Satellite free F K α from CaF_2 and SrF_2

M.Uda^{1,2}, T.Yamamoto², Y.Ogyu¹, H.Wakita³, K.Taniguchi⁴, M.M.Grush⁵, T.A.Callcott⁵, D.L.Ederer⁶, J.H.Underwood⁷ and R.C.C.Perera⁷

¹Department of Materials Science and Engineering, Waseda University, Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan ²Laboratory for Materials Science and Technology, Waseda University, Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan ³Department of Chemistry, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-01, Japan

⁴Osaka Electro-Communication University, Hatsutyo, Neyagawa, Osaka 574, Japan

⁵Department of Physics, University of Tennessee, Knoxville, TN37996, USA

⁶Department of Physics, Tulane University, New Orleans, LA70118, USA

⁷Center of X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA

INTRODUCTION

A characteristic X-ray is emitted from an atom whose inner shell electron has been ionized by bombardment of electrons, ions and photons with sufficient energies. The fine structure of the characteristic X-ray resulted from a transition between an inner shell and a valence band has been utilized to understand a partial density of state of the valence band which is responsible for revealing various types of physical and chemical properties of atom-aggregates. However, under the excitation conditions mentioned above, multiply ionized states are produced together with a singly ionized state, which emit X-rays with higher energies, named satellites, than the energy of the characteristic X-ray from the latter state. Coexistence of these two kinds of X-rays make explanation of the fine structure complicated and ambiguous.

Monochromatized synchrotron radiations can well be used to eliminate the satellites emitted from the multiply ionized states¹⁾. In this report we compare observed satellite free F K α emissions with the partial density of states estimated from the DV-X α molecular orbital calculations²⁾. Here CaF₂ and SrF₂ were employed for investigating the partial density of state of occupied F 2p in the valence bands.

EXPERIMENTAL RESULTS

F Kα emission spectra of CaF₂ and SrF₂ shown in Fig. 1(a) and (b) were measured using a grating monochrometer at B.L.8. Excitation energies were 704 and 703 eV for CaF₂ and SrF₂, respectively, which were chosen, referring to a series of excitation-energy dependent F Kα spectra emitted from CaF₂³, from the following stand point; photon energies to be large enough for F K shell single ionization but too small for K¹Lⁿ multiple ionization. Here K¹Lⁿ denotes a state with one and n vacancies in K and L shells, respectively. Energy calibration for the reported emission spectra was obtained by assuming the energy of K¹L⁰ of F Kα from CaF₂ to be 677.2 eV⁴.

The F K α peaks of CaF₂ and SrF₂ can be deconvoluted into two components with 1.8 eV in FWHM, whose centroid energies, their energy separations and relative intensities are summarized on table 1.

Fig.1 Observed F K α emission spectra free from doubly ionized satellites, which are emitted from CaF₂(a) and SrF₂(b).

		Observed	Calculated	MO
CaF ₂	Centroid	676.4 ^{eV}	Relative	30t ₂
	Energies	677.7		33t ₂
	Peak separation	1.3 ^{eV}	1.4 ^{eV}	
	Relative	42 %	41 %	30t ₂
	Intensities	58	59	33t ₂
SrF ₂	Centroid	676.7 ^{eV}	Relative	51t ₂
	Energies			53t ₂
		677.6		54 t ₂
	Peak separation	0.9 ^{eV}	1.0 ^{eV}	
	Relative	34 %	37 %	51t ₂
	Intensities		4	53t ₂
		66	59	54 t ₂

Table 1 Molecular orbital components of F K α emitted, and theoretically estimated from CaF₂ and SrF₂.

MOLECULAR ORBITAL CALCULATIONS AND DISCUSSIONS

Molecular Orbital (MO) calculations at the ground state were performed using the discretevariational (DV)-X α method²⁾. The basis functions for CaF₂ and SrF₂ were 1s-3p for F, 1s-4p for Ca and 1s-5p for Sr. Sample points of 10000 for numerical integration were distributed threedimensionally in a manner described elsewhere²⁾. A diameter and depth of the potential to confine wave functions were chosen to be 0.67a₀ and -3.0 Hartree, respectively, where a₀ is an interatomic distance between F and Ca or Sr atoms. In the present study, a cluster model of (F⁻ $M^{2+}_{4}F_{6}F_{12}M^{2+}_{12})^{13+}$ with Td symmetry was employed, as shown in Fig. 2.

Fig. 2 A cluster model $(F^{-}M^{2+}{}_{4}F^{-}{}_{6}F^{-}{}_{12}M^{2+}{}_{12})^{13+}$ for CaF₂ and SrF₂, where M denotes Ca and Sr. A central F⁻ is surrounded by four M²⁺ as the first neighbors, six F⁻ as the second, twelve F⁻ as the third, and twelve M²⁺ as the fourth neighbors.

Calculated F 2p partial density of states (PDOS) for CaF_2 and SrF_2 are shown in Fig. 3 (a) and (b), respectively, which are responsible for F K α emissions if assuming the dipole approximation for the K α transition to be used. Here two and three components of PDOSs for Caf_2 and SrF_2 , respectively, were convoluted using FWHM of 1.8 eV, and are drawn by full lines, where relative intensities and their energy separations between two main components are summarized on Table 1.

The calculated PDOSs of F 2p for CaF_2 and SrF_2 reproduce the F K α spectra of the fluorides observed here satisfactorily. In addition, the above PDOSs can well be used to explain shapes of

photoelectron spectra of F 2p and F K α emission spectra already reported⁵⁾⁶⁾ for CaF₂ and SrF₂, though the latter are contaminated with the doubly ionized K¹L¹ satellites.

Fig. 3 Calculated F K α emission spectra emitted from CaF₂ (a) and SrF₂ (b).

REFERENCES

- 1) R. C. C. Perera, Nucl. Instr. Meth. Phys. Res. A319 (1992) 277.
- 2) H. Adachi, M. Tsukada, and C. Satoko, J. Phys. Soc. Jpn. 49 (1978) 875.
- 3) M. Uda, T. Yamamoto, Y. Ogyu, H. Wakita, K. Taniguchi, M. M. Grush, T. A. Callcott, D. L. Ederer, and R. C. C. Perera, This compendium of ALS (1998).
- 4) Chikara Sugiura, Wataru Konishi, Shizuko Shoji, and Shinjiro Kojima, J. Phys. Soc. Jpn. 59 (1990) 4049.
- 5) Roozbeh Hessabi, and David S. Urch, J. Chem. Soc. Faraday Trans. 86 (1990) 247.
- 6) J-E. Rubbensson, S. Eisebitt, M. Nicodemus, T. Böske, and W. Eberhardt, Phys. Rev. B50 (1994) 4035.

This work was supported by Waseda University and Hitachi.

Principle investigator : M.Uda, Department of Materials Science and Engineering, Waseda University. E-mail : muda@mn.waseda.ac.jp. Telephone : +81-3-5272-9799.