300mm razorback sucker sub-adults annually and deliver them to the San Juan River and determine optimal rearing densities for bonytail at UNFH that will enable the consistent production of 300mm fish annually for augmentation programs in the Lower Colorado River. Additional objectives include: - 3. Improve, maintain and staff facilities at Dexter NFH&TC and Uvalde NFH necessary to rear and distribute the target # of fish and conduct the target research. - 4. Test effects of long distance hauling, water quality differences and elevation on RBS and BTC cultured at the UNFH. Determine survival rates over time of fish hauled from DNFH&TC to UNFH. #### Methods DNFH&TC will conduct captive propagation activities that include spawning of a minimum of 25 pairs of broodstock, incubation of fertilized eggs, enumeration and stocking of swim up fry/fingerlings into UNFH ponds, harvest of target sized fish from ponds, enumeration, tagging and distribution to the San Juan and lower Colorado Rivers. The project will utilize indoor and outdoor facilities. At Dexter all spawning and incubation activities will be conducted indoor in the fish culture building. At Uvalde razorback sucker and bonytail will be reared in as many as fifteen ponds and potentially four 6' wide X 40' long concrete and two 8' wide by 50' long fiberglass raceways. #### **Spawning** Broodfish will be harvested from DNFH&TC ponds in mid March and early April and held indoor for spawning. Over the next week eggs will be incubated and swim up fry/fingerlings shipped to Uvalde for rearing. #### **Ponds** #### Razorback Rearing To meet the production goal of 6,000 (300mm) fish, rearing
ponds will be stocked at the following densities: #### Phase I Growth: (March thru May - 90 day growing period) Phase II Growth: (June thru November - 150 day growing period) Harvest ponds from phase I growing period; enumerate and stock fingerlings into 6 ponds. ``` Pond 1- 1 acre @ 4,000 fingerlings 1 acre @ 4,000 Pond 2- fingerlings 1 acre @ 4,000 Pond 10- fingerlings Pond 11- 1 acre @ 4.000 fingerlings 1 acre @ 4,000 fingerlings Pond 12- Pond 22- 1 acre @ 4,000 fingerlings ``` #### Bonytail Research <u>Year one</u>: (April thru October- 210 day growing period) ``` Pond 19- 1 acre @ 500 fry Pond 20- 1 acre @ 500 fry Pond 21 1 acre @ 1,000 fingerlings ``` | Pond 30- | 1 acre @ 1,000 | fingerlings | |----------|----------------|-------------| | Pond 31- | 1 acre @ 1,500 | fingerlings | | Pond 32- | 1 acre @ 1,500 | fingerlings | Any earthen pond used will be packed and graded prior to receiving fish. Non-level pond bottoms can hinder fish harvest and aquatic vegetation can entrap fish at harvest time. Lined ponds will be cleaned out every other year to reduce the amount of organic material in the ponds which could cause water quality deterioration. Fertilization and slow filling of ponds will start 10 to 14 days prior to stocking. Staff will ensure that water quality is monitored. Temperature, dissolved oxygen and pH readings will be taken twice daily at 7:00am and 3:00 pm at the deepest part of the pond. If the dissolved oxygen drops to < = 3 mg/I, supplemental aeration will be started. All feeding, fertilization and chemical applications will be stopped till adequate oxygen levels are restored. Aerators will be run all night for several days till the oxygen is back up to acceptable levels, (5-7 mg/1). Staff will avoid handling fish for 7-10 days following a stress related circumstance. #### **Pond Vegetation Control and Fertilization** Sonar, Diuron or Barrier will be used in earthen ponds to control rooted aquatic vegetation. Staff will use granular form when possible and broadcast the entire pond bottom at the recommended rates. ``` Sonar - 20 lbs per acre (dry broadcast) Diuron- 25 lbs per acre (dry broadcast) Barrier- 100 lbs per acre (dry broadcast) ``` Copper sulfate (CUSo4) will be used to control floating filamentous algae blooms. Treatments will began approximately 45 days after fish are stocked into the ponds and repeated every 30 days. Application rates in Uvalde ponds are 2 to 3lbs per acre. A secondary benefit derived from using CUSo4 is its effectiveness in controlling external parasites. Zooplankton and invertebrate insect populations are cultured with the proper fertilization regime. Four types of fertilizer will be used: - 1. Alfalfa meal - 2. Alfalfa pellets - 3. Cottonseed meal - 4. Super phosphate Initial fertilization rates for earthen ponds are 100 lbs of cottonseed meal, 100 lbs of alfalfa meal or pellets and 3 lbs of super phosphate. Follow up rates are administered on Monday and Thursday with 10 lbs cottonseed meal, and 10 lbs, alfalfa meal or pellets. Water temperature, dissolved oxygen (DO) and pH readings will be taken in all rearing ponds daily. All readings will be recorded on record charts. If morning DO readings are below 3.0 or above 13.0 all fertilization will be stopped until DO's are brought back to accepted levels. If pH readings are greater than 9.5 fertilization will be terminated. #### **Escapement** Staff will reduce the potential for escapement by installing draining screens in the ponds when they are initially prepped to receive fish. Screen mesh size will be 250 micron in fry ponds and ¼" in fingerling ponds. All fingerlings will be graded prior to being stocked in the rearing ponds. Staff will monitor the ponds daily and insure there is no over flow of water or leaks in the dam boards. Sawdust will be used to stop all leaks that develop in the catch basin. Water levels will adjusted and maintained a minimum of six inches below the over flow mark until the fry average 30mm in length. #### **Feeding Schedule** Fish will be sampled at the end of every month. Size, weight and over all condition will be recorded. Feed amounts will be adjusted and projected for the upcoming month. Fry and fingerlings will receive a starter grower diet purchased from Nelson and Sons, Silver Cup, Murray, Utah. Fry will be fed 4 times daily and fingerlings twice daily, once at 10:00am and at 2:00pm. Feeding rates are based on water temperature and fish densities in the ponds and will be calculated as follows: - water temp > = 70 °F feed 3 % BW per day, Mon thru Fri. - water temp 60-70 °F feed 2 % BW per day, Mon thru Fri. - water temp < 60 °F feed 1.5 % BW per day, Mon, Wed, Fri. Staff will use the following guide to determine the proper particle size to offer the fish. Feed sizes will be mixed at ½ rations of each size when making the transition to the next larger size feed. | Fish Size | Particle Size | | |-----------|-----------------------------|--| | (fry-1") | starter and #1,2&3 crumbles | | | 1-2" | 1.0 mm | | | 3-5" | 2.0 mm | | | 6-8" | 3.0 mm | | | 8-14" | 4.0 mm | | #### **Projected Harvest Dates and Delivery Date** Based on projected growth rates for razorback at UNFH, the production target of 6,000 300mm fish can be achieved in an eighteen month period. This time frame indicates that the initial delivery of fish would be in September of 2007. In order to establish a consistent long term production cycle UNFH will maintain 24,000 to 30,000 fingerlings in a production year. Following the initial year of production the rearing effort will be reduced to 15,000 annually, and these fish will be incorporated into the production cycle. At any given point of the production year there will be approximately 25,000 fish in the system. All bonytail will be harvested from the study ponds in the fall of each year and transferred to the fish holding house for enumeration. Length/weight, survival and fish health data will be collected, analyzed and adjustments made to the stocking densities for the following year. All fish achieving the target size of 300mm will be available for use in the augmentation effort of the Lower Colorado River program. #### **Predator Control** During the summer grow-out all ponds are monitored daily by on-site staff and predators are taken by rifle and traps. If fish remain outdoor during the winter season the ponds will be netted with 2" X 2" block nylon netting. A minimum of 12,000 razorbacks reared for this project will be maintained in four 6"X 40' concrete raceways during the winter months. These facilities contain 72°F flow through water, supplemental aeration and alarm system. #### **Fish Health Monitoring Protocols** All fish will be handled with the best animal husbandry practices available. A feeding schedule will be developed and followed daily. If fish are held in ponds O_2 levels will be closely monitored. At least once a year, a fish health inspection will be conducted to examine fish for bacterial, viral and parasitic infections. Normally 60 fish per lot are sacrificed for an adequate sample. However, in the case of endangered or rare fish of genetic importance, numbers sampled may be less, depending upon availability. Non-lethal methods, if available, will be employed to obtain samples. Condition factors will be calculated on an annual basis and data added to a RBS and BTC database. Wet mounts will be examined for parasites and bacteria. Routine condition exams will be conducted and an examination will be conducted on all lots one month prior to delivery to the San Juan River. Brood and refuge stock will have health checks annually and only when needed to minimize handling stress. The Region 2 Fish Health Unit @ Dexter will provide bacterial and viral testing for razorback propagation and rearing activities. Treatment of disease will be the responsibility of the Dexter/Uvalde staff. Fish health experts are available to advise on proper treatment, and to examine fish for infection. #### Schedule Broodfish will be spawned on April 01,2006; swim up fry/fingerlings will be hauled to UNFH and stocked into lined ponds for the first season (April - November 2006); held indoor during winter (December 2006- March 2006) stocked into clean ponds in March 2007 and available for distribution in September 2007 (late fall and or as requested by the SJRIP). # Operation of Public Service Company of New Mexico Fish Passage Structure and NAPI Ponds Management Training Fiscal Year 2007 Project Proposal Principal Investigator: Dr. Vincent Lamarra Ecosystems Research Institute 975 South State Hwy Logan, Utah 84321 (435) 752-2580 vincel@ecosysres.com and Principal Investigator: Jeffrey Cole Navajo Nation Department of Fish and Wildlife Box 1480 Window rock, AZ 86515 (928) 871-7068 jcole@navajofishandwildlife.org #### **Study Area** Public Service Company of New Mexico Diversion Dam is located at RM 166.6. SJRIP razorback rearing ponds are located on the Navajo Indian Irrigation Project, south of Farmington, New Mexico. #### **Collections** The fish trap at the upstream end of the fish passage provides the ability to capture all fish that use the passageway. Specimens collected will be inspected to determine if any rare fishes (Colorado pikeminnow, roundtail chub, and razorback sucker) are present in the trap. All identifiable rare fish and all large-bodied native fish (i.e., flannelmouth and bluehead suckers) will be released. All other specimens will be removed from the river. #### Background The PNM Diversion Dam (see Figure 1) was constructed in 1971. The 3.25-foot high diversion dam (weir) is located on the San Juan River about 12 miles downstream of Farmington, New Mexico near the town of Fruitland at River Mile 166.6. Facilities at the diversion include a concrete weir, a series of screened intake structures, an intake channel, a settling channel, and a pump house. Water flows over the dam into a stilling basin created by a concrete apron. The stilling basin is
the width of the river. The presence of the dam and the basin creates a barrier to fish moving upstream. As flows increase, the difference in the upstream and downstream water levels is reduced. Although water levels are reduced, water velocities increase and the weir provides an impediment to upstream fish movement. Recovery studies conducted as part of the SJRRIP have shown that some fish are able to move upstream past the weir but their specific method of movement is not known and the number of fish discouraged from upstream movement by the presence of the weir is also unknown. One possible method of upstream movement could occur during high river flows. When the flow in the San Juan River is above 7,000 cfs, some of the flow goes around the dam making it possible for fish to go around the dam at these higher flows. A 4-foot by 6-foot sluiceway in the weir located on the north side of the river is used to sluice the inlet structure of sediment. Normal sluice gate operations have the sluice gate open between 8 and 12 inches. Trash racks and isolation gates are located at the point of diversion. A concrete settling channel about 490 feet long conveys river water to the pump house or returns it to the river. Diverted water moves through traveling screens to three pumps, together they are capable of pumping a maximum of 17,000 gallons per minute (37 cfs) to a 110-acre storage reservoir (Figure 2). From the storage reservoir, the water is pumped to San Juan Generating Station (SJGS). The facility provides an average of approximately 1 million gallons of water per hour (24,200 acrefeet per year) to PNM for cooling operations for the SJGS (Tetra-Tech 2000). A need has been identified by the San Juan River Basin Recovery Implementation Program (SJRRIP) to restore endangered fish passage upstream past the PNM Diversion Dam. The purpose of establishing fish passage would be to protect and recover native Colorado pikeminnow (*Ptychocheilus lucius*) and razorback sucker (*Xyrauchen texanus*) populations in the San Juan Basin while water development proceeds in compliance with all applicable Federal and State laws, including fulfillment of Federal trust responsibilities to the Southern Ute Indian Tribe, Ute Mountain Ute Tribe, Jicarilla Apache Nation and the Navajo Nation. In addition, other native fish species would benefit from restored passage. The fish passageway will extend the range of these two native fishes upstream about 50 miles into historical habitat and may allow Colorado pikeminnow to naturally re-colonize these upstream reaches. A fish trapping facility located at the upper end or forebay of the fishway allows researchers to sort, examine, and count fish and remove nonnative fish from the system. #### **Objectives** - 1. Determine the use of the fish passageway by juvenile and adult native and nonnative fishes. - 2. Identify any Colorado pikeminnow congregations that may be related to the spawning period in the San Juan River. - 3. Maintain the facility in a manner that assures long-term benefit. #### **End Products** - 1. Definitive data on passage--number of species; numbers per species; seasonal use and distribution by species. - 2. Well maintained and operable fish passage facility. #### Methods Working with the Program, Reclamation will contract with the Navajo Nation to perform the long-term operation and maintenance of the passageway. Work performed by the Nation is grouped in 2 general areas, operation and maintenance. Fish and Wildlife Service personnel will provide necessary fish passageway training. Training will be provided in Grand Junction, Colorado at the Redlands Fish Passage on the Gunnison River. The training will assure the follow proficiencies: - 1. Proper fish handling skills. - 2. Species identification - 3. PIT Tagging skills #### **Operation** - 1. Operate the fish trap and passage way from April 1 through October 31 each year. - 2. Passage is visited once a day to check trap, sort fish, and remove trash as needed. Steps are as follows: - 1. Lower water in trap - 2. Collect fish in nets and remove from trap - 3. Sort fish by native and non-native species (dispose of non-native species) - 4. Enumerate and record all fish 4" in length or longer. - 5. Check Colorado pikeminnow and razorback sucker for presence of a PIT tag. - 6. If tag is present record number, tag fish if no tag is found. - 7. Weigh and measure each Colorado pikeminnow and razorback sucker (use total length in mm, weight in grams). - 8. Return all native species to the river via the fish return pipe. - 9. Raise water in trap. - 3. Crews checking the fish trap are also responsible for periodic cleaning of riverborne sediment in the fish trap that usually builds up during runoff. - 4. Daily cleaning of surface and submerged trash, debris, and riverborne algae from the trash racks and bar screens in the forebay of the fish passageway, and aluminum conduit screens in the fish trap. The amount of algae, debris, trash, and sediment that accumulates daily at this site is seasonally variable, depending upon flow magnitude and water volume during the water year. - 5. Analyze and evaluate data and prepare annual progress report. - 6. Prepare draft and final report. #### Maintenance - 1. Maintain the fish passage facility as necessary. Maintenance will include inspection of facilities for items that need to be repaired. Painting as necessary to control corrosion. Lubrication of moving equipment. Checking fluid levels in gear boxes and cooling radiators, if any. - 2. During the first 2 years of operation representatives from the Navajo Nation, Reclamation, and FWS will inspect the facility to identify any design deficiencies and maintenance requirements. - 3. After the first 2 years of operation, representatives from the Navajo Nation, Reclamation and the FWS will perform an inspection every 3 years. - 4. In the event of a significant flood event, representatives from the Navajo Nation will notify Reclamation, BIA and the FWS and all parties will inspect the facility for damage. #### **Deliverables/Schedule** - 1. Fish number will be recorded daily and a monthly fish passage report shall be submitted to the U.S. Fish and Wildlife Service by the 15 of each following month including time and date each time the trap was checked, number of species, and lengths, weights and PIT Tag numbers of each endangered fish. - 2. Analyze and evaluate data and prepare annual progress report. - 3. Prepare draft and final report. #### **NAPI Ponds Management** The individuals that are operating the PNM Fish Ladder will also work with Vince Lamarra (ERI), Ron Bliesner (KBE) and BIA staff for staff training and managing the NAPI Razorback sucker grows out ponds. Manager will be responsible for daily pond inspections, and regulation of water levels. Water quality will be monitored daily for temperature, dissolved oxygen, pH and electrical conductivity. Dikes, fence, piping and ancillary equipment will be monitored weekly. Water levels will be maintained as necessary. No major maintenance is included in this budget. The ponds will be managed as per the Razorback Pond Management Plan. ## Maintenance and Operation of the San Juan River Basin Hydrology Model San Juan River Basin Recovery Implementation Program - Hydrology Committee Fiscal Year 2007 Project Proposal Principal Investigator: Pat Page Bureau of Reclamation 835 E. 2nd Avenue, Suite #300 Durango, CO 81301 (970) 385-6560 ppage@uc.usbr.gov #### **Background** The Third Generation San Juan Basin Hydrology Model (SJBHM) was completed in FY2004. This scope of work includes the annual operation and maintenance of the model and necessary data. The Bureau of Reclamation has the primary responsibility for model O&M. The model will be available to generate and analyze runs associated with Section 7 Consultations and/or special requests from the Biology or Coordination Committees related to the flow recommendations or other hydrological aspects of the Program. In order for the model to be available for such requests, the model and data must be maintained to adjust configurations, correct for errors, and evolve the data set forward through time. The FY2007 request includes funds to continue to provide technical transfer from the model developer to the model users and maintainers. #### Study Area San Juan River Basin #### Tacks - 1. Maintain data to evolve the data set forward through time. - 2. Maintain the model to update and test data and to adjust model configuration, methodologies, or assumptions. Apply all RiverWare updates and patches as they become available. - 3. Maintain software associated with data and model. - 4. Generate and analyze model runs associated with Section 7 consultations or special requests from the Biology and/or Coordination Committees. Assumes that three consultations in FY07 will be requested, requiring five model runs/consultation. It also assumes that the Coordinating Committee will request two special runs in FY07. A consultation run will usually require a model reconfiguration and the implementation of operating criteria. Each consultation request will require approximately eleven staff days; each special run will require five staff days. - 5. Program management and coordination. - 6. Provide technology transference to Reclamation's Western Colorado Area Office staff in the details of maintaining the data and models, and in operating the models. #### **Products** Hydrological analysis of water development scenarios or other scenarios as requested by stakeholders or Program committees. #### Costs FY2007 costs are shown in the following table. They include a \$6,000 contingency fund to cover costs that may arise as a result of unanticipated requests for model runs. The contingency fund would be used only after Hydrology Committee approval. #### **Notes** - Tasks 1-4 include only staff time from Reclamation's Western Colorado Area Office (WCAO); Tasks 5 and 6 include WCAO
staff time plus staff time from Reclamation's Technical Service Center (TSC) in Denver. - "Equipment and Supplies" is \$5000 RiverWare software support fee. #### Backup Information for Scope of Work Objectives: - Data maintenance is to evolve the data set forward through time and make other adjustments to the data. - Model maintenance is to adjust the model configuration or operating criteria to correct for errors or other changes. Also includes application of all RiverWare updates and patches as they become available. - Software maintenance is for updating and maintaining data management interfaces and other software associated with the data and models. - Generate and analyze models runs includes technical support necessary to make and analyze all model runs that are associated with Section 7 Consultations or to make special runs for the Coordinating Committee. The above computation assumes that 3 consultations per year will occur, requiring 5 model runs/consultation. It also assumes that the Coordinating Committee will request 2 special runs/year. A consultation run will usually require a model reconfiguration and operating criteria implementation and testing. Special runs may also require some setup time. The cost estimate assumes that a consultation run will require 3 days of setup time, 1 day to run and analyze each of the 5 runs, and 3 days to report the results. Therefore, each consultation run will take approximately 11 days. It is assumed that special runs will require 2 days of setup time, 1 day to run and analyze, and 2 days to report results. - Program management and coordination includes developing budget and status updates and attendance of technical staff at meetings. - Technical transfer is to provide transfer of technology necessary to operate and maintain the data and model. # Improve Stream Gaging and Flow Measurements San Juan River Basin Recovery Implementation Program - Hydrology Committee Fiscal Year 2007 Project Proposal Principal Investigator: Pat Page Bureau of Reclamation 835 E. 2nd Avenue, Suite #300 Durango, CO 81301 (970) 385-6560 ppage@uc.usbr.gov #### **Background** There are five USGS streamflow gaging stations on the main stem of the San Juan River that are very important to the operation of the river and play an important role in the implementation of the flow recommendations. Stream gaging data on the San Juan River are needed to attempt to reliably develop and implement flow recommendations. #### **Study Area** San Juan River Basin in New Mexico #### **Objective** Provide funding to the USGS to take additional flow measurements as needed at the four San Juan River gages in New Mexico. (Note: Base cost for operation of the stations is paid for by non-Program funds.) #### **Products** - 1. Improved flow measurement and more accurate gage readings. - 2. Technical presentation at the end of the year from USGS summarizing the activities completed and the value of obtaining additional readings. ## Program Coordinator and Program Support Assistant Fiscal Year 2007 Project Proposal U.S. Fish and Wildlife Service 2105 Osuna NE Albuquerque, New Mexico 87113 <u>David_Campbell@fws.gov</u> (505) 761-4745 <u>Joann_Perea-Richmann@fws.gov</u> (505) 761-4739 #### **Background** The San Juan River Recovery Implementation Program (Program) is designed to simultaneously address endangered fish species recovery and development of water resources within the Basin. The Program includes representatives from not only Federal agencies, but also the States of Colorado and New Mexico, the Jicarilla Apache Nation, the Southern Ute Indian Tribe, the Ute Mountain Ute Tribe, the Navajo Nation and the water development interests, most of which have legal mandated responsibilities to the endangered fish and/or the water resources. The Service is responsible for directing and coordinating the overall Program. As stated in the Program Document, the Service will appoint a Program Coordinator who will be responsible for overall Program coordination, a senior level biologist and a Program Assistant to dissemination of information about Program activities. Public Law 106-392 specifically authorizes the use of base funding to fund program management. #### **Tasks** - 1. Coordinate the activities of the Biology, Hydrology and Coordination Committees. - 2. Insure that approved recovery activities are implemented. - 3. Disseminate information to involved state, federal, and tribal agencies. - 4. Coordinate Program activities with the Upper Basin Recovery Implementation Program. - 5. Coordinate outreach activities with the Upper Basin Recovery Implementation Program; disseminate information on Program activities to the public through brochures, newsletters and/or the website. - 6. Forward plans and recommendations to the Coordination Committee for review and approval. - 7. Annual Work Plan: - A. Work with the Biology and Hydrology Committees to identify and expedite individual projects that are needed to accomplish the long range plan for each of the recovery elements. - B. Draft an annual work plan consisting of high priority individual projects, formulated within the available funding. - C. Forward the work plan to the Coordination Committee for review and approval. - 8. Coordinate an annual assessment of the Program's recovery progress as outlined in the Program Document. - 9. Maintain a list of interested parties and provide those parties with the meeting dates, times, locations, and agendas for Program meetings. - 10. Provide draft and final summaries of meetings to committee members. - 11. Report to the Coordination Committee at each meeting the status of Program activities and research projects, and accomplishment of milestones; report any problems with maintaining schedules and provide recommendations for solving those problems; implement the recommendations of the Coordination Committee to resolve scheduling problems. - 12. Provide support materials for annual funding efforts with the U.S. Congress and state legislatures. # Reclamation Base Management Fiscal Year 2007 Project Proposal Mark McKinstry UC-735 Bureau of Reclamation 125 South State Street, Room 6107 Salt Lake City, UT 84138-1147 Phone 801-524-3835 FAX 801-524-5499 mmckinstry@uc.usbr.gov Pat Page Bureau of Reclamation Western Colorado Area Office 835 East Second Ave., Suite 300 Durango, CO 81301 Phone 970-385-6560 FAX 970- 385-6539 ppage@uc.usbr.gov **Relationship to SJRIP:** Supports Program goals and management by supporting approved activities **Study Goals, Objectives, and End Product:** Program Management funds support Reclamation staff involved in program administration. Funds are used for the administration of funding agreements, including issuing requisitions for program supplies, and the preparation and oversight of work conducted under interagency agreements, cooperative agreements, contracts, and grants. The funds are also used for formation and participation of the technical committees, implementation of committee assignments not specifically identified in a scope of work, reporting, and coordination of water operations. Management support for Capital fund projects, including technical oversight, budgeting, preparation of bids and funding agreements is covered in a separate scope of work. Participation in Hydrology and Biology Committee meetings and business is paid for separately by Reclamation with funds unrelated to the SJRIP. #### **Task Description and Schedule** Task 1: Manage and administer funding and Hydrology Committee activities. Coordinate and manage the hydrology-related tasks performed by the Hydrology Committee, including administering cooperative agreements and contracts with consultants, accounting for expenditures, developing and providing status reports, and coordinating work items to ensure work is completed as planned. Task 2: Manage and administer funding for Recovery Program projects related to the Biology Committee activities. Funding Recovery Program projects requires establishment or modification of approximately 45 Reclamation funding agreements or contracts each year. Each financial agreement requires multiple activities, including: submission of requests for Federal assistance for Recovery Program-approved projects; working with Recovery Program's office on funding issues; reviewing and approving (if warranted) project budgets; requesting obligations to cover funding agreement or contract awards; awarding agreements or contract funding to recipients; maintaining agreement and contract filing system including agreement instruments, invoices, and accruals; reviewing and tracking budgets; participating in audits; reviewing and approving invoices; performing periodic site visits to monitor project performance and progress; filing advanced procurement reports; organizing and participating on TPECs; drafting requests for proposals (RFPs); performing agreement closeouts; answering agreement inquiries from auditors, assistance recipients, and the Recovery Program; recording project performance and status of deliverables; and filing recipient performance reports. **Deliverables/Due Dates:** Requests from the Recovery Program for funding are processed as they are received. Other deadlines for committee activities are set by the Recovery Program participants during the development of the annual workplan. An annual report on program management activities will be submitted in December of each year. ## Capital Improvement Program Management San Juan River Recovery Program Fiscal Year 2007 Project Proposal Principal Investigator: Brent Uilenberg Bureau of Reclamation 2764 Compass Dr., Suite 106 Grand Junction, CO 81506 (970) 248-0641 builenberg@uc.usbr.gov #### **Background** The purpose of the San Juan Capital Improvements Program is to implement capital projects which have been identified by the Program as necessary for the recovery of the endangered fish. As defined in Public Law 106-392 capital projects include
"...planning, design, permitting or other compliance, preconstruction activities, construction, construction management, and replacement of facilities, and the acquisition of interests in land or water, as necessary to carry out the Recovery Implementation Programs. #### **Study Area** San Juan River Basin #### **Objectives** - 1. Coordinate the preparation of Federal budget requests. - 2. Develop and manage cooperative agreement with the National Fish and Wildlife Foundation which provides the mechanism to utilize non-Federal cost share funds to implement capital projects. - 3. Develop and manage contracts and agreements to accomplish construction and acquisition of capital projects. - 4. Account for and provide capital project expenditure reports to the Coordination Committee. - 5. Coordinate planning, design, permitting, pre-construction, construction and acquisition of capital projects. #### **Products** Financial reports will be periodically provided to the Coordination Committee documenting the status of Federal appropriations and non-Federal cost sharing contributions.